On the b-ary expansion of an algebraic number

Yann BuGeauDp  (Strasbourg)

Abstract. Let b > 2 be an integer and denote by w(b) the number of its
prime divisors. As a consequence of our main theorem, we establish that,
for n large enough, there are at least (logn)'*/(«w®)+4) . (Joglogn)~1/4
non-zero digits among the first n digits of the b-ary expansion of every
algebraic, irrational, real number. Analogous results are given for the
Hensel expansion of an algebraic, irrational p-adic number and for the
(B-expansion of 1, when (3 is either a Pisot, or a Salem number.

1. Introduction

Let b > 2 be an integer. Despite some recent progress, the b-ary expansion of an
irrational algebraic number is still very mysterious. It is commonly believed that v/2, and
every algebraic irrational number, should share most of the properties satisfied by almost
all real numbers (here and below, ‘almost all” always refers to the Lebesgue measure); in
particular, every digit 0,1,...,b — 1 should appear in its b-ary expansion with the same
frequency 1/b. However, it is still unknown whether, for b > 3, three different digits occur
infinitely often in the b-ary expansion of v/2.

There are several ways to measure the complexity of a real number. A first one is the
block complexity. For a real number 6 and a positive integer n, let denote by p(n,6,0b)
the total number of distinct blocks of n digits in the b-ary expansion of . It is shown in
[2] with the help of a combinatorial transcendence criterion from [5] that the complexity
function n — p(n,&,b) of an irrational algebraic number ¢ grows faster than any linear
function. Since the complexity function of a rational number is uniformly bounded, this
shows that the algebraic, irrational numbers are ‘not too simple’ in this sense.

Another point of view is taken in [6, 18], where the authors obtained very nice lower
bounds for the number of occurrences of the digit 1 among the first n digits of the binary
expansion of an algebraic irrational number. Apparently, their approach does not extend
to a base b with b > 3.

In the present paper, we consider the question of the complexity of an irrational alge-
braic number from a third point of view. Our aim is to estimate the asymptotic behaviour
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of the number of digit changes in its b-ary expansion. For a non-zero real number 6, write

ag
0=+ E b—k:a—ko---%-al@---:
k>—ko

where kg > 0, a_g, # 0 if kg > 0, the ai’s are integers from {0,1,...,b — 1} and ay, is
non-zero for infinitely many indices k. The sequence (ay)r>_r, is uniquely determined by
0: it is its b-ary expansion. We then define the function nbdc, ‘number of digit changes’,
by

nbdc(n,0,b) = Card{l < k <n:ay # axy1},

for any positive integer n. Apparently, this function has not been studied up to now. If
one believes that every irrational algebraic number & behaves in this respect like almost
all numbers, then n — nbdc(n, £, b) should grow linearly in terms of n. Not surprisingly,
much less can be proved. Indeed, it easily follows from Ridout’s Theorem [16], recalled in
Section 3, that we have

nbdc(n, &, b) . e (L.1)

lOg n n—-+0o

a proof of this is given at the beginning of Section 4. The main object of this note is to
improve (1.1) by using a quantitative version of Ridout’s Theorem. As a corollary, we get
lower and upper bounds for the sum of the first n digits of an algebraic irrational number.

Our paper is organized as follows. The main results are stated in Section 2 and proved
in Section 4, with the help of an auxiliary theorem given in Section 3. We display in
Sections 5 and 6 the analogues of our main result for the Hensel expansion of irrational
algebraic p-adic numbers and for (-expansions, respectively. Furthermore, we discuss in
Section 7 various results on the transcendence of the series i>1 b—"i, for an integer b > 2
and a rapidly growing sequence of positive integers (n;);>1. In the last section, we briefly
consider an analogous problem for continued fraction expansions.

2. Results

For any integer z at least equal to 2, we denote by w(z) the number of its prime
divisors.

Theorem 1. Let b > 2 be an integer. For every irrational, real algebraic number &, there
exists an effectively computable constant ¢(&,b), depending only on & and b, such that

nbdc(n, £,b) > 3 (logn) T/ @O+ (Joglogn) ~1/4, (2.1)

for every integer n > ¢(&,b).

We stress that for every non-zero rational number p/q and for every integer b > 2,
there exist integers £y and C such that nbdc(n,p/q,b*) < C for £ > £y. The growth of the
functions n — nbdc(n, §,b%) can be used to measure the complexity of the real number 6.
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In this respect, the ‘simplest’ numbers are the rational numbers and Theorem 1 shows that
algebraic irrational numbers are ‘not too simple’.

The proof of Theorem 1 given in Section 4 yields a (very) slightly better estimate than
(2.1) and an explicit value for the constant c¢(¢, b).

We display two immediate corollaries of Theorem 1. A first one concerns the number
of non-zero digits in the expansion of a non-zero algebraic number in an integer base, a
question already investigated in [6, 18].

Corollary 1. Let b > 2 be an integer. Let & be a non-zero algebraic number. Then, for n
large enough, there are at least

(log n) 1/ @O+ (loglogn)~ /4

non-zero digits among the first n digits of the b-ary expansion of &.

For b = 2, Corollary 1 gives a much weaker result than the one obtained by Bailey,
Borwein, Crandall, and Pomerance [6], who proved that, among the first n digits of the
binary expansion of a real irrational algebraic number £ of degree d, there are at least
c(€)n'/? occurrences of the digit 1, where c(£) is a suitable positive constant (see also
Rivoal [18]).

Besides the number of non-zero digits, we may as well study the sum of digits. To this
end, for an integer b > 2 and a non-zero real number ¢ with b-ary expansion

ag
b== > 3
k>— ko

set

S(n,0,b) = ax,
k=1

for every positive integer n. We know that S(n, 6, b)/n tends to (b—1)/2 with n for almost
all real numbers 6. It is believed that the same holds when 6 is an arbitrary irrational
algebraic number. In that case, we are only able to prove a much weaker result, namely
that n +— S(n, &, b) cannot increase too slowly, nor too rapidly.

Corollary 2. Let b > 2 be an integer. Let £ be an irrational algebraic number. Then, for
n large enough, we have

S(n,&,b) > (logn) T/ @O+ (loglogn)~1/4 (2.2)

and
S(n,&,b) < n(b—1) — (logn) 1/ @O+ (loglogn)~ /4,

Inequality (2.2) should be compared with Theorem 4.1 from [3], which gives an upper
bound for the product of the first n partial quotients of an irrational, algebraic number.
Actually, the proofs of both results are very similar.



3. An auxiliary result

For a prime number ¢ and a non-zero rational number z, we set |z|, := ¢~ where u
is the exponent of ¢ in the prime decomposition of z. Furthermore, we set |0, = 0. With
this notation, the main result of [16] reads as follows.

Theorem (Ridout, 1957). Let S; and Sy be disjoint finite sets of prime numbers. Let
0 be a real algebraic number. Let € be a positive real number. Then there are only finitely
many rational numbers p/q with ¢ > 1 such that

D 1
‘9— 5" LI tple- T lale < = (3.1)

LeS, £eSs

For the proof of Theorem 1, we need an explicit upper bound for the number of
solutions to (3.1). The best one for our purpose has been established by Locher [13].

We normalize absolute values and heights as follows. Let K be an algebraic number
field of degree k. Let M(K) denote the set of places on K. For z in K and a place v in
M(K), define the absolute value |z|, by

(i) |z|, = |o(z)|*/*  if v corresponds to the embedding o : K — R;

(ii) |z|y = |o(z)]?/* = |a(x)|?/*  if v corresponds to the pair of conjugate complex em-
beddings 0,0 : K — C;

(iii) |x|, = (Np)~°*de(@)/k if 4 corresponds to the prime ideal p of Ox.

Here, Np is the norm of p and ord,(z) is the exponent of p in the decomposition of
the ideal (z) into prime ideals. These absolute values satisfy the product formula

H |z, =1 for z in K*.
veM(K)

The height of x is then defined by

H(z) = H max{1, |x|,}.

veEM(K)

It does not depend on the choice of the number field K containing x. The Mahler measure
of x is given by ,
M(z) = H(x)*,

where k' < k is the degree of z.
We denote by | - |, an extension of | - |, to the algebraic closure of K.

Theorem L. Let K be an algebraic number field. Let ¢ be real with 0 < ¢ < 1. Let
F/K be an extension of number fields of degree f. Let S be a finite set of places on K of
cardinality s. Suppose that for each v in S we are given a fixed element 6, in F. Let H be
a real number with H > H(6,) for all v in S. Consider the inequality

H min{1, |6, — 7|v} < H(’V)iQis (3'2)

veES



to be solved in elements v in K. Then there are at most
e T4 og(6 f) - 1og(5_1 10g(6f))
solutions vy in K to (3.2) with
H(~) > max{H,4*/¢}.

Proof. This is Theorem 2 from [13] in the case d = 1, with different notation. O

4. Proof of Theorem 1

e Preliminaries.

Without any loss of generality, let us assume that

(b—1)/b< &< 1. (4.1)
Write a
k
SZZ b_k :0.a1a2...,
k>1
and define the increasing sequence of positive integers (n;);j>1 by a1 = ... = an,, an, #
Upy41 a0d Qp 41 = ... = Qp, q, Qnj,y 7 G, +1 for every j > 1. Observe that

nbdc(n, &, b) = max{j : n; <n}

for n > ny, and that n; > j for j > 1. To construct good rational approximations to £ we
simply truncate its b-ary expansion at rank a,, .1 and then complete with repeating the
digit a,; 1. Precisely, for j > 1, we define the rational number

nj +00 nj
¢ = ak . An;+1 ag I Anj;+1
J = bk § : ko

b bk b (b—1)
k=1 k=n;+1 k=1

Set
PJ(X) = anj_|_1 — Qp,; + ( n; anj_l)X +...+ (ag—al)X”j_l +G1an

J

= Qn;4+1 — Qn; + (a”j—l-H - anj—1)an_nj_1+ Y
(an1+1 - an1)an_nl + a’anja

and observe that



Let p; and g; be the coprime positive integers such that

D5
£ 0 (4.3)

Since 1 < [@n; 41 — @n,;| < b— 1, there exists a prime divisor £ of b such that ordg(an;+1 —
an;) < ordg(b), thus

ord5<%) < —(nj — Dord(b) — 1. (4.4)

We infer from (4.4) and

(@, 11—, )b =14 4 (ag —ag)b 2 +ag bt
OI'dg( i1 i1 eIy > —(n; — 1)ord(b)

that g; > 2"~1. Consequently, we get

2L < H(E) =q; <™ (b—1). (4.5)
Observe that .
€ =&l < o (4.6)

e Proof of inequality (1.1).

We first establish the result claimed in the introduction, that is, that Ridout’s Theorem
implies (1.1). Let € be a real number with 0 < £ < 1. Let j be a positive integer. It follows
from Ridout’s Theorem that there exists a positive constant C'(¢) such that

P;(b)

R AN IS p—mi(14e)

’5 b (b — 1)‘ =0l

We then deduce from (4.6) that there is a positive constant C’(¢) such that nj;q <
(1 +&)n; + C'(e) for j > 1. This implies that n; < C”(g) - (1 +¢)? holds for j > 1 and
some positive constant C”(g). Consequently, we get

1 1 i 1
nbdc(n, £, b) > ogn og C"(¢) > ogn’
5 log(1 + ¢) 2e

when n is sufficiently large. This proves (1.1).

The improvement upon (1.1) rests on the fact that, by Theorem L, we have an explicit
estimate for the number of solutions to (3.1).



e Preparation for the proof of Theorem 1.

Let denote by d the degree of &.
The Liouville inequality as stated by Waldschmidt [20], p. 84, asserts that

’f _P for any positive integers p, q.
q

> @
Consequently, we obtain that
o < (2b)* M(E) - b,
thus we have
njy1 < 2dn;, (4.7)

for every integer j with j > 2log(3M (€)).
Let € be a positive real number with ¢ < 1/(log6d). Let j; be the smallest integer
with
j1 > max{2dlog(3M(¢£)),10(2d + 1)~ logb}, (4.8)

and let j > j; be an integer. Let /1, ..., ¢, ) denote the (distinct) prime divisors of b. We
infer from (4.6), (4.7), (4.2), (4.3) and the assumption (4.1) that

w(b) w(b)
min{1, [1/€ —q;/p; |} [ lajle. <4 min{1, 1€ = p;/a; 1} [ lasle
=1 =1
—MNj41 -1 _
< b gt (b - 1) (4.9)

< 4(b _ 1)1+2d((b _ 1)bnj)_”j+l/"jqj—1
<4b— ) H(E) e,

It follows from (4.5) and (4.8) that H(&;) > 2991 > 4(b — 1)**24. Consequently, we infer
from (4.9) that, if nj11 > (14 2¢)n; holds, then

w(b)
min{1, |1/ = q;/p;l} - [ lajle, <4(b— )" H(&) ™ H(&)™>°

1=1

(4.10)
< H(&) "
Observe that all the rational numbers £, are distinct. Furthermore, we have H(¢;) >
max{H (£),4%¢} as soon as j > j;.
We now apply Theorem L with K = Q, S = {00,41,...,l,@p)}, 0o = 1/, 04, = 0 for
i=1,...,w(b). Let s =1+ w(b) be the cardinality of S and set
T(g) := 297 4 (log e ™) log(6d). (4.11)
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It then follows from (4.10), our choice of e, and Theorem L that for every integer j > j;
outside a set of cardinality at most 7'(¢) we have

UZESI S (1 + 26)’)1]'.

e Completion of the proof of Theorem 1.
Let J be an integer with

J > max{ (2d1og(3M(€)))?, (4db)°}.
Let jo be the smallest integer with

jo > max{2dlog(3M(€)), 4dbV/ T},
and check that J > j§/2.
Let k > 3 be an integer. It is convenient to set 0 = s+4 =w(b)+ 5. For h =1,... k,
define kK _h—1 k+1 k—h k+1-h
ep = JTO o D@ = (og )Y (log 4d) e "TV/e (4.12)

and check that
J V<o) <oy <. < e, < 1/(log6d).

Put So = {j2,j2 + 1,...,J}. Observe that our choices of j, and e1,...,e; imply the
analogue of (4.8), namely that

jo > max{2dlog(3M(€)),10(2d + 1)e;, ' logb}, (1 < h < k).

For h = 1,...,k, let S}, denote the set of positive integers j such that jo < j < J and
nj+1 > (14 2ep)n;. Observe that Sy D S1 O ... D Sk. It follows from (4.10) that, for any
J in Sy, the rational number p;/q; satisfies

w(b)
min{1, |1/¢ —¢;/p;|}- [ ] lajles < H(E) 727

=1

Consequently, the cardinality of Sy is at most T'(¢p,).
Write
So=(So\S1)U(S1\S2)U...U(Sk—1\Sk)U Sk.

Combining (4.7) with the above estimates, we obtain that

A L e R e
Njy,  Nj-1  NJj-2 nj,
k
< (1+2e)” ] @+ 2e,) 70 (2d)T ),
h=2



Taking the logarithm and using the fact that log(1 + u) < u for any positive real number
u, we get

k
logny —logn;, <2Je; +2 Z enT(en—1) + T(ck) - (log2d). (4.13)
h=2

We easily infer from (4.11), (4.12), and (4.13) that
logny —lognj, < 3ke™®+26 jle=1)/c Je-1/e" (log J)Y/7 (log 4d)'/?

4.14
4 jle=1/e J(aq)/ak (log J)l/a (1Og4d)(ak*1+1)/ak_ ( )

Let log™ be the function defined on the positive real numbers by logt z = max{logz, 1}.
Choosing for k the smallest integer greater than (loglog.J) - (log™ loglog4d), we get from
(4.14) that

logny —logn;, < J /7 (log J)*/? (loglog J) (log4d)'/? (log™ loglog 4d),

where, as in the sequel of the proof, the constant implied by < depend only on w(b). Since
nj, < jo < J?/3 < Je=D/7 we get that

logny < JO™Y/7 (log J)1/7 (loglog J) (log 4d)*/“ (log™ loglog 4d),
thus
J> (lognJ)Hl/(”’l) (loglog nj)—l/(a—l) (log log log nJ)flfl/(afl) %
(10g 4d)—1/(0—1) (10g+ log log 4d)_1_1/(g_1).

Since 0 — 1 = w(b) + 4 > 4, this completes the proof of Theorem 1. O

5. On the Hensel expansion of irrational algebraic p-adic numbers

Let p be a prime number. As usual, we denote by Q, the field of p-adic numbers,
and we call algebraic (resp. transcendental) any element of Q, which is algebraic (resp.
transcendental) over Q. If §, is a p-adic number, we denote by

400

&= Y apt, (e €{0,1,...,p—1},ko > 0,a_g, #0 if ko > 0),
k=—ko

its Hensel expansion. It is proved in [2], Section 6, that the sequence (ax)r>—_k, cannot be
‘too simple’ when &, is algebraic irrational. Using the methods developed in the present
paper, we get the p-adic analogues of Theorem 1 and Corollaries 1 and 2. With the above
notation, for a positive integer n, set

nbdc(n, &y, p) = Card{1l < k <n:ap # art+1},
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and
n gpap Z ag.

Theorem 2. Let p be a prime number. Let &, be an algebraic irrational number in Q.
For any positive real number § with 6 < 1/9 and any sufficiently large integer n, we have

nbde(n, &, p) > (logn)'*?,

and there are at least (logn)'*?

expansion of §,, and, moreover,

non-zero digits among the first n digits of the Hensel

(logn)'*° < S(n,&,,p) < n(p—1) — (logn)'*.

The proof of Theorem 2 uses the same idea as that of Theorem 1. The good approxi-
mations to £, are obtained by truncating its Hensel expansion and repeating the last digit.
Theorem L, however, cannot be applied in the present context: we need a statement in-
volving rational approximation to a p-adic algebraic number that gives an explicit upper
bound for the number of solutions to an inequality first studied by Ridout [17]. A suitable
statement is Theorem 3.1 from Evertse and Schlickewei [12], that we apply with n = s = 2
to get Theorem 2. We leave the details of the proof to the reader.

6. On (-expansions

Let 5 > 1 be a real number. The g-transformation 7} is defined on [0, 1] by 1 :  —

Bx mod 1. Rényi [15] introduced the [-expansion of a real z in [0, 1], denoted by dg(x),
and defined by

dg(z) = 02122 ... Tp - - .,

where z; = [ﬁTé_l(x)]. For x < 1, this expansion coincides with the representation of x
computed by the ‘greedy algorithm’. If § is an integer, the digits x; of x lie in the set
{0,1,...,8 — 1} and dg(x) corresponds to the §-ary expansion of z defined in Section 1.
When £ is not an integer, the digits x; lie in the set {0,1,...,[3]}. We direct the reader
to [4] and to the references quoted therein for more on (-expansions. We stress that the
(B-expansion of 1 has been extensively studied.

It turns out that the method of proof of Theorem 1 applies to -expansions, when (3
is a Pisot or a Salem number. Recall that a Pisot (resp. Salem) number is a real algebraic
integer > 1, whose complex conjugates lie inside the open unit disc (resp. inside the closed
unit disc, with at least one of them on the unit circle). In particular, every integer b > 2
is a Pisot number.

For a real algebraic number 6, let r(f) denote the sum of the number of infinite places
on the number field Q(#) plus the number of distinct prime ideals in Q(6) that divide the
norm of @. In particular, 7(b) = w(b) + 1 for every integer b > 2.
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Theorem 3. Let 3 > 1 be a Pisot or a Salem number. Let M be a positive integer and

let (ax)k>1 be a non-ultimately periodic sequence of integers from {0,1,..., M}, and set
ag
§=D G
k>1

Let § be a positive real number with § < 1/(r(3)+3). If there are arbitrarily large integers
n for which
Card{1 <k <n:ag # apr1} < (logn)*

then & is transcendental.

We omit the proof of Theorem 3 since it is very similar to that of Theorem 1. Note
that Ridout’s Theorem has already been used in this context, see [1].

We display a consequence of Theorem 3 on the number on non-zero digits in the
(-expansion of 1.

Corollary 3. Let 3 > 1 be a Pisot or a Salem number. Write
d/g(l) = 0.a1a2 ce

For any positive real number § with § < 1/(r(83) + 3) and any sufficiently large integer n,
we have
ay+as + ...+ a, > (logn)'+o,

and there are at least (logn)'*? indices j with 1 < j <n and a; # 0.

7. On the series 2321 b—mi

Let b be an integer with b > 2. Let n = (n;);>1 be a non-decreasing sequence of
positive integers. It is well-known that if n grows sufficiently rapidly, then the number

fn,b = Z b—"
j=1

is transcendental. For example, it easily follows from Ridout’s Theorem that the assumption

. Nj+1
limsup —1+
jotoo M

>1

implies the transcendence of &, 5, see e.g. Satz 7 from the monograph [19].

In particular, for any positive real number ¢, the real number &, ; is transcendental
when n; = 2[e3]l . where [-] denotes the integer part. A much sharper statement follows
from Theorem 1.
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Corollary 4. Let b > 2 be an integer. Let n be a real number with

0<n< —.
ST o) +5

Then, the sum of the series

Z b=", wheren; = 20" for j > 1,
j=1

is transcendental.

Proof. Let v be a real number with 0 < v < 11. Let N be a large integer. We check that
the number of positive integers j such that 2 "1 < N is less than some absolute constant
times (log N)'/(*~*)and we apply Theorem 1 to conclude. |

Actually, it is possible to derive from Theorem 1 the transcendence of the real number
&n,p for other fast growing sequences n. Like in Corollary 4, the precise statement would
involve w(b), the number of distinct prime factors of b. It turns out that it is possible to
improve Corollary 4 and to get rid of the dependence on w(b) by using the following version
of the Cugiani-Mahler Theorem [10, 11, 14|, that we extract from Bombieri and Gubler
[7] (see also Bombieri and van der Poorten [8]).

Theorem BG. Let S; and Sy be disjoint finite sets of prime numbers. Let 6 be a real
algebraic number of degree d. For any positive real number t set

loglog(t 4 log4) ) L/4

f(t) =17 (logdd)'/? < log(t + log4)

Let (pj/q;);>1 be the sequence of rational solutions of

1
) H [ple - H gle < ma

71 jes, 0S5

ordered such that 1 < g1 < go2 < ... Then either the sequence (p;/q;)j>1 is finite or

log a.
j—+too lOgg;
Proof. This follows from Theorem 6.5.10 of [7]. O

We can then proceed exactly as Mahler did ([14], Theorem 3, page 178).

Theorem 4. Let b > 2 be an integer. Let (a;);>1 be a non-decreasing sequence of positive
integers tending to infinity. Let n = (n;);>1 be an increasing sequence of positive integers
satisfying n1 > 3 and

loglogn; 1/4 )
njy1 > (1+ay, W nj, (3 >1).

12



Then the real number

gn,b = Z b

j=>1
is transcendental.

We omit the proof since it is exactly the same as Mahler’s one. Note that Theorem 1
yields a similar statement as Theorem 4, with however 1/4 replaced by any real number
smaller than 1/(w(b) + 4).

It does not seem to us that Theorem 1 can be derived from Theorem BG.

An easy computation allows us to deduce from Theorem 4 the following improvement
of Corollary 4.

Corollary 5. Let b > 2 be an integer. Let n be a real number with

1
0<n< .

Then, the sum of the series
Z b~™, wheren; = 2i" " for j > 1,
Jj21
is transcendental.
More generally, one can consider the following question.
Problem. Let n = (n;);>1 be a strictly increasing sequence of positive integers and set
fa(2) =D 2. (7.1)
jz1
If the sequence n increases sufficiently rapidly, then the function f, takes transcendental

values at every non-zero algebraic point in the open unit disc.

By a clever use of the Schmidt Subspace Theorem, Corvaja and Zannier [9] proved
that the conclusion of the Problem holds for f,, given by (7.1) when the strictly increasing
sequence n satisfies

liminf “9*L > 1. (7.2)
J—+oo My
It is perhaps possible to combine the method developed in [9] with the ideas of the present
paper to relax the assumption (7.2).

8. Continued fraction expansions

Despite some recent progress, the continued fraction expansion of a real algebraic
number of degree greater than or equal to three remains very mysterious. In particular,

13



we still do not know whether its sequence of partial quotients is bounded or not. Even an
analogue of Theorem 1 for continued fraction expansions would be new.

In the sequel, we restrict our attention to expansions with partial quotients equal to
1 or 2. More precisely, for a strictly increasing sequence n = (n;);>1 of positive integers,
we denote by &, := [0;a1,as,...| the real number whose continued fraction expansion is
given, for k> 1, by axy =1if k ¢ nand ap =2 if k € n.

It is expected that &, is transcendental unless (ay)r>1 is ultimately periodic (in which
case &, is clearly a quadratic number). In particular, it is very likely that &, is transcen-
dental if n increases sufficiently rapidly. As a first result in this direction, we claim that,
if &, is algebraic, then

logn; = o(j). (8.1)

Indeed, if (8.1) does not hold, then there are infinitely many positive integers j and a real
number ¢ > 1 such that n; > ¢?. Consequently, we have
lim sup T+l
jotoo Ny

> 1,

and the transcendence of the associated real number &, follows from Theorem 3.2 of [3].
With similar ideas as in the present paper, but with some additional technical diffi-
culties due to the use of the Schmidt Subspace Theorem in place of the Ridout Theorem,
we are able to improve the above result as follows:
There exists a positive real number § such that, if &, is algebraic, then

logn; < ji=o

holds for every sufficiently large integer j.
This and related results will be the subject of a forthcoming paper.
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