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Abstract. We provide irreducibility criteria for multivariate polynomials with coefficients

in an arbitrary field, that extend a classical result of Pólya for polynomials with integer

coefficients. In particular, we provide irreducibility conditions for polynomials of the form

f(X)(Y − f1(X)) · · · (Y − fn(X)) + g(X), with f, f1, . . . , fn, g univariate polynomials over

an arbitrary field.

1. Introduction

There are many irreducibility criteria for multivariate polynomials in the literature, ob-

tained by using various methods. Some of the classical techniques used in this respect require

the study of Riemann surfaces and Puiseux expansions [17], the study of convex polyhedra

[22], or the study of nonarchimedean absolute values over arbitrary fields [14] and [15].

Some more recent irreducibility results have been obtained for various classes of multi-

variate polynomials, such as difference polynomials [19], [16], [2] and [3], linear combinations

of relatively prime polynomials [9], compositions of polynomials [1] and [6], multiplicative

convolutions [5], polynomials having one coefficient of dominant degree [7], lacunary polyno-

mials [4], and polynomials obtained from irreducible polynomials in fewer variables [8]. For

an excellent account on the techniques used in the study of reducibility of polynomials over

arbitrary fields, the reader is referred to Schinzel’s book [20].

In [18] Pólya proved the following elegant irreducibility criterion for polynomials with

integer coefficients.

Theorem (Pólya, 1919) If for n integral values of x, the integral polynomial f(x) of degree

n has values which are different from zero, and in absolute value less than

⌈n/2⌉!
2⌈n/2⌉

,

then f(x) is irreducible over Q.

The proof of this irreducibility criterion relies on the following lemma.

Lemma (Pólya, 1919) Let f(x) be an integral polynomial of degree n. Then among any

pairwise distinct integers x0, . . . , xn there exists at least one, say xi, such that |f(xi)| ≥ n!/2n.
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The aim of this paper is to provide several irreducibility criteria for multivariate polyno-

mials, that extend in a natural way Pólya’s Theorem. The first result we will prove is the

following irreducibility criterion for bivariate polynomials over an arbitrary field.

Theorem 1.1. Let K be a field and F (X, Y ) ∈ K[X,Y ] with degY F (X, Y ) = n. If for n

polynomials c1, . . . , cn ∈ K[X] with pairwise distinct degrees one has

0 ≤ degF (X, ci(X)) <
⌈n/2⌉(⌈n/2⌉ − 1)

2
, i = 1, . . . , n, (1)

then F (X, Y ) is irreducible over K(X). The same conclusion holds if

0 ≤ degF (X, ci(X)) <
⌈n/2⌉(⌈n/2⌉+ 1)

2
, i = 1, . . . , n, (2)

provided c1, . . . , cn ∈ K[X] are non-zero polynomials with pairwise distinct degrees.

Let us note here that (1) makes sense only for n ≥ 3, while (2) makes sense for n ≥ 2. By

Theorem 1.1, one may immediately deduce the following result.

Corollary 1.2. Let K be a field. For any polynomials f1, . . . , fn ∈ K[X] with pairwise

distinct degrees, and any non-zero polynomials f, g ∈ K[X] with

deg g <
⌈n/2⌉(⌈n/2⌉ − 1)

2
, (3)

the polynomial F (X,Y ) = f(X)(Y −f1(X)) · · · (Y −fn(X))+g(X) is irreducible over K(X).

The same conclusion holds if

deg g <
⌈n/2⌉(⌈n/2⌉+ 1)

2
, (4)

provided f1, . . . , fn ∈ K[X] are non-zero polynomials with pairwise distinct degrees.

We note here that there are many classical irreducibility criteria for polynomials of the

form a0(X−a1) · · · (X−an)+an+1, where the ai are rational integers. Many of these criteria

depend upon the arithmetical properties of the values taken by such a polynomial at some

integral arguments. The first criterion of this kind was suggested by Schur [21], who raised

the question of the irreducibility of the polynomials of the form (X − a1) · · · (X − an) ± 1.

For a unifying approach of the irreducibility criteria for polynomials of this type, we refer

the interested reader to [10], [11] and [12].

Another immediate consequence of Theorem 1.1 is a similar result for polynomials in

r ≥ 3 variables X1, X2, . . . , Xr over K. For any polynomial f ∈ K[X1, . . . , Xr] we denote by

degr f the degree of f as a polynomial in Xr with coefficients in K[X1, . . . , Xr−1]. The next

result follows from Theorem 1.1 by writing Y for Xr, X for Xr−1 and by replacing K with

K(X1, . . . , Xr−2).
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Theorem 1.3. Let K be a field, r ≥ 3, and let F (X1, . . . , Xr) ∈ K[X1, . . . , Xr] with

degr F = n. If for n polynomials c1, . . . , cn ∈ K[X1, . . . , Xr−1] with degr−1 c1, . . . , degr−1 cn
pairwise distinct, one has

0 ≤ degr−1 F (X1, . . . , Xr−1, ci) <
⌈n/2⌉(⌈n/2⌉ − 1)

2
, i = 1, . . . , n, (5)

then F is irreducible over K(X1, . . . , Xr−1). The same conclusion holds if

0 ≤ degr−1 F (X1, . . . , Xr−1, ci) <
⌈n/2⌉(⌈n/2⌉+ 1)

2
, i = 1, . . . , n, (6)

provided c1, . . . , cn are non-zero polynomials with degr−1 c1, . . . , degr−1 cn pairwise distinct.

For the proof of Theorem 1.1 we will need the following analogue of Pólya’s Lemma.

Lemma 1.4. Let K be a field and F (X, Y ) ∈ K[X, Y ] with degY F (X,Y ) = n. Then

among any n + 1 polynomials c0, . . . , cn ∈ K[X] with pairwise distinct degrees there exists

at least one, say ci, such that degF (X, ci(X)) ≥ n(n − 1)/2. Moreover, among any n + 1

non-zero polynomials c0, . . . , cn ∈ K[X] with pairwise distinct degrees, there exists at least

one, say ci, such that degF (X, ci(X)) ≥ n(n+ 1)/2.

In fact, a result similar to Lemma 1.4 holds with less restrictive conditions on the degrees

of the polynomials c0, . . . , cn, as follows.

Lemma 1.5. Let K be a field and let F (X, Y ) ∈ K[X,Y ] with degY F (X,Y ) = n. Then

among any n+1 polynomials c0, . . . , cn ∈ K[X] with pairwise distinct leading coefficients and

deg c0 ≤ deg c1 ≤ · · · ≤ deg cn, there exists at least one, say ci, such that degF (X, ci(X)) ≥
deg c1 + · · ·+ deg cn.

An immediate application of Lemma 1.5 gives the following related irreducibility criterion.

Theorem 1.6. Let K be a field and let F (X, Y ) ∈ K[X, Y ] with degY F (X, Y ) = n. If for

n polynomials c1, . . . , cn ∈ K[X] with deg c1 ≤ deg c2 ≤ · · · ≤ deg cn and pairwise distinct

leading coefficients one has

0 ≤ degF (X, ci(X)) < deg c2 + deg c3 + · · ·+ deg c⌈n/2⌉+1, i = 1, . . . , n, (7)

then F is irreducible over K(X).

Note that in some cases the price payed for using less restrictive conditions on the degrees of

c1, . . . , cn may consist of stronger conditions on the degrees of F (X, c1(X)), . . . , F (X, cn(X)).

Corollary 1.7. Let K be a field. For any polynomials f1, . . . , fn ∈ K[X] with pairwise dis-

tinct leading coefficients and deg f1 ≤ deg f2 ≤ · · · ≤ deg fn, and any non-zero polynomials

f, g ∈ K[X] with

deg g < deg f2 + deg f3 + · · ·+ deg f⌈n/2⌉+1, (8)

the polynomial F (X,Y ) = f(X)(Y −f1(X)) · · · (Y −fn(X))+g(X) is irreducible over K(X).
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By Theorem 1.6 we immediately obtain a similar result for polynomials in r ≥ 3 variables

X1, X2, . . . , Xr over K.

Theorem 1.8. Let K be a field, r ≥ 3, and let F (X1, . . . , Xr) ∈ K[X1, . . . , Xr] with

degr F = n. If for n polynomials c1, . . . , cn ∈ K[X1, . . . , Xr−1] with pairwise distinct leading

coefficients with respect to Xr−1 and degr−1 c1 ≤ degr−1 c2 ≤ · · · ≤ degr−1 cn one has

0 ≤ degr−1 F (X1, . . . , Xr−1, ci) < degr−1 c2 + degr−1 c3 + · · ·+ degr−1 c⌈n/2⌉+1 (9)

for each i = 1, . . . , n, then F is irreducible over K(X1, . . . , Xr−1).

The reader may naturally wonder how sharp the above results are. For instance, conditions

(3) and (4) in Corollary 1.2 and condition (8) in Corollary 1.7 are best possible in the sense

that there exist polynomials for which equality in (3) or (4), or (8) holds, and which are

reducible over K(X).

To see that the inequality sign in condition (3) can not be replaced by ≤ when the ci have

pairwise distinct degrees, take for instanceK = Q and F1(X,Y ) = Y (Y −1)(Y −X)+2X+2.

In this case we have n = degY F1 = 3, ⌈n/2⌉(⌈n/2⌉−1)
2

= 1, f(X) = 1, f1(X) = 0, f2(X) = 1,

f3(X) = X and g(X) = 2X + 2. Since deg g = 1, we have equality in (3), while F1 is

obviously reducible, since F1(X,Y ) = (Y + 1) · (Y 2 − (X + 2)Y + 2X + 2).

Now, to see that the inequality sign in condition (4) can not be replaced by ≤ when the

ci are non-zero polynomials with pairwise distinct degrees, let K = Q and consider the

polynomial F2(X,Y ) = (Y − 1)(Y −X)− 2X − 2. Here n = degY F2 = 2, ⌈n/2⌉(⌈n/2⌉+1)
2

= 1,

f(X) = 1, f1(X) = 1, f2(X) = X and g(X) = −2X − 2. Since deg g = 1, we have equality

in (4), while F2 is reducible too, since F2(X, Y ) = (Y + 1) · (Y −X − 2).

For an example related to Corollary 1.7, let K = Q and F3(X,Y ) = (Y −X)(Y − 2X)−
2X2+3X−1. Here n = 2, ⌈n/2⌉+1 = 2, f(X) = 1, f1(X) = X, f2(X) = 2X, deg f1 = deg f2
and g(X) = −2X2 + 3X − 1. We have equality in (8), while F3 is obviously reducible, since

F3(X, Y ) = (Y − 1) · (Y − 3X + 1).

Our results are quite flexible and may be used in various applications where other irre-

ducibility criteria fail. The proofs of the main results are given in Section 2 below. We will

also provide some examples of infinite families of irreducible polynomials in the last section

of the paper.

2. Proofs of the main results

2.1. Proof of Lemma 1.4. Let c0, . . . , cn ∈ K[X] be n + 1 arbitrary polynomials with

pairwise distinct degrees. By Lagrange’s interpolation formula, we may write F as

F (X,Y ) =
n∑

i=0

F (X, ci) ·
(Y − c0) · · · (Y − ci−1)(Y − ci+1) · · · (Y − cn)

(ci − c0) · · · (ci − ci−1)(ci − ci+1) · · · (ci − cn)
. (10)

Note that (10) makes sense, since the ci are supposed to be pairwise distinct. By (10) we

deduce that the leading coefficient of F , regarded as a polynomial in Y with coefficients
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ai ∈ K[X], may be expressed as

an(X) =
n∑

i=0

F (X, ci)

(ci − c0) · · · (ci − ci−1)(ci − ci+1) · · · (ci − cn)
. (11)

We now introduce a nonarchimedean absolute value | · | on K(X), as follows. We fix an

arbitrary real number ρ > 1, and for any polynomial u(X) ∈ K[X] we define |u(X)| by the

equality

|u(X)| = ρdeg u(X).

We then extend the absolute value | · | to K(X) by multiplicativity. Thus for any w(X) ∈
K(X), w(X) = u(X)

v(X)
, with u(X), v(X) ∈ K[X], v(X) ̸= 0, we let |w(X)| = |u(X)|

|v(X)| .

Let us note that for any non-zero element u(X) of K[X] one has |u(X)| ≥ 1. In particular,

since an ̸= 0, we have

|an(X)| ≥ 1. (12)

The proof proceeds by reduction to absurd. Let us assume that degF (X, ci(X)) < n(n−1)/2

for each i = 0, . . . , n. Then, by (11) and the fact that our absolute value is nonarchimedean,

we deduce that

|an(X)| =

∣∣∣∣∣
n∑

i=0

F (X, ci)

(ci − c0) · · · (ci − ci−1)(ci − ci+1) · · · (ci − cn)

∣∣∣∣∣
≤ max

0≤i≤n

∣∣∣∣ F (X, ci)

(ci − c0) · · · (ci − ci−1)(ci − ci+1) · · · (ci − cn)

∣∣∣∣
≤

max
0≤i≤n

|F (X, ci)|

min
0≤i≤n

|(ci − c0) · · · (ci − ci−1)(ci − ci+1) · · · (ci − cn)|

<
ρ

n(n−1)
2

min
0≤i≤n

|(ci − c0) · · · (ci − ci−1)(ci − ci+1) · · · (ci − cn)|
.

Recall now that the degrees of c0, . . . , cn are pairwise distinct, so we may assume without loss

of generality that deg c0 < deg c1 < · · · < deg cn. In particular, this shows that deg ci ≥ i−1

for i = 1, . . . , n. We then deduce that

|an(X)| <
ρ

n(n−1)
2

min
1≤i≤n

|ci|i · |ci+1| · · · |cn|
=

ρ
n(n−1)

2

|c1| · |c2| · · · |cn|

=
ρ

n(n−1)
2

ρdeg c1+deg c2+···+deg cn
≤ ρ

n(n−1)
2

ρ1+2+···+(n−1)
= 1,

which contradicts (12). This completes the proof of the first part of the lemma.

The proof of the second part of the lemma follows in a similar way, except that here the

fact that c0, . . . , cn ∈ K[X] are non-zero polynomials with pairwise distinct degrees implies

deg ci ≥ i for i = 0, . . . , n, which allows one to replace the bound n(n− 1)/2 by n(n+1)/2.
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2.2. Proof of Lemma 1.5. Since deg c0 ≤ deg c1 ≤ · · · ≤ deg cn, our assumption that the

ci have pairwise distinct leading coefficients shows that

deg(ci − cj) = deg cmax{i,j} (13)

for each pair of distinct indices i, j. On the other hand, the fact that the ci have pairwise

distinct leading coefficients shows that the ci are pairwise distinct. In particular, at most

one of the ci, namely c0, may be the zero polynomial.

Now, assuming that degF (X, ci(X)) < deg c1+ · · ·+deg cn for each i = 0, . . . , n and using

the method employed in the proof of Lemma 1.4, we deduce that

|an(X)| < ρdeg c1+···+deg cn

min
0≤i≤n

|(ci − c0) · · · (ci − ci−1)(ci − ci+1) · · · (ci − cn)|
.

Using (13), we further obtain

|an(X)| < ρdeg c1+···+deg cn

min
1≤i≤n

|ci|i · |ci+1| · · · |cn|
=

ρdeg c1+···+deg cn

|c1| · |c2| · · · |cn|
= 1,

again a contradiction, and this completes the proof.

2.3. Proof of Theorem 1.1. First of all let us note that condition 0 ≤ degF (X, ci(X))

allows us to avoid the trivial case when F is divisible by Y − ci(X). Now let us assume, for

the sake of a contradiction, that F as a polynomial in Y with coefficients in K[X] is reducible

over K(X). By the celebrated Lemma of Gauss we may further assume that F = G ·H, with

G,H ∈ K[X, Y ], degY G ≥ 1, degY H ≥ 1. Let now m = degY G. Without loss of generality

we may assume that degY G ≥ degY H, hence

⌈n/2⌉ ≤ m < n.

Next, since F (X, ci(X)) = G(X, ci(X))H(X, ci(X)) for each i = 1, . . . , n, we obtain

degG(X, ci(X)) ≤ degF (X, ci(X))

< ⌈n/2⌉(⌈n/2⌉ − 1)/2

≤ m(m− 1)/2, i = 1, . . . , n.

In particular, since n ≥ m+ 1, we have

degG(X, ci(X)) < m(m− 1)/2, i = 1, . . . ,m+ 1. (14)

On the other hand, according to Lemma 1.4, there must be an index i ∈ {1, . . . ,m+1} such

that degG(X, ci(X)) ≥ m(m − 1)/2, which contradicts (14), and this completes the proof

of the first part of the theorem.

The second part of the proof follows in a similar way, except that instead of (14) one

obtains

degG(X, ci(X)) < m(m+ 1)/2, i = 1, . . . ,m+ 1,

which cannot hold, according to Lemma 1.4. This completes the proof of the theorem.
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2.4. Proof of Theorem 1.6. Here too, the condition 0 ≤ degF (X, ci(X)) allows us to avoid

the trivial case when F is divisible by Y − ci(X). Let us assume as before that F = G ·H,

with G,H ∈ K[X,Y ], m = degY G ≥ degY H ≥ 1, so

⌈n/2⌉ ≤ m < n.

Next, since F (X, ci(X)) = G(X, ci(X))H(X, ci(X)) for each i = 1, . . . , n, we deduce that

degG(X, ci(X)) ≤ degF (X, ci(X))

< deg c2 + deg c3 + · · ·+ deg c⌈n/2⌉+1

≤ deg c2 + deg c3 + · · ·+ deg cm+1, i = 1, . . . , n.

In particular, since n ≥ m+ 1, we have

degG(X, ci(X)) < deg c2 + deg c3 + · · ·+ deg cm+1, i = 1, . . . ,m+ 1. (15)

On the other hand, according to Lemma 1.5, there must be an index i ∈ {1, . . . ,m + 1}
such that degG(X, ci(X)) ≥ deg c2 + deg c3 + · · · + deg cm+1, which contradicts (15), and

this completes the proof of the theorem.

We will also prove a p-adic version of Pólya’s Lemma, which might be of independent

interest. For a rational prime p and an arbitrary nonzero rational number r, we will denote

by νp(r) the exponent of p in the prime decomposition of r (νp(0) = ∞). With this notation

we have the following result.

Lemma 2.1. Let F (X) = a0 + a1X + · · · + anX
n ∈ Z[X], and let p be a prime number.

Then among any n+ 1 integers c0, c1, . . . , cn with νp(c0) > νp(c1) > · · · > νp(cn) there exists

at least one, say ci, such that νp(F (ci)) ≤ νp(an) + νp(c1) + νp(c2) + · · ·+ νp(cn).

2.5 Proof of Lemma 2.1. We will first introduce a nonarchimedean absolute value | · |p on

Q, as follows. For an arbitrary rational number r we define |r|p = p−νp(r). This absolute

value satisfies |ab|p = |a|p|b|p and |a + b|p ≤ max{|a|p, |b|p}, and it can be extended to a

number field (see, for instance, [13]), but in our proof we will not need this feature of | · |p.
Let now c0, . . . , cn ∈ Z be n + 1 arbitrary integers with νp(c0) > νp(c1) > · · · > νp(cn),

that is

|c0|p < |c1|p < · · · < |cn|p. (16)

Using again Lagrange’s interpolation formula, one may write F as

F (X) =
n∑

i=0

F (ci) ·
(X − c0) · · · (X − ci−1)(X − ci+1) · · · (X − cn)

(ci − c0) · · · (ci − ci−1)(ci − ci+1) · · · (ci − cn)
. (17)

Here too (17) makes sense, since the ci in the statement of Lemma 2.1 must be pairwise

distinct, so the leading coefficient of F may be expressed as

an =
n∑

i=0

F (ci)

(ci − c0) · · · (ci − ci−1)(ci − ci+1) · · · (ci − cn)
. (18)
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Now, let us assume that νp(F (ci)) > νp(an) + νp(c1) + νp(c2) + · · · + νp(cn) for each

i = 0, 1, . . . , n, that is max
0≤i≤n

|F (ci)|p < |an|p · |c1|p · |c2|p · · · |cn|p. Then, by (18) and the fact

that our absolute value is nonarchimedean, we deduce that

|an|p =

∣∣∣∣∣
n∑

i=0

F (ci)

(ci − c0) · · · (ci − ci−1)(ci − ci+1) · · · (ci − cn)

∣∣∣∣∣
p

≤ max
0≤i≤n

∣∣∣∣ F (ci)

(ci − c0) · · · (ci − ci−1)(ci − ci+1) · · · (ci − cn)

∣∣∣∣
p

≤
max
0≤i≤n

|F (ci)|p
min
0≤i≤n

|(ci − c0) · · · (ci − ci−1)(ci − ci+1) · · · (ci − cn)|p

<
|an|p · |c1|p · |c2|p · · · |cn|p

min
0≤i≤n

|(ci − c0) · · · (ci − ci−1)(ci − ci+1) · · · (ci − cn)|p
.

Since for i < j one has |ci − cj|p = |cj|p, we then deduce that

|an|p <
|an|p · |c1|p · |c2|p · · · |cn|p
min
1≤i≤n

|ci|ip · |ci+1|p · · · |cn|p
=

|an|p · |c1|p · |c2|p · · · |cn|p
|c1|p · |c2|p · · · |cn|p

= |an|p,

which is a contradiction. This completes the proof of the lemma.

We end this section by noting that no immediate application of Lemma 2.1 seems to be

useful to derive similar irreducibility conditions in a p-adic setting, because unlike the usual

absolute value and the nonarchimedean absolute value used in Theorem 1.1, with respect to

divisibility, the p-adic modulus is a reverse ordering map, that is |a|p ≥ |b|p if a divides b.

3. Examples

1) Let K be a field, and let us consider now bivariate polynomials obtained by adding

a linear factor in Y to the polynomial F (X, Y ) in Corollary 1.2. We will first consider

polynomials of the form

F (X, Y ) = f(X)
n∏

i=1

(Y − fi(X)) +
n∑

i=1

gi(X)(Y − fi(X)),

with f, f1, . . . , fn, g1, . . . , gn ∈ K[X], f ̸= 0, and deg fi ̸= deg fj for i ̸= j. It is easy to prove

that if F (X, fj(X)) ̸= 0 for j = 1, . . . , n and

max
1≤i≤n

deg fi + max
1≤i≤n

deg gi <
⌈n/2⌉(⌈n/2⌉ − 1)

2
,

then F must be irreducible over K(X). If moreover f1 · · · fn ̸= 0 then the same conclusion

will hold if

max
1≤i≤n

deg fi + max
1≤i≤n

deg gi <
⌈n/2⌉(⌈n/2⌉+ 1)

2
.
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To prove this, we observe that F (X, fj(X)) =
n∑

i=1

gi(X)(fj(X)− fi(X)), which shows that

degF (X, fj(X)) ≤ max
1≤i≤n

deg fi+ max
1≤i≤n

deg gi for j = 1, . . . , n. The conclusion follows now by

Theorem 1.1.

We note here that in Corollary 1.2 the degrees of f1, . . . , fn are only asked to be pairwise

distinct, while in this case the degrees of f1, . . . , fn must be also bounded by the expression

in the right side of (1) or (2).

2) One may also consider the case when the linear factor in Y added to the polynomials

in Corollary 1.2 does not depend explicitly on the polynomials f1, . . . , fn. So let now

F (X, Y ) = f(X)
n∏

i=1

(Y − fi(X)) + h(X)Y + g(X),

with f, g, h, f1, . . . , fn ∈ K[X], f ̸= 0, and deg fi ̸= deg fj for i ̸= j. Similarly, if one has

F (X, fj(X)) ̸= 0 for j = 1, . . . , n and

max{deg g, deg h+ max
1≤i≤n

deg fi} <
⌈n/2⌉(⌈n/2⌉ − 1)

2
,

then F must be irreducible over K(X). If moreover f1 · · · fn ̸= 0 then the same conclusion

will hold if

max{deg g, deg h+ max
1≤i≤n

deg fi} <
⌈n/2⌉(⌈n/2⌉+ 1)

2
.

In this case degF (X, fj(X)) ≤ max{deg g, deg h + max
1≤i≤n

deg fi} for j = 1, . . . , n, and the

conclusion follows again by Theorem 1.1. Note that we obviously have F (X, fj(X)) ̸= 0 for

j = 1, . . . , n if, for instance, g ̸= 0 and g is not divisible by h.

3) Let us consider now the case when the degrees of f1, . . . , fn are not necessarily pairwise

distinct. So let again

F (X, Y ) = f(X)
n∏

i=1

(Y − fi(X)) +
n∑

i=1

gi(X)(Y − fi(X)),

with f, f1, . . . , fn, g1, . . . , gn ∈ K[X], f ̸= 0, and assume that deg f1 ≤ deg f2 ≤ · · · ≤ deg fn,

and that the leading coefficients of f1, . . . , fn are pairwise distinct. If F (X, fj(X)) ̸= 0 for

j = 1, . . . , n and

deg fn + max
1≤i≤n

deg gi < deg f2 + deg f3 + · · ·+ deg f⌈n/2⌉+1,

then F must be irreducible over K(X).

Indeed, since F (X, fj(X)) =
n∑

i=1

gi(X)(fj(X)−fi(X)), we deduce that degF (X, fj(X)) ≤

deg fn + max
1≤i≤n

deg gi for j = 1, . . . , n, and the conclusion follows by Theorem 1.6.

4) Let now

F (X, Y ) = f(X)
n∏

i=1

(Y − fi(X)) + h(X)Y + g(X),
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with f, g, h, f1, . . . , fn ∈ K[X], f ̸= 0, deg f1 ≤ deg f2 ≤ · · · ≤ deg fn, and assume that the

leading coefficients of f1, . . . , fn are pairwise distinct. If F (X, fj(X)) ̸= 0 for j = 1, . . . , n

and

max{deg h+ deg fn, deg g} < deg f2 + deg f3 + · · ·+ deg f⌈n/2⌉+1,

then F must be irreducible over K(X).

Here degF (X, fj(X)) ≤ max{deg h + deg fn, deg g} for j = 1, . . . , n, and the conclusion

follows again by Theorem 1.6.

5) One may easily formulate similar irreducibility conditions for polynomials obtained by

adding terms of higher degree with respect to Y to the polynomials considered in Corol-

lary 1.2 and Corollary 1.7. Consider, for instance, the polynomial

F (X,Y ) = f(X)
n∏

i=1

(Y − fi(X)) +
k∑

i=0

hi(X)Y i,

with f, f1, . . . , fn, h0, . . . , hk ∈ K[X], f ̸= 0, deg f1 ≤ deg f2 ≤ · · · ≤ deg fn, and assume that

the leading coefficients of f1, . . . , fn are pairwise distinct. If F (X, fj(X)) ̸= 0 for j = 1, . . . , n

and

max
0≤i≤k

{deg hi + i deg fn} < deg f2 + deg f3 + · · ·+ deg f⌈n/2⌉+1, (19)

then F must be irreducible over K(X).

Here degF (X, fj(X)) ≤ max
0≤i≤k

{deg hi+i deg fj} for j = 1, . . . , n, and the conclusion follows

again by Theorem 1.6. Note that since deg f1 ≤ deg f2 ≤ · · · ≤ deg fn, (19) can not hold if

k ≥ ⌈n/2⌉, so one may obtain irreducibility criteria for polynomials of this type only if k is

sufficiently small. We also note that we obviously have F (X, fj(X)) ̸= 0 for j = 1, . . . , n, if

for instance, the polynomial
k∑

i=0

hi(X)Y i has no linear factors over K(X).
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Université de Strasbourg, Mathématiques, 7, rue René Descartes, 67084 Strasbourg

Cedex, France

E-mail address: yann.bugeaud@math.unistra.fr, maurice.mignotte@math.unistra.fr


