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Abstract. Let α in (0, 1] and β > 1 be algebraic numbers. We study

the asymptotic behaviour of the function that counts the number of digit

changes in the β-expansion of α.

1. Introduction

Let β > 1 be a real number. The β-transformation Tβ is defined on [0, 1] by Tβ : x 7−→
βx mod 1. In 1957, Rényi [12] introduced the β-expansion of a real x in [0, 1], denoted by
dβ(x) and defined by

dβ(x) = 0.x1x2 . . . xk . . . ,

where xk = ⌊βT k−1
β (x)⌋ for k ≥ 1, except when β is an integer and x = 1, in which case

dβ(1) := 0.(β − 1) . . . (β − 1) . . . Here and throughout the present paper, ⌊·⌋ denotes the
integer part function. Clearly, we have

x =
∑

k≥1

xk

βk
.

For x < 1, this expansion coincides with the representation of x computed by the ‘greedy
algorithm’. If β is an integer b, then the digits xi of x lie in the set {0, 1, . . . , b − 1} and,
if x < 1, then db(x) corresponds to the b-ary expansion of x. If β is not an integer, then
the digits xi lie in the set {0, 1, . . . , ⌊β⌋}. We direct the reader to [2] and to the references
quoted therein for more on β-expansions. Throughout this note, we say that dβ(x) is finite
(resp. infinite) if there are only finitely many (resp. there are infinitely many) non-zero
digits in the β-expansion of x.

We stress that the β-expansion of 1 has been extensively studied, for it yields a lot of
information on the β-shift. In particular, Blanchard [5] proposed a classification of the β-
shifts according to the properties of the (finite or infinite) word given by dβ(1), see Section
4 of [2]. The occurrences of consecutive 0’s in dβ(1) play a crucial role in Blanchard’s
classification of the β-shifts. This motivates the following problem first investigated in
[17].
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Let β > 1 be a real number such that dβ(1) is infinite and let (ak)k≥1 be the β-
expansion of 1. Assume that there exist a sequence of positive integers (rn)n≥1 and an
increasing sequence of positive integers (sn)n≥1 such that

asn+1 = asn+2 = . . . = asn+rn
= 0, asn+rn+1 6= 0,

and sn+1 > sn + rn for every positive integer n. The problem is then to estimate the
gaps between two consecutive non-zero digits in dβ(1), that is, to estimate the asymptotic
behaviour of the ratio rn/sn.

The main result of [17], quoted as Theorem VG below, mainly shows that dβ(1) cannot
be ‘too lacunary’ when β is an algebraic number. Recall that the Mahler measure of a real
algebraic number θ, denoted by M(θ), is, by definition, equal to the product

M(θ) := a

d
∏

i=1

max{1, |θi|},

where θ = θ1, θ2, . . . , θd are the complex conjugates of θ and a is the leading coefficient of
the minimal defining polynomial of θ over the integers.

Theorem VG. Let β > 1 be a real algebraic number. Then, with the above notation, we

have

lim sup
n→∞

rn

sn
≤

log M(β)

log β
− 1.

Theorem VG was extended in [2], where, roughly speaking, repetitions of arbitrary
(finite) blocks in the β-expansion of an algebraic number (where β > 1 is algebraic) are
studied, see Theorem 2 from [2] for a precise statement.

The purpose of the present note is to study the β-expansion of an algebraic number
α from another point of view, introduced in [8]. We aim at estimating the asymptotic
behaviour of the number of digit changes in dβ(α). For α in (0, 1], write

dβ(α) = 0.a1a2 . . . ,

and define the function nbdcβ, ‘number of digit changes in the β-expansion’, by

nbdcβ(n, α) = Card{1 ≤ k ≤ n : ak 6= ak+1},

for any positive integer n. This function was first studied in [8] when β is an integer, see
also [9] for an improvement of the main result of [8]. The short Section 6 of [8] is devoted
to the study of nbdcβ for β algebraic, but it contains some little mistakes (see below) and
its main result can be strengthened (see Theorem 2 below).

The present note is organized as follows. Our results on the behaviour of the function
nbdcβ when β is an algebraic number are stated in Section 2 and proved in Section 4. New
results on values of lacunary series at algebraic points are discussed in Section 3.
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2. Results

We begin by stating a consequence of Theorem 2 from [2], that can also be obtained
with the tools used in [17].

Theorem 1. Let β > 1 be a real algebraic number. Let α be an algebraic number in

(0, 1]. If dβ(α) is infinite, then

lim inf
n→+∞

nbdcβ(n, α)

log n
≥

(

log

(

log M(β)

log β

))−1

. (2.1)

For sake of completeness, Theorem 1 is established in Section 4 along the proof of
Theorem 2.

A Pisot (resp. Salem) number is an algebraic integer greater than 1 whose conjugates
are of modulus less than 1 (resp. less than or equal to 1, with at least one conjugate on
the unit circle). In particular, an algebraic number β > 1 is a Pisot or a Salem number if,
and only if, M(β) = β. In that case, Theorem 1 implies that

nbdcβ(n, α)

log n
−→

n→+∞
+∞. (2.2)

The main purpose of the present note is to show how the use of a suitable version of the
Quantitative Subspace Theorem allows us to strengthen (2.2).

Theorem 2. Let β be a Pisot or a Salem number. Let α be an algebraic number in (0, 1]
such that dβ(α) is infinite and write

dβ(α) = 0.a1a2 . . . ak . . .

Then, there exists an effectively computable constant c(α, β), depending only on α and β,

such that

nbdcβ(n, α) ≥ c(α, β) (logn)3/2 · (log log n)−1/2, (2.3)

for every positive integer n.

We stress that the exponent of (log n) in (2.3) is independent of β, unlike in Theorem
3 of [8]. This is a consequence of the use of the Parametric Subspace Theorem, exactly as
in Theorem 3.1 of [9]. Note that Theorem 3 of [8] is not correctly stated: indeed, it claims a
result valid for all expansions, whereas in the proof we are led to construct good algebraic
approximations to α and to use one property of the β-expansion (see (4.14) below) to
ensure that, roughly speaking, all these approximations are different.

We display two immediate corollaries of Theorem 2. A first one is concerned with the
number of non-zero digits in the β-expansion of an algebraic number for β being a Pisot
or a Salem number.
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Corollary 1. Let ε be a positive real number. Let β be a Pisot or a Salem number. Let

α be an algebraic number in (0, 1] whose β-expansion is infinite. Then, for n large enough,

there are at least

(log n)3/2 · (log log n)−1/2−ε

non-zero digits among the first n digits of the β-ary expansion of α.

For β = 2, Corollary 1 gives a much weaker result than the one obtained by Bailey,
Borwein, Crandall, and Pomerance [3], who proved that, among the first n digits of the
binary expansion of a real irrational algebraic number ξ of degree d, there are at least
c(ξ)n1/d occurrences of the digit 1, where c(ξ) is a suitable positive constant (see also
Rivoal [14]).

Recall that β is called a Parry number if dβ(1) is finite or eventually periodic. Every
Pisot number is a Parry number [15, 4] and K. Schmidt [15] conjectured that all Salem
numbers are Parry numbers. This was proved for all Salem numbers of degree 4 by Boyd
[6], who gave in [7] a heuristic suggesting the existence of Salem numbers of degree 8 that
are not Parry numbers.

We highlight the special case of the β-expansion of 1 in a base β that is a Salem
number.

Corollary 2. Let ε be a positive real number. Let β be a Salem number. Assume that

dβ(1) is infinite and write

dβ(1) = 0.a1a2 . . .

For any sufficiently large integer n, we have

a1 + . . . + an > (log n)3/2 · (log log n)−1/2−ε,

and there are at least (log n)3/2 (log log n)−1/2−ε indices j with 1 ≤ j ≤ n and aj 6= 0.

In view of Theorem 2, our Corollaries 1 and 2 can be (very) slightly improved.

3. On values of lacunary series at algebraic points

The following problem was posed in Section 7 of [8].

Problem 1. Let n = (nj)j≥1 be a strictly increasing sequence of positive integers and set

fn(z) =
∑

j≥1

znj . (3.1)

If the sequence n increases sufficiently rapidly, then the function fn takes transcendental

values at every non-zero algebraic point in the open unit disc.

By a clever use of the Schmidt Subspace Theorem, Corvaja and Zannier [10] proved
that the conclusion of the Problem holds for fn given by (3.1) when the strictly increasing
sequence n is lacunary, that is, satisfies

lim inf
j→+∞

nj+1

nj
> 1.
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Under the weaker assumption that

lim sup
j→+∞

nj+1

nj
> 1,

it follows from the Ridout Theorem that the function fn given by (3.1) takes transcendental
values at every point 1/b, where b ≥ 2 is an integer (see e.g. Satz 7 from Schneider’s
monograph [16]), and even at every point 1/β, where β is a Pisot or a Salem number [1]
(see also Theorem 3 of [10]).

The latter result can be improved with the methods of the present paper. Namely, we
extend Corollary 4 of [8] and Corollary 3.2 of [9] as follows.

Corollary 3. Let β be a Pisot or a Salem number. For any real number η > 2/3, the sum

of the series
∑

j≥1

β−nj , where nj = 2⌊j
η⌋ for j ≥ 1, (3.2)

is transcendental.

The growth of the sequence (nj)j≥1 defined in (3.2) shows that our Corollary 3 is not
a consequence of the results of [10].

To establish Corollary 3, it is enough to check that, for any positive integer N , the
number of positive integers j such that 2⌊j

η⌋ ≤ N is less than some absolute constant times
(log N)1/η, and to apply Theorem 2 to conclude.

To be precise, to establish Corollary 3, we prove that any real number α having an
expansion in base β given by (3.2) is transcendental. We do not need to assume (or to
prove) that (3.2) is the β-expansion of α. Namely, this assumption is used in the proof to
guarantee that the approximants αj constructed in the proof of Theorem 2 are (essentially)
all different. Under the assumption of Corollary 3, this condition is automatically satisfied.

4. Proofs

The proof of Theorem 2 follows the same lines as that of Theorem 1 of [8]. For
convenience, we first explain the case where β is an integer b ≥ 2. Then, we point out
which changes have to be made to treat the case of a real algebraic number β > 1.

The key point for our argument is the following result of Ridout [13].
For a prime number ℓ and a non-zero rational number x, we set |x|ℓ := ℓ−u, where u

is the exponent of ℓ in the prime decomposition of x. Furthermore, we set |0|ℓ = 0. With
this notation, the main result of [13] reads as follows.

Theorem (Ridout, 1957). Let S1 and S2 be disjoint finite sets of prime numbers. Let

θ be a real algebraic number. Let ε be a positive real number. Then there are only finitely

many rational numbers p/q with q ≥ 1 such that

0 <

∣

∣

∣

∣

θ −
p

q

∣

∣

∣

∣

·
∏

ℓ∈S1

|p|ℓ ·
∏

ℓ∈S2

|q|ℓ <
1

q2+ε
· (4.1)
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More precisely, we need a quantitative version of Ridout’s Theorem, namely an explicit
upper bound for the number of solutions to (4.1). In this direction, Locher [11] proved that,
if ε < 1/4, the degree of θ is at most d and its Mahler measure at most H, then (4.1) has
at most

N1(ε) := c1(d) e7sε−s−4 log(ε−1) (4.2)

solutions p/q with q ≥ max{H, 44/ε}, where s denotes the cardinality of the set S1 ∪ S2,
and c1(d) depends only on d.

Actually, as will be apparent below, in the present application of the quantitative
Ridout’s Theorem, S1 is the empty set and we have actually to estimate the total number
of solutions to the system of inequalities

0 <

∣

∣

∣

∣

θ −
p

q

∣

∣

∣

∣

<
c

q1+ε
,

∏

ℓ∈S2

|q|ℓ <
c

q
, (4.3)

where c is a positive integer. Every solution to (4.3) with q large is a solution to (4.1),
with ε replaced by 2ε, but the converse does not hold. Furthermore, the best known upper
bound for the total number of large solutions to (4.3) does not depend on the set S2.
Namely, if ε < 1/4, then there exists an explicit number c2(d), depending only on the
degree d of θ, such that (4.3) has at most

N2(ε) := c2(d)ε−3 log(ε−1) (4.4)

solutions p/q with q ≥ max{2H, 44/ε}; see Corollary 5.2 of [9]. Since there is no dependence
on s in (4.4), unlike in (4.2), this explains the improvement obtained in [9] on the result
from [8].

After these preliminary remarks, let us explain the method of the proof. Let α be an
irrational (otherwise, the result is clearly true) real number in (0, 1) and write

α =
∑

k≥1

ak

bk
= 0.a1a2 . . .

Define the increasing sequence of positive integers (nj)j≥1 by a1 = . . . = an1
, an1

6= an1+1

and anj+1 = . . . = anj+1
, anj+1

6= anj+1+1 for every j ≥ 1. Observe that

nbdcb(n, α) = max{j : nj ≤ n} (4.5)

for n ≥ n1, and that nj ≥ j for j ≥ 1. To construct good rational approximations to α, we
simply truncate its b-ary expansion at rank anj+1 and then complete with repeating the
digit anj+1. Precisely, for j ≥ 1, we define the rational number

αj =

nj
∑

k=1

ak

bk
+

+∞
∑

k=nj+1

anj+1

bk
=

nj
∑

k=1

ak

bk
+

anj+1

bnj (b − 1)
=:

pj

bnj (b − 1)
.
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Set qj := bnj (b − 1) and take for S2 the set of prime divisors of b. Observe that

0 < |α − αj | <
1

bnj+1
,

∏

ℓ∈S2

|qj |ℓ =
b − 1

qj
· (4.6)

On the other hand, the Liouville inequality as stated by Waldschmidt [18], p. 84,
asserts that there exists a positive constant c, depending only on α, such that

∣

∣

∣

∣

α −
p

q

∣

∣

∣

∣

≥
c

qd
, for all positive integers p, q,

where d is the degree of α. Consequently, we have

nj+1 ≤ 2dnj , (4.7)

for every sufficiently large integer j, say for j ≥ j0.
It then follows from (4.6) and (4.7) that

0 <

∣

∣

∣

∣

α −
pj

qj

∣

∣

∣

∣

<
(b − 1)2d

q
nj+1/nj

j

,
∏

ℓ∈S2

|qj |ℓ =
b − 1

qj
· (4.8)

Note that all the pj/qj ’s are different. We are in position to apply the quantitative
form of the Ridout Theorem to (4.8). Let ε be a real number with 0 < ε < 1/4. Let J > j0
be a large positive integer. It follows from Corollary 5.2 of [9] that there exist at most
N2(ε) positive integers j > J such that nj+1 ≥ (1 + ε)nj . Consequently, we infer from
(4.4) and (4.7) that

nJ

nj0

=
nJ

nJ−1
× . . . ×

nj0+1

nj0

≤ (1 + ε)J (2d)N2(ε),

and

log nJ ≪ Jε + ε−4,

where the numerical constant implied in ≪ depends only on α. Selecting ε = J−1/5, we
get that

log nJ ≪ J4/5. (4.9)

By (4.5), this implies a lower bound for nbdcb(n, α). Here, to get (4.9), we have used a
rather crude upper bound for N2(ε). A further refinement can be obtained by means of
the trick that allowed us to prove Theorem 3.1 of [9], which is similar to Theorem 2 for
β = b.

Replacing b by an algebraic number β > 1, everything goes along the same lines, except
that we have to apply a suitable extension of Ridout’s Theorem, and several technical
difficulties arise.
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We proceed exactly as above, keep the same notation, and set

αj =

nj
∑

k=1

ak

βk
+

+∞
∑

k=nj+1

anj+1

βk
=

nj
∑

k=1

ak

βk
+

anj+1

βnj (β − 1)
=:

pj

βnj (β − 1)
. (4.10)

Here, pj is an element of the number field generated by β. We have to prove that αj is
distinct from α: unlike when β is an integer, this is not straightforward.

Recall that anj+1 = . . . = anj+1
and anj+1

6= anj+1+1. Assume first that

anj+1 > anj+1+1. (4.11)

Then, using (4.10), we have

αj −

nj+1
∑

k=1

ak

βk
≥

anj+1

βnj+1+1
+

anj+1

βnj+1+2
, (4.12)

while

α −

nj+1
∑

k=1

ak

βk
≤

anj+1+1

βnj+1+1
+

1

βnj+1+1
≤

anj+1

βnj+1+1
, (4.13)

since, by the property of the β-expansion,

∑

k≥r+1

ak

βk
≤

1

βr
, for every r ≥ 0. (4.14)

Note that anj+1 ≥ 1, by (4.11). Combining this with (4.12) and (4.13), we get that

αj − α ≥
1

βnj+1+2
. (4.15)

Assume now that
anj+1 < anj+1+1. (4.16)

Then, we have

αj −

nj+1
∑

k=1

ak

βk
=

anj+1

βnj+1(β − 1)
, (4.17)

while

α −

nj+1
∑

k=1

ak

βk
>

anj+1+1

βnj+1+1
≥

anj+1 + 1

βnj+1+1
, (4.18)

by (4.16). Since anj+1 < β − 1, we infer from (4.17) that

αj −

nj+1
∑

k=1

ak

βk
<

1

βnj+1+1
,
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and then from (4.18) that
α − αj > 0.

Note also that, by (4.18), at least one of the following statements holds:

nj+2 = nj+1 + 1 and 0 = anj+2+1 < anj+1+1 (4.19)

or

α − αj >
1

βnj+1+2
. (4.20)

On the other hand, we check that

|α − αj | ≪
1

βnj+1
, for j ≥ 1. (4.21)

Here, and throughout the end of the paper, the constants implied by ≪ depend only on
α and β. Disregarding the indices j for which we are in case (4.19) (and this concerns
at most one index in every pair (j, j + 1)), we infer from (4.15), (4.20) and (4.21) that
the number of occurrences of a given element in the sequence (αj)j≥1 is bounded by an
absolute constant.

Now, we apply the extension to number fields of the aforementioned results of Ridout
and Locher. We keep the notation from Section 6 of [2], noticing that the rn (resp. sn)
in that paper corresponds to our nj (resp. to 1). In particular, the height function H is
defined as in [2].

Let K be the number field generated by α and β and denote by D its degree. We
consider the following linear forms, in two variables and with algebraic coefficients. For the
place v0 corresponding to the embedding of K defined by β →֒ β, set L1,v0

(x, y) = x and
L2,v0

(x, y) = α(β − 1)x + y. It follows from (4.10) and (4.21) that

|L2,v0
(βnj ,−pj)|v0

≪
1

β(nj+1−nj)/D
,

where we have chosen the continuation of | · |v0
to Q defined by |x|v0

= |x|1/D.
Denote by S′

∞ the set of all other infinite places on K and by S0 the set of all finite
places v on K for which |β|v 6= 1. For any v in S0∪S′

∞, set L1,v(x, y) = x and L2,v(x, y) = y.
Denote by S the union of S0 and the infinite places on K. Clearly, for any v in S, the linear
forms L1,v and L2,v are linearly independent.

To simplify the exposition, set

xj = (βnj ,−pj).

We wish to estimate the product

Πj :=
∏

v∈S

2
∏

i=1

|Li,v(xj)|v
|xj |v
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from above. Arguing exactly as in [2], we get that

Πj ≪ nD
j β−nj+1/D M(β)nj/D

∏

v∈S

|xj |
−2
v

≪ nD
j β−nj+1/D M(β)nj/D H(xj)

−2,

(4.22)

since |xj |v = 1 if v does not belong to S.
Note that

βnj ≪ H(xj) ≪ nD
j M(β)nj . (4.23)

Let ρ denote a positive real number that is strictly smaller than the right-hand side of
(2.1). Assume that there are arbitrarily large integers n such that

nbdcβ(n, α) ≤ ρ logn.

Consequently, there must be infinitely many indices j with

nj+1 ≥ exp{ρ−1}nj .

It then follows from (4.22) and (4.23) that there are a positive real number ε and arbitrarily
large integers j such that

Πj ≪ H(xj)
−2−ε.

We then get infinitely many indices j such that pj/βnj takes the same value. This contra-
dicts the fact that the number of occurrences of a given element in the sequence (αj)j≥1

is bounded by an absolute constant, and proves Theorem 1.

From now on, we assume that M(β) = β. We infer from (4.22) and (4.23) that

Πj ≪ H(xj)
−2−(nj+1/nj−1)/(2D)

as soon as j is sufficiently large.
We need a suitable extension of Corollary 5.2 from [9] to conclude (unfortunately, the

notations used in [9] differ from ours). Exactly as in the case when β is an integer, we do
not have to consider a product of linear forms, but rather a system

|L1,v0
(xj)|v0

≤ κH(xj), |L2,v0
(xj)|v0

≤ H(xj)
−δ,

|L1,v(xj)|v ≤ κH(xj)
−cv , |L2,v(xj)|v ≤ H(xj)

η, (v ∈ S′
∞),

|L1,v(xj)|v ≤ κH(xj)
−cv , |L2,v(xj)|v ≤ 1, (v ∈ S0).

Here, κ is a positive real number, the cv are defined by |β|v = β−cv/D and δ = (s′ + 1)η,
where s′ is the cardinality of S′

∞. Observe that
∑

v∈S′
∞∪S0

cv = 1. We do not work out the

technical details. Everything goes along the same lines as in [9]. It remains to note that,
by the general form of the Liouville inequality (as in [18], p. 83), we get that

|α − αj | ≫ β−Dnj .

This provides us with the needed extension of (4.7) and completes the sketch of the proof
of Theorem 2.
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