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Abstract. We study the quadratic Lagrange spectrum defined by
Parkkonen and Paulin by considering the approximation by elements of
the orbit of a given real quadratic irrational number for the action by
homographies and anti-homographies of PSL2(Z) on R ∪ {∞}. Our
approach is based on the theory of continued fractions.

1. Introduction

We use throughout the superscript σ to denote the Galois conjugate of a quadratic
number. For every real quadratic irrational number α, Parkkonen and Paulin [9, 10]
introduced the quantity

h(α) :=
2

|α− ασ|
, (1.1)

which may be viewed as a measure of the complexity of α. As noted in [9], this quantity
behaves in a very different way from the näıve height of α (the näıve height of an algebraic
number is the maximum of the absolute values of the coefficients of its minimal defining
polynomial over the rational integers), a notion which is commonly used in Diophantine
approximation; see e.g. [5].

Let α0 be a fixed real quadratic irrational number and

Eα0 = PSL2(Z) · {α0, α
σ
0}

its orbit for the action by homographies and anti-homographies of PSL2(Z) on R ∪ {∞}.
In other words, Eα0

is the set of quadratic numbers whose continued fraction expansion is
ultimately periodic with the same period as α0 or as ασ0 .

For a real number ξ not in Q ∪ Eα0 , Parkkonen and Paulin [9, 10] defined by

cα0
(ξ) := lim inf

α∈Eα0
:|α−ασ|→0

2
|ξ − α|
|α− ασ|

= lim inf
α∈Eα0 :|α−ασ|→0

|ξ − α| · h(α) (1.2)
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the approximation constant cα0(ξ) of ξ by elements of Eα0 and they proved that cα0(ξ) is
always finite. Observe that it follows immediately from (1.2) that

cα0+k(ξ + k′) = cα0
(ξ), (1.3)

for every integers k and k′.
Furthermore, Parkkonen and Paulin [9, 10] defined the quadratic Lagrange spectrum

of (α0, PSL2(Z)) by
Spα0

:= {cα0
(ξ) : ξ ∈ R \ (Q ∪ Eα0

)}.

Among other results, they showed that Spα0 is a closed subset of [0, (1 +
√

2)
√

3]. They
also claimed that, in the special case when α0 is the Golden Ratio ϕ := (1 +

√
5)/2,

the maximum Kα0
of Spα0

is equal to 1 − 1/
√

5. There is a slight overlook in the proof
they proposed, but, fortunately, it can be fixed [11], and the exact value of K(1+

√
5)/2 is

−1 + 3/
√

5 = 0.341 . . . Apparently, their method does not give the exact value of Kα0
for

a general real quadratic number α0.
The purpose of this note is to present a number theoretical interpretation of the

approximation constant cα0(ξ) by means of the theory of continued fractions. We are then
able, in principle, to compute Kα0 for every quadratic irrational number α0, although this
computation is in general not an easy task. Our main new result states that the quadratic
Lagrange spectrum is always contained in [0, 1/2].

Theorem 1.1. For any real quadratic irrational number α0, the maximum Kα0 of Spα0

satisfies

0 < Kα0
≤ 1

2
.

If the continued fraction expansion of α0 terminates in an infinite string of digits 1, then

Kα0
= K(1+

√
5)/2 =

3√
5
− 1 = 0.341 . . .

Furthermore,

lim
m→+∞

K(m+
√
m2+4)/2 =

3√
5
− 1.

Like in [9, 11], our proof also gives that K(1+
√
5)/2 is not an isolated point in the

spectrum Sp(1+
√
5)/2.

We believe that −1 + 3/
√

5 is a common upper bound for all the values Kϕ0 . This
seems to be, however, quite difficult to confirm.

The present note is organized as follows. Various results on continued fraction expan-
sions are stated and proved in Section 2. They are applied to estimate the quantity h(α)
defined in (1.1) and, in Section 3, to the proof of Theorem 1.1. We first explain how ele-
mentary arguments allow us to show that Kα0

is always at most equal to 4 (thus, slightly
improving the upper bound (1 +

√
2)
√

3 obtained in [9]). Then, we refine our analysis to
get the upper bound 1/2. Several remarks and additional results on the quantity h(α) are
gathered in Section 4.
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Throughout, we use the notation

[a0; a1, a2 . . . , ar, ar+1, . . . , ar+s] := a0 +
1

a1 +
1

a2 +
1

. . .

to indicate that the block of partial quotients ar+1, . . . , ar+s is repeated infinitely many
times.

We recall that an irrational real number α is quadratic if, and only if, its continued
fraction expansion is ultimately periodic, that is, is of the form

α = [a0; a1, . . . , ar, b1, . . . , bs].

When we express α as in (1.4) we tacitly assume that s is minimal and that ar 6= bs. We
call b1, . . . , bs the shortest periodic part in the continued fraction expansion of α.

2. Auxiliary lemmas on continued fraction expansions

We assume that the reader is familiar with the theory of continued fractions. Good
references include [12, 8] and the first chapters of [14] and [5].

Let us simply recall that two irrational real numbers α, β are called equivalent if there
exist rational integers a, b, c, d with ad− bc = ±1 such that

α =
aβ + b

cβ + d
.

It is easily shown (see [12], page 65) that α and β are equivalent if, and only if, the tails
of their continued fraction expansions coincide.

Our first lemma establishes a link between the quantity h(α) defined in (1.1) and the
preperiod of the continued fraction expansion of the real quadratic number α.

Lemma 2.1. Let α be a quadratic real number with ultimately periodic continued fraction
expansion

α = [a0; a1, . . . , ar, b1, . . . , bs],

with r ≥ 3 and s ≥ 1, and denote by ασ its Galois conjugate. Let (p`/q`)`≥1 denote the
sequence of convergents to α. Set B := max{b1, . . . , bs, 2}. If ar 6= bs, then we have

1

2q2r
≤ |α− ασ| ≤ 8B3

q2r
,

thus,
q2r/(4B

3) ≤ h(α) ≤ 4q2r . (2.1)

This is essentially Lemma 6.1 from [6]. For the sake of completeness, we reproduce
its proof.
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Proof. A theorem of Galois (see [12], page 83) states that the Galois conjugate of

τ := [b1; b2, . . . , bs, b1]

is the quadratic number
τσ = −[0; bs, . . . , b2, b1].

Since, by Theorem 1.7 of [5], we have

α =
prτ + pr−1
qrτ + qr−1

and ασ =
prτ

σ + pr−1
qrτσ + qr−1

,

we get

|α− ασ| = τ − τσ

(qrτ + qr−1) · |qrτσ + qr−1|

≤ τ + 1

τqr · |qrτσ + qr−1|
≤ 2

qr · |qrτσ + qr−1|
.

(2.2)

Likewise, using |qrτσ + qr−1| ≤ qr, we obtain

|α− ασ| ≥ τ − τσ

(τ + 1)q2r
≥ 1

2q2r
. (2.3)

Since ar 6= bs the mirror formula (see Lemma 3F of [14])

qr−1/qr = [0; ar, ar−1, . . . , a1]

implies that

|qrτσ + qr−1| = |[0; ar, ar−1, . . . , a1]− [0; bs, . . . , b2, b1]| · qr.

If ar ≥ 2B, then one gets

|qrτσ + qr−1| ≥
( 1

B + 1
− 1

2B

)
qr ≥

qr
6B

.

Otherwise, if ar < bs, then ar ≤ B − 1 and an easy computation shows that

|qrτσ + qr−1| ≥
( 1

ar + 1
− 1

bs + 1/(bs−1 + 1)

)
· qr

≥ qr
(ar + 1)(bs(bs−1 + 1) + 1)

≥ qr
3B3

,

while, if bs < ar ≤ 2B − 1, then the similar estimate

|qrτσ + qr−1| ≥
qr

arbs(2B)
≥ qr

4B3

holds. By (2.2) and (2.3), this completes the proof of the lemma.

Our second auxiliary lemma is very close to Lemma 5 from [1] (see also Lemma 5.5
from [3]).

4



Lemma 2.2. Let B be a positive integer. Let α = [0; a1, a2, . . .] and β = [0; b1, b2, . . .]
be real numbers. Assume that there exists a positive integer n such that ai = bi for any
i = 1, . . . , n and an+1 6= bn+1. Then, we have

|α− β| ≥ 1

12q2n+1 max{bn+2 + 1, bn+3 + 2}
, (2.4)

where (p`/q`)`≥1 is the sequence of convergents to β.

Proof. Set α′ = [an+1; an+2, . . .] and β′ = [bn+1; bn+2, . . .]. Since an+1 6= bn+1, a rapid
calculation shows that

|α′ − β′| ≥ min
{ 1

bn+2 + 1
,

1

bn+3 + 2

}
. (2.5)

Using that the first n partial quotients of α and β are assumed to be the same, we get

α =
pnα

′ + pn−1
qnα′ + qn−1

and β =
pnβ

′ + pn−1
qnβ′ + qn−1

,

thus,

|α− β| =
∣∣∣∣pnα′ + pn−1
qnα′ + qn−1

− pnβ
′ + pn−1

qnβ′ + qn−1

∣∣∣∣ =

∣∣∣∣ α′ − β′

(qnα′ + qn−1)(qnβ′ + qn−1)

∣∣∣∣ · (2.6)

Note that qnβ
′ + qn−1 ≤ 2qn+1.

If α′ ≤ 2β′+ 1 ≤ 2bn+1 + 3, then qnα
′+ qn−1 ≤ 2(bn+1 + 2)qn and, by (2.5) and (2.6),

we get

|α− β| ≥ 1

4(bn+1 + 2)qnqn+1 max{bn+2 + 1, bn+3 + 2}
. (2.7)

If α′ ≥ 2β′ + 1, then |α′ − β′| ≥ (α′ + 1)/2 and

|α− β| ≥ 1

4qnqn+1
. (2.8)

Since (bn+1 + 2)qn ≤ 3qn+1, the estimate (2.4) follows from (2.7) and (2.8).

We display an easy consequence of Lemma 2.2.

Corollary 2.3. Let
τ = [0; b1, b2 . . . , bs]

be a quadratic number whose shortest periodic part is b1, . . . , bs. Let

ξ = [a0; a1, a2, . . .]

be an irrational real number not in Eτ . For positive integers r and t, let a′1, . . . , a
′
t be

positive integers with a′1 6= ar+1 and a′t 6= bs, and set

α := [a0; a1, a2, . . . , ar, a
′
1, . . . , a

′
t, b1, . . . , bs−1, bs].
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Putting B := max{b1, . . . , bs, 2}, we have

|ξ − α| · h(α) ≥ 1

96B3(B + 1)2
. (2.9)

Furthermore, |ξ − α| · h(α) ≥ 1 if t ≥ 9.6 + 4.4 logB.

Proof. Let (p`/q`)`≥1 denote the sequence of convergents to α. We deduce from Lemma
2.2 that

|ξ − α| ≥ 1

24qr+1qr+3
(2.10)

and from Lemma 2.1 that

h(α) ≥ q2r+t/(4B3). (2.11)

This gives

|ξ − α| · h(α) ≥ 1/(96B3)

if t ≥ 3. If t = 1, then qr+3 ≤ (B + 1)2qr+1 and we obtain the upper bound

|ξ − α| · h(α) ≥ 1

96B3(B + 1)2
. (2.12)

If t = 2, then, using qr+3 ≤ (B + 1)qr+2, we see that (2.12) holds. This proves (2.9).

An easy induction shows that q` ≥
√

2
`−h−1

qh for ` > h ≥ 1. Consequently, for t ≥ 4,
we deduce from (2.10) and (2.11) that

|ξ − α| · h(α) ≥ 2t

768B3
.

This implies that |ξ − α| · h(α) ≥ 1 if t ≥ 9.6 + 4.4 logB.

For positive integers a1, . . . , a`, denote by K`(a1, . . . , a`) the denominator of the ra-
tional number [0, a1, . . . , a`]. It is commonly called the continuant of a1, . . . , a`. A proof
of the next lemma can be found on page 15 of [12].

Lemma 2.4. For any positive integers a1, . . . , a` and any integer k with 1 ≤ k ≤ ` − 1,
we have

K`(a1, . . . , a`) = K`(a`, . . . , a1)

and

Kk(a1, . . . , ak) ·K`−k(ak+1, . . . , a`) ≤ K`(a1, . . . , a`)

≤ 2Kk(a1, . . . , ak) ·K`−k(ak+1, . . . , a`).
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3. Proof of Theorem 1.1

3.1. Preliminaries.

Let b1, . . . , bs be the (shortest) periodic part in the continued fraction expansion of α0

and set
τ = [b1; b2, . . . , bs, b1].

For j = 1, . . . , s, set
τj := [bj ; bj+1, . . . , bj−1, bj ]

and
τ ′j = [bj−1; bj−2, bj−3, . . . , bj , bj−1],

where the indices are understood modulo s. Observe that τ = τ1 and Eτ = Eτ1 = . . . =
Eτs = Eτ ′

1
= . . . = Eτ ′

s
= Eα0 . Furthermore, by the theorem of Galois already mentioned at

the beginning of the proof of Lemma 2.1, we have

τσj = −[0; bj−1, bj−2, . . . , bj+1, bj ] = −1/τ ′j ,

for j = 1, . . . , s.
Let

ξ = [0; a1, a2, . . .]

be an irrational real number not in Eτ , which we wish to approximate by numbers from
Eτ . Let (p`/q`)`≥1 denote the sequence of convergents to ξ. By (1.3), our assumption that
ξ is in (0, 1) is not restrictive.

3.2. An observation.

For r ≥ 1, the quadratic number

αr := [0; a1, a2, . . . , ar, b1, . . . , bs−1, bs] = [0; a1, a2, . . . , ar, τ ]

is a quite good approximation to ξ in Eτ and

`τ (ξ) := lim inf
r→+∞

|ξ − αr| · h(αr)

is greater than or equal to cτ (ξ).
By taking also into account the circular permutations of the periodic part of the

continued fraction expansion of τ and of that of τσ, we see that

cτ (ξ) ≤ min
1≤j≤s

min{`τj (ξ), `τ ′
j
(ξ)}. (3.1)

At first sight, we may expect that equality holds in (3.1). In order to confirm this, we
would need to estimate the quantities |ξ − α| · h(α) for quadratic numbers α of the form

[0; a1, a2, . . . , ar, a
′
1, . . . , a

′
t, τj ] and [0; a1, a2, . . . , ar, a

′
1, . . . , a

′
t, τ
′
j ],
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where 1 ≤ j ≤ s, t ≥ 1 and a′1, . . . , a
′
t are positive integers. By Corollary 2.3, we know

already that |ξ−α| · h(α) ≥ 1 if t is sufficiently large in terms of b1, . . . , bs. However, even
for small values of t, it is difficult to estimate precisely |ξ−α| ·h(α) for a general quadratic
number τ .

Actually, we will see below that, unlike what would be expected, there exist quadratic
numbers τ for which we do not have equality in (3.1).

3.3. A first upper bound.

Since ξ and αr have the same first r partial quotients, we deduce from Theorem 1.7
of [5] that

|ξ − αr| ≤
1

q2r
.

It then follows from (2.1) that
|ξ − αr| · h(αr) ≤ 4,

which gives that
cα0(ξ) ≤ 4.

We recover, with a fairly simple proof, that the quantities Kα0
are always finite and, even,

absolutely bounded. The upper bound 4 is slightly smaller than the value (1 +
√

2)
√

3 =
4.18 . . . obtained in [9]. However, our method using continued fraction expansions allows
us to improve further this upper bound.

3.4. Preliminary calculation.

Since, by Theorem 1.7 of [5], we have

αr =
prτ + pr−1
qrτ + qr−1

and ασr =
prτ

σ + pr−1
qrτσ + qr−1

,

we deduce that

|αr − ασr | =
τ − τσ

(qrτ + qr−1) · |qrτσ + qr−1|
. (3.2)

Observe now that

|ξ − αr| =
∣∣∣pr[ar+1; ar+2, . . .] + pr−1
qr[ar+1; ar+2, . . .] + qr−1

− prτ + pr−1
qrτ + qr−1

∣∣∣
=

|τ − [ar+1; ar+2, . . .]|
(qr[ar+1; ar+2, . . .] + qr−1) · (qrτ + qr−1)

and, using (3.2),

2
|ξ − αr|
|αr − ασr |

=
2 |τ − [ar+1; ar+2, . . .]| · |qrτσ + qr−1|
(τ − τσ) · (qr[ar+1; ar+2, . . .] + qr−1)

. (3.3)
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Set

dr :=
qr
qr−1

= [ar; ar−1, . . . , a1]

and

Dr := [ar+1; ar+2, . . .].

The right hand side of (3.3) then becomes

2

τ − τσ
· |τ −Dr| · |τσdr + 1|

1 + drDr
. (3.4)

We stress that, to establish (3.4) we do not have used that the continued fraction expansion
of τ is purely periodic.

Define

τ ′ := −1/τσ = 1/|τσ| = [bs; bs−1, . . . , b1, bs].

Then, (3.4) becomes
2

ττ ′ + 1
· |τ −Dr| · |τ ′ − dr|

1 + drDr
.

Keeping the notation of Subsection 3.1, this proves that

`τj (ξ) = lim inf
r→+∞

2

τjτ ′j + 1
·
|τj −Dr| · |τ ′j − dr|

1 + drDr
,

for j = 1, . . . , s. Similarly, we obtain

`τ ′
j
(ξ) = lim inf

r→+∞

2

τjτ ′j + 1
·
|τ ′j −Dr| · |τj − dr|

1 + drDr
.

Consequently, the quantity

c′τ (ξ) := min
1≤j≤s

2

τjτ ′j + 1
· lim inf
r→+∞

min{|τj −Dr| · |τ ′j − dr|, |τ ′j −Dr| · |τj − dr|}
1 + drDr

(3.5)

is greater than or equal to cτ (ξ). As explained below (3.1), it could be strictly greater than
cτ (ξ), since the quadratic numbers we have considered are special elements of the orbit of
α0 and of that of ασ0 .

3.5. A refined upper bound.

Our goal is to establish that the quantity c′τ (ξ) defined in (3.5) is always at most equal
to 1/2.

First, we assume that neither τ , nor ξ is equivalent to the Golden Ratio ϕ. This means
that both have infinitely many partial quotients at least equal to 2.
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In particular, either infinitely many partial quotients of ξ are at least equal to 3, in
which case drDr ≥ 3 for infinitely many r, or

drDr ≥
(

1 +
1

3

)
·
(

2 +
1

3

)
=

28

9
, (3.6)

for infinitely many r.
Since τ and ξ are not equivalent to ϕ, we can suppose that τ ′ > 2 and Dr > 2.

Furthermore, arguing as for (3.6), we can suppose that

ττ ′ ≥ 3. (3.7)

If τ, τ ′, dr, Dr are all greater than 2, then it follows from (3.5) that

c′τ (ξ) ≤ 2 max{τ,Dr} ·max{τ ′, dr}
ττ ′drDr

≤ 1

2
.

Assume that τ > 2 and 1 < dr < 2.
If τ ≥ Dr/2, then |τ −Dr| ≤ τ and, since |τ ′ − dr| ≤ τ ′, we get from (3.6) that

c′τ (ξ) ≤ 2

1 + drDr
≤ 1

2
.

The same upper bound holds if τ ′ ≥ Dr/2, since then we have |τ − dr| ≤ τ . Consequently,
we can assume that Dr ≥ 2τ and Dr ≥ 2τ ′, thus,

c′τ (ξ) ≤ min
{ 2|τ ′ − dr|
dr(1 + ττ ′)

,
2|τ − dr|
dr(1 + ττ ′)

}
.

We get c′τ (ξ) ≤ 1/2 if τ ≥ 4 or τ ′ ≥ 4. So, we can assume that 2 < τ, τ ′ < 4. If τ ≤ τ ′,
then

c′τ (ξ) ≤ 2(τ − 1)

1 + ττ ′
≤ 2(τ − 1)

1 + ττ2
≤ 1

2
,

and, by symmetry, the estimate c′τ (ξ) ≤ 1/2 also holds if τ ′ ≤ τ .
Assume that 1 < τ ≤ 2.
We get |τ −Dr| ≤ Dr. If dr ≥ τ ′/2, it then follows from (3.7) that

c′τ (ξ) ≤ 2

ττ ′ + 1
≤ 1

2
.

Using the symmetry, the same upper bound holds when Dr ≥ τ ′/2. Consequently, we can
assume that τ ′ ≥ 2Dr and τ ′ ≥ 2dr.

Arguing as above, we see that one can assume that Dr and dr are both < 4 and,
moreover, that 1 < dr < 2. In particular, the partial quotients of ξ belong to {1, 2, 3}.
Arguing as in (3.6), this implies that dr ≥ 5/4 and Dr ≥ 9/4. Furthermore, since 5/4 ≤
dr < 2 and 1 < τ < 2, we get that |τ − dr| ≤ 3τ/4 and, consequently,

c′τ (ξ) ≤ min
{2|τ − dr|, 2|τ −Dr|

τ(1 + drDr)

}
≤ 2

5
.
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To summarize, we have established that, unless τ or ξ is equivalent to the Golden
Ratio, we always have

cτ (ξ) ≤ c′τ (ξ) ≤ 1/2.

3.6. When τ is the Golden Ratio.

Assume that τ = ϕ = (1+
√

5)/2. To determine Kϕ, we need to find ξ = [0; a1, a2, . . .]
for which cτ (ξ) is as large as possible. Clearly, all the aj have to be taken very large and
we then derive from (3.5) that

c′ϕ(ξ) ≤ 2

1 + ϕ2
· drDr

1 + drDr
≤ 1− 1√

5
,

and c′ϕ(ξ) can be arbitrarily close to 1− 1/
√

5. Actually, it turns out that the approxima-

tions [0; a1, a2, . . . , ar, 1] = [0; a1, a2, . . . , ar, ϕ] are not the closest ones to ξ and that we
gain by considering the approximations

[0; a1, a2, . . . , ar, 2, 1] = [0; a1, a2, . . . , ar, 1 + ϕ].

Indeed, (3.4) then becomes

2

ϕ− ϕσ
· |1 + ϕ−Dr| · |(1 + ϕσ)dr + 1|

1 + drDr
,

and, since dr and Dr are very large, we obtain the limiting value

2(1 + ϕσ)

ϕ− ϕσ
=

3√
5
− 1.

This shows that cϕ(ξ) < −1 + 3/
√

5 for every irrational number ξ not in Eϕ. Furthermore,
we check that, for α = [0; a1, a2, . . . , ar, a

′
1, . . . , a

′
t, 1], with t ≥ 1, a′t 6= 1, a′1 6= ar+1, and

a′t 6= 2 if t = 1, the quantity |ξ − α| · h(α) exceeds −1 + 3/
√

5. To see this, setting

p′t
q′t

:= [a′1; a′2, . . . , a
′
t],

p′t−1
q′t−1

:= [a′1; a′2, . . . , a
′
t−1] and ϕt :=

p′tϕ+ p′t−1
q′tϕ+ q′t−1

,

the formula (3.4) becomes

2

ϕt − ϕσt
· |ϕt −Dr| · |ϕσt dr + 1|

1 + drDr
.

Again, since dr and Dr are very large, we obtain the limiting value

2|ϕσt |
ϕt − ϕσt

.
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Noticing that ϕt − ϕσt ≤ ϕ − ϕσ and |ϕσt | ≥ 1 + ϕσ, we see that the minimum of this
quantity is attained for ϕt = 1 + ϕ.

Consequently, we have established that Kϕ = −1 + 3/
√

5. Moreover, setting

ϕm := [m;m] = (m+
√
m2 + 4)/2,

for m ≥ 1, we see that ϕ = ϕ1,

cϕ(ϕm) < 3/
√

5− 1 and lim
m→+∞

cϕ(ϕm) = 3/
√

5− 1.

3.7. When ξ is the Golden Ratio.

For ξ = ϕ = (1 +
√

5)/2, we have Dr = ϕ and dr approaches ϕ as r tends to infinity.
Since we are looking for large values of cτ (ϕ) we can assume that b1, . . . , bs are all at least
equal to 2. It then follows from (3.5) that

c′τ (ϕ) ≤ 2

1 + ϕ2
· ττ ′

1 + ττ ′
< 1− 1√

5
.

This establishes that cτ (ϕ) is always smaller than 1 − 1/
√

5. We have considered the
approximants [1; 1, . . . , 1, τ ], but, quite surprisingly, the approximants

[1; 1, . . . , 1, τ − 1] = [1; 1, . . . , 1, b1 − 1, b2, . . . , bs, b1]

give a better estimate. Indeed, by (3.4), we then have to consider

2

τ − τσ
· |(τ − 1)− ϕ| · |(τσ − 1)ϕ+ 1|

1 + ϕ2
,

and, when τ and 1/|τσ| tend to infinity, the above quantity tends to

2 · |1− ϕ|
1 + ϕ2

=
3√
5
− 1.

Furthermore, since |nϕ+ 1| ≥ |1−ϕ| for every integer n, the quantity |ϕ−α| ·h(α) always
exceeds −1 + 3/

√
5.

Consequently, we have established that cτ (ϕ) < −1 + 3/
√

5 and, moreover,

lim
m→+∞

cϕm(ϕ) = 3/
√

5− 1.

This shows that
lim

m→+∞
Kϕm = Kϕ,

thus completing the proof of Theorem 1.1.
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3.8. Some speculation.

It seems that there are two extremal cases to determine the value of Kτ for a given
real quadratic number τ . A first one is when all the aj are large, and a second one when
all the aj are equal to 1, that is, when ξ = ϕ. This observation suggests that

Kτ := max{cτ (ϕ), lim
m→+∞

cτ (ϕm)}. (3.8)

Using (3.4) and arguing as in Subsection 3.6, we also believe that

lim
m→+∞

cτ (ϕm) = min
1≤j≤s

min
{2 min{|τσj |, 1 + τσj }

τj − τσj
,

2 min{|τ ′j
σ|, 1 + τ ′j

σ}
τ ′j − τ ′j

σ

}
.

Since τ ′j = −1/τσj for j = 1, . . . , s, the above formula can be rewritten as

lim
m→+∞

cτ (ϕm) = min
1≤j≤s

2 min{|τσj |, 1 + τσj , |τσj |(τj − 1)}
τj − τσj

.

Likewise, using (3.4) and arguing as in Subsection 3.7, we believe that, putting

mj := min{|τj −ϕ| · |1 +ϕτσj |, |τj − (1 +ϕ)| · |1 +ϕτσj −ϕ|, |τj −ϕ(1 + τj)| · |1 + τσj (1 +ϕ)|},

for j = 1, . . . , s, we have

cτ (ϕ) = min
1≤j≤s

2mj

(τj − τσj )(1 + ϕ2)
.

Establishing (3.8) seems to be a difficult problem.

4. Further results

In this section, we take the point of view of Diophantine approximation to discuss
several questions naturally related to the quantity h(α) defined in (1.1).

We begin with a link between the constant cτ (ξ) and the continued fraction expansions
of ξ and τ .

Lemma 4.1. Let τ be a quadratic real number. Let b1, . . . , bs be the shortest period in
its continued fraction expansion. Then, an irrational real number ξ = [a0; a1, a2, . . .] not in
Eτ satisfies cτ (ξ) > 0 if, and only if, the infinite word a0a1 . . . does not contain arbitrarily
large repetitions neither of b1 . . . bs, nor of bs . . . b1.

Proof. Assume first that the infinite word a0a1 . . . contains arbitrarily large repetitions of
b1 . . . bs and let Kτ denote the denominator of the rational number [0; b1, . . . , bs]. Let m ≥ 2
and r ≥ 1 be integers such that ar+js+i = bi for i = 1, . . . , s and j = 0, . . . ,m − 1. Set
αr := [a0; a1, a2, . . . , ar, b1, . . . , bs] and denote by (p`/q`)`≥1 the sequence of its convergents.
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Since αr and ξ have (at least) their r + ms first partial quotients in common, it follows
from Lemma 2.4 that

|ξ − αr| < q−2r+ms ≤ q−2r K−2msτ ,

while Lemma 2.1 asserts that
h(αr) < 4q2r .

Consequently, we deduce that

|ξ − αr| · h(αr) < 4K−2msτ .

Since m can be taken arbitrarily large, we conclude that cτ (ξ) = 0.
The converse is slightly more difficult to establish. Assume that cτ (ξ) = 0 and let ε

be a positive real number. Set B := max{b1, . . . , bs, 2}. There exists α in Eτ such that

|ξ − α| · h(α) < ε. (4.1)

It follows from Corollary 2.3 that, if ε is sufficiently small, then there exist a cyclic per-
mutation c1, . . . cs of b1, . . . , bs or of bs, . . . , b1 and an integer r such that

α = [a0; a1, a2, . . . , ar, c1, . . . , cs]

with ar 6= cs. Denote by (p`/q`)`≥1 the sequence of convergents of α and observe that, by
Lemma 2.1,

h(α) ≥ q2r/(4B3). (4.2)

Let m(α) be the smallest integer for which the m(α)-th partial quotients of ξ and of α are
different. Then, by Lemma 2.2, we get the lower bound

|ξ − α| ≥ 1

12(B + 2)q2m(α)

. (4.3)

Since qr+h ≤ (B + 1)hqr for h ≥ 1, it follows from (4.1), (4.2) and (4.3) that

q2r < 48ε(B + 2)B3q2m(α) ≤ 48ε(B + 2)B3(B + 1)m(α)−rq2r .

Since ε can be taken arbitrarily small, this shows that m(α) − r can be arbitrarily large,
thus, the infinite word a0a1a2 . . . contains arbitrarily large repetitions of the block b1 . . . bs
or of the block bs . . . b1. This concludes the proof of the lemma.

In 1966, Schmidt [13, 14] developed his theory of α-β games and winning sets. The
next result is an easy consequence of Lemma 4.1.

Theorem 4.2. For every quadratic real number τ the set

{ξ ∈ R : cτ (ξ) > 0}

has Lebesgue measure zero. It is a winning set, thus it has Hausdorff dimension 1.
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The first assertion of Theorem 4.2 follows from the well-known fact that every finite
block of positive integers occurs in the continued fraction expansion of almost all real
numbers.
Proof. Let b1, . . . , bs denote the shortest period of the continued fraction expansion of
τ . By Lemma 4.1, an irrational number ξ satisfies cτ (ξ) > 0 if, and only if, its continued
fraction expansion, viewed as an infinite word, does not contain arbitrarily large repetitions
of b1 . . . bs or of bs . . . b1. To win the game, the second player has simply to avoid certain
intervals, as in Theorem 4 of [13], where it is proved that, under some assumption on α, β
and on the integer b ≥ 2, the set of real numbers having only finitely many digits 0 in their
b-ary expansion is (α, β)-winning. We omit the details.

For an irrational number ξ and an integer b ≥ 2, let vb(ξ) denote the supremum of
the real numbers v such that

||bnξ|| < (bn)−v

for infinitely many positive integers n. Here, || · || denotes the distance to the nearest
integer. The exponents of approximation vb have been recently introduced and studied in
[4]. They detect large repetitions of digits 0 or of digits b− 1.

Actually, given an integer b ≥ 2 and a rational number p/q with 0 ≤ p/q < 1, we can
as well define vb,p/q(ξ) to be the supremum of the real numbers v such that

||bnξ + p/q|| < (bn)−v

for infinitely many positive integers n. This means that we approximate ξ by rational
numbers whose b-ary expansion is ultimately periodic, with the same period as the b-ary
expansion of p/q. Almost all real numbers ξ satisfy vb,p/q(ξ) = 0.

A natural analogue (for restricted quadratic approximation) of the exponents vb,p/q
(for restricted rational approximation) in the present setting is given by the exponents vτ
defined as follows.

Definition 4.3. For a quadratic number τ and an irrational number ξ not in Eτ , we
denote by vτ the supremum of the real numbers v such that

|ξ − α| < h(α)−v,

for infinitely many α in Eτ .

Note that the choice of an integer base b corresponds to that of a continued fraction
algorithm and the choice of a rational number p/q corresponds to that of a quadratic
number τ . In the present text, we consider only the usual continued fraction algorithm.

It follows from Lemma 2.1 that every real number ξ not in Eτ satisfies vτ (ξ) ≥ 1.
Furthermore, almost all real numbers ξ satisfy vτ (ξ) = 1 and, for every real number v ≥ 1,
the Hausdorff dimension of the set

{ξ ∈ R : vτ (ξ) = v}

is equal to 1/v; see also Theorem 1.3 of [9].
Our last result is a transcendence statement.
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Theorem 4.4. Let τ be a quadratic real number and ξ an irrational number not in Eτ .
If vτ (ξ) > 1, then ξ is transcendental.

Proof. Let b1, . . . , bs be the shortest period of the continued fraction expansion of τ and
write ξ = [a0; a1, a2 . . .]. Let (p`/q`)`≥1 be the sequence of partial quotients to ξ. Replacing
τ by −1/τσ if necessary, there exist, by assumption, a positive real number ε and an
infinite set R of positive integers such that, for any r in R, the quadratic number αr =
[a0; a1, . . . , ar, b1, . . . , bs] in Eτ satisfies ar+1 6= b1 and

|ξ − αr| < h(αr)
−1−ε. (4.4)

Note that it follows from Lemma 2.1 that

h(αr)� q2r , (4.5)

where, as below, the numerical constant implied by � only depends on b1, . . . , bs. Fur-
thermore, denoting by m(αr) the smallest integer for which the m(αr)-th partial quotients
of ξ and of αr are different, Lemma 2.2 implies that

|ξ − αr| � q−2m(αr)
. (4.6)

The combination of (4.4), (4.5) and (4.6) gives then

qm(αr) � q1+εr , (4.7)

and we deduce from Lemma 2.4 that there exists a positive real number ε′, depending only
on b1, . . . , bs, such that

m(αr) ≥ r + sbε′ log qrc,

for any sufficiently large integer r in R.
Then, arguing as in the proof of Theorem 3.2 of [2] (see also Theorem 1.3 of [7]), it

follows from the Schmidt Subspace Theorem that ξ is either transcendental or quadratic
(we omit the details). But if ξ is quadratic, it must be in Eτ . This proves the theorem.

Unlike in Theorem 3.2 of [2] (see also Theorem 1.3 of [7]), we do not need in Theorem
4.4 an assumption on the growth of the denominators of the convergents to ξ. Indeed, here
and unlike in those papers, the number of times that the block b1, . . . , bs is repeated is
not only at least equal to some absolute constant times r, but also at least equal to some
absolute constant times log qr.
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