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Abstract. Résumé. Nous présentons plusieurs théorèmes sur l’écriture des
nombres entiers dans deux bases indépendantes. Nous dressons la liste complète

des nombres de Fibonacci et des nombres de Lucas qui s’écrivent en binaire

avec au plus quatre chiffres 1.
Abstract. We discuss various results on the representation of integers in two

unrelated bases. We give the complete list of all the Fibonacci numbers and

of all the Lucas numbers which have at most four digits 1 in their binary
representation.

1. Introduction

Let a and b be integers at least equal to 2. In 1973, Senge and Straus [12] proved
that the number of integers, the sum of whose digits in each of the bases a and b lies
below a fixed bound, is finite if, and only if, a and b are multiplicatively independent.
Their proof rests on the Thue–Siegel–Roth theorem and, hence, is ineffective. Using
Baker’s theory of linear forms in logarithms, Stewart [13] succeeded in establishing
an effective version of Senge and Straus’ theorem. He showed that if a and b are
multiplicatively independent, then, for every c ≥ 1, each integer m > 25 whose sum
of digits in base a as well as in base b is bounded by c satisfies

(1)
log logm

log log logm+ c1
< 2c+ 1,

where c1 is a positive constant which is effectively computable in terms of a and b
only (see also Mignotte [9]).

Stewart was also able to deal with digital expansions of elements of a linear
recurrence sequence of integers. Recall that the general term of such a sequence of
integers (Un)n≥1 can be written as

Un = P1(n)αn1 + P2(n)αn2 + · · ·+ Pk(n)αnk , with |α1| ≥ |α2| ≥ · · · ≥ |αk|,
where the αi’s are complex numbers and the Pi(X)’s are polynomials.

Theorem S (Stewart). Let b ≥ 2 be an integer. Keep the above notation and
assume that P1(X) is non-zero and that

|α1| > |α2|, |α1| > 1.

There exists a positive constant C0, which is effectively computable in terms of b
and of (Un)n≥1, such that, for every n > 4, the b-ary representation of Un has at
least

log n

log log n+ C0
− 1

non-zero digits.
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Observe that (1) and Theorem S are of similar strength since, in Stewart’s the-
orem, Un grows exponentially in n.

Instead of computing an upper bound for the integers having few digits in two
unrelated bases, we may as well bound their number from above. This was done
by Schlickewei [10], as a particular case of a general result on linear equations in
integers with bounded sum of digits (see Theorem 3.2 below). His proof rests on
the quantitative subspace theorem and the same ideas can be also used to bound
the number of indices n for which the n-th term of the recursion (Un)n≥1 as in
Stewart’s theorem has k non-zero digits in some integer base b.

In Section 2, we consider the two most popular binary sequences, namely the
Fibonacci and the Lucas sequences, denoted by (Fn)n≥0 and (Ln)n≥0, respectively.
Recall that

Fn =
αn − βn√

5
, Ln = αn + βn, (n ≥ 0),

where we have set

α =
1 +
√

5

2
, β =

1−
√

5

2
.

We prove that, for any positive integer k and any integer base b ≥ 2, the number of
Fibonacci (respectively Lucas) numbers having at most k digits in their represen-
tation in base b is bounded by some constant depending only on k. The proof rests
on the quantitative absolute subspace theorem. Furthermore, we give the complete
list of all Fibonacci numbers and all Lucas numbers having at most four non-zero
digits in their binary representation.

In Section 3 we discuss various extensions or improvements of Stewart’s and
Schlickewei’s results. Rather than counting the number of non-zero digits, we con-
sider the number of times that a digit different from the previous one is read, a
problem investigated by Blecksmith, Filaseta, and Nicol [3] and by Barat, Tichy,
and Tijdeman [2]. Sections 4 and 5 contain the proofs of our results.

All these results are illustrations of the same principle “in two unrelated number
systems, two miracles cannot happen simultaneously for large integers”.

2. Fibonacci and Lucas numbers with few non-zero digits

For a given integer base b ≥ 2 and a positive integer k, Theorem S implies that
there are only finitely many Fibonacci and Lucas numbers having k non-zero digits
in their b-ary representation, a result already established in [12] (but not stated
explicitly there). The next theorem gives an upper estimate for their number.

Theorem 2.1. Let b ≥ 2 and k ≥ 1 be integers. There are at most

(2) bk (2k)17(k+3)5

Fibonacci (respectively Lucas) numbers having at most k non-zero digits in their
representation in base b.

The dependence on b cannot be removed in the upper bound given in Theo-
rem 2.1. Indeed, since Fn is at most 2n for any positive integer n, there are,
regardless of the positive integer N , clearly at least N Fibonacci numbers having
one single digit in any base b greater than 2N . The fact that the bound (2) is
polynomial in b, and not exponential in a power of b, illustrates the power of the
absolute quantitative subspace theorem, which is one of the main ingredients for
the proof.

The next theorem is specific for the base b = 2. It lists all the Fibonacci and
Lucas numbers having no more than four non-zero digits in their binary represen-
tation.
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Theorem 2.2. The Fibonacci numbers with at most two binary digits are

F0 = 0, F1 = F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, F9 = 34, F12 = 144,

those with three binary digits are

F7 = 13, F8 = 21,

and those with four binary digits are

F11 = 89, F15 = 610, F18 = 2584.

The Lucas numbers with at most two binary digits are

L0 = 2, L1 = 1, L2 = 3, L3 = 4, L6 = 18,

those with three binary digits are

L4 = 7, L5 = 11, L9 = 76, L12 = 322, L13 = 521,

and L7 = 29 is the only Lucas number with four binary digits.

The proof of Theorem 2.2 combines elementary properties of the Fibonacci and
Lucas numbers, sharp estimates for linear forms in two and three logarithms, and
repeated use of the classical Baker–Davenport Lemma (see Proposition 5.3 below).
In principle, the same method can be employed to list all the Fibonacci and Lucas
numbers having an arbitrarily given number of binary digits.

3. Further results on the representation of integers in distinct
bases

Besides the number of non-zero digits in the representation of an integer m,
we may also estimate the number of blocks composed of the same digit in this
representation. This was first considered by Blecksmith, Filaseta, and Nicol [3],
who proved that, for multiplicatively independent positive integers a and b, we
have

lim
n→∞

BC(an, b) = +∞,

where BC(m, b) stands for the number of times that a digit different from the
previous one is read in the b-ary representation of the positive integer m. Their
result was subsequently quantified by Barat, Tichy, and Tijdeman [2], who, under
the same assumption, showed that there are effectively computable numbers c0, n0,
depending only on a and b, such that

(3) BC(an, b) ≥ c0
log n

log log n
, for n > n0.

This result and its proof are closely related to the theorem of Stewart quoted in
Introduction. Again, we have the same order of magnitude as in 1) and in Theorem
S.

We also note that if m has at most k non-zero digits in its b-ary representation,
then BC(m, b) does not exceed 2k. However, the converse is not true, since a
number m such that BC(m, b) is small may have many non-zero digits in its b-ary
representation.

Following Stewart’s arguments, we improve and extend 3) as follows.

Theorem 3.1. Let a and b be multiplicatively independent integers. Then we have

BC(m, a) +BC(m, b) ≥ log logm

log log logm+ C
− 1,

for m > 25, where C is a positive number which is effectively computable in terms
of a and b only.

The next theorem is an extension of Schlickewei’s result.
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Theorem 3.2. Let k be a positive integer. Let ` ≥ 2 be an integer. Let b1, . . . , b` be
integers ≥ 2 such that b`1 and b`2 are multiplicatively independent for every integers
`1 and `2 with 1 ≤ `1 < `2 ≤ `. Let n1, . . . , n` be positive integers whose sum of
digits in base bi is bounded from above by k for i = 1, . . . , `. Then there exists an
effectively computable constant c such that the equation

±n1 ± n2 ± · · · ± n` = 0

has at most
(`k)c(`k)

5

solutions.

The proof of Theorem 3.2 is similar to Schlickewei’s proof of its Theorems 1 and
2 from [10], in which he used his own version of the quantitative subspace theorem.
The tools available at that time did not enable one to get rid of the dependence on
the number of distinct prime factors of the product b1 · · · bk. Some years later, an
important progress was made by Schlickewei, who established the absolute subspace
theorem, see his paper with Evertse [5] for a quantitative statement. The deep
Theorem ESSAV quoted in the next Section is a (not immediate!) consequence of
the absolute quantitative subspace theorem.

4. Proofs of Theorems 1, 3 and 4

Let K be a field of characteristic 0 and write K∗ for its multiplicative group
of non-zero elements. Let (K∗)n be the direct product of n copies of K∗, so for
x = (x1, . . . , xn),y = (y1, . . . , yn) in (K∗)n we write x ∗ y = (x1y1, . . . , xnyn).

We quote below Theorem 6.2 of Amoroso and Viada [1], which strengthens The-
orem 1.1 of Evertse, Schlickewei, and Schmidt [6]. The improvement comes from
a better estimate for the number of solutions of ‘very small height’, a step of the
proof which is independent of the quantitative subspace theorem.

Theorem ESSAV. Keep the above notation. Let (a1, . . . , an) be in (K∗)n and
Γ be a subgroup of rank r of (K∗)n. Then, the number of solutions x = (x1, . . . , xn)
in Γ to

(4) a1x1 + · · ·+ anxn = 1,

such that no proper subsum of the left-hand side of (4) vanishes, is bounded above
by

(8n)4n
4(n+r+1).

Theorem ESSAV is the key tool for the proof of Theorems 2.1 and 3.2.

Proof of Theorem 2.1.
Let b ≥ 2 be an integer. Let a1, . . . , ak be integers in {0, 1, . . . , b − 1}. Let α1

and β1 be non-zero elements of Q(
√

5). Let k be a non-zero integer. We consider
the Diophantine equation

(5) α1α
n + β1β

n = a1b
n1 + · · ·+ akb

nk ,

in non-negative integers n, n1, . . . , nk satisfying n1 > . . . > nk. Dividing both sides
of (5) by akb

nk , we get

(6) α1α
na−1k b−nk + β1β

na−1k b−nk − a1a−1k bn1−nk − · · · − a−1k bnk−1−nk = 1.

We apply Theorem ESSAV to the field Q(
√

5) and the multiplicative group Γ of
rank k+3 generated by (α, 1, 1, . . . , 1), (1, β, 1, . . . , 1), (b, 1, 1, 1, . . . , 1), . . . , (1, . . . , 1, b).
It gives that (6), and, consequently, (5), have no more than exp{17(k+3)5 log(2k)}
solutions. Since there are bk possible choices for the k-tuple (a1, . . . , ak), this proves
the theorem. �
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Proof of Theorem 3.1.
Let the a-ary representation of m be given by

ahah−1 . . . a1,

with ah 6= 0, and define the integers n1 < n2 < . . . by a1 = . . . = an1
, an1

6= an1+1

and anj+1 = . . . = anj+1
, anj+1

6= anj+1+1 for j ≥ 1, until we reach ah. Define r by
anr

= ah. Then, observe that

m = an1

an1 − 1

a− 1
+ an2a

n1
an2−n1 − 1

a− 1
+ an3a

n2
an3−n2 − 1

a− 1
+ · · ·

= − an1

a− 1
+
an1 − an2

a− 1
an1 +

an2 − an3

a− 1
an2 + · · ·+ anr

a− 1
anr .

Likewise, if

bkbk−1 . . . b1,

where bk 6= 0, denotes the b-ary representation of m, we define the integers `1 <
`2 < . . . by b1 = . . . = b`1 , b`1 6= b`1+1 and b`j+1 = . . . = b`j+1 , b`j+1 6= b`j+1+1 for
j ≥ 1, until we reach bk. Defining t by b`t = bk, we have

m = − b`1
b− 1

+
b`1 − b`2
b− 1

b`1 +
b`2 − b`3
b− 1

b`2 + · · ·+ b`t
b− 1

b`t .

This is of the same shape as in the proof of Theorem 1 of [13]. So, it is sufficient
to follow this proof to establish Theorem 3.1. �

Proof of Theorem 3.2.
We follow step by step the argument of Schlickewei [10], using however Theorem

ESSAV in place of the result from [11] recalled in [10]. �

5. Proof of Theorem 2

About 30 minutes of computation are sufficient to list all the Fibonacci and
Lucas numbers having at most four binary digits and small index.

Lemma 5.1. The only Fibonacci and Lucas numbers having at most four binary
digits and index at most 104 are those listed in Theorem 2.2.

Therefore from now on we assume n > 104. Moreover, to treat simultaneously
the Fibonacci and the Lucas cases, we put

Un =

{
Fn, in the Fibonacci case,

Ln, in the Lucas case,
ρ =

{√
5, in the Fibonacci case,

1, in the Lucas case,

so that

|ρUn − αn| = α−n

in both cases.
The proof of Theorem 2.2 requires sharp estimates for linear forms in two and

three logarithms. For linear forms in two logarithms, we apply the bounds estab-
lished in [7], while, for linear forms in three logarithms, we use a special case of a
general estimate due to Matveev [8].

Proposition 5.2. Let λ1, λ2, λ3 be Q–linearly independent logarithms of non-
zero algebraic numbers and let b1, b2, b3 be rational integers with b1 6= 0. Define
αj = exp(λj) for j = 1, 2, 3 and

Λ = b1λ1 + b2λ2 + b3λ3.

Let D be the degree of the number field Q(α1, α2, α3) over Q. Put

χ = [R(α1, α2, α3) : R].
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Let A1, A2, A3 be positive real numbers, which satisfy

Aj ≥ max
{
Dh(αj), |λj |, 0.16

}
(1 ≤ j ≤ 3).

Assume that
B ≥ max

{
|bj |Aj/A1; 1 ≤ j ≤ 3

}
.

Define also

C1 =
5× 165

6χ
e3 (7 + 2χ)

(
3e

2

)χ(
20.2 + log

(
35.5D2 log(eD)

))
.

Then
log |Λ| > −C1D

2A1A2A3 log
(
1.5 eDB log(eD)

)
.

We shall also apply the following version of the classical Baker–Davenport Lemma,
due to Dujella and Pethő [4].

Proposition 5.3. Let A, B, θ, µ be positive real numbers and M be a positive
integer. Suppose that P/Q is a convergent of the continued fraction expansion of θ
such that Q > 6M . Put ε = ‖µQ‖ −M‖θQ‖, where ‖·‖ denotes the distance from
the nearest integer. If ε > 0, then there is no integer solution (j, k) to the inequality

0 < jθ − k + µ < A ·B−j

subject to the restriction that

log(AQ/ε)

logB
≤ j ≤M.

For a positive integer x, we denote by σ(x) the number of non-zero digits in the
binary expansion of x.

I. The case σ(Un) = 1

Since no Lucas number is divisible by 8, the assumption σ(Ln) = 1 implies that
Ln = 1, 2 or 4, which corresponds to the indices 1, 0 and 3, respectively.

Let us move to Fibonacci numbers. The shortest proof is two lines long: since
any Fibonacci number of index > 12 has a primitive divisor, all powers of 2 appear
among the first 13 terms.

Since this argument cannot be adapted for σ(Fn) > 1, we present a different
proof, whose ingredients serve later on. A tool we need is the following well-known
lemma. Recall that for a non-zero integer a, one puts v2(a) = k if 2k | a and
2k+1 6 | a.

Lemma 5.4. If Fn is even then n = 3m and if 4 | Fn then 2 | m and

v2(Fn) = 2 + v2(n).

If Fn = 2r, r ≥ 3, then αn−2/
√

5 < 2r < αn/
√

5 and n ≥ 3 · 2r−2. From this
and Lemma 5.4 it easily follows that n < 104.

II. The case σ(Un) = 2

Write Un = 2r + 2s, with r > s. By Lemma 5.4, in the Fibonacci case and for
n 6= 3 · 2s−2, we have

s ≤ log n/ log 2,

and s < 1+log n/ log 2 otherwise. Since no Lucas number is divisible by 8, we have
s ≤ 2 in the Lucas case. We consider the linear form in logarithms

Λ := n logα− log ρ− r log 2.

In the Fibonacci case, we apply Proposition 5.2 for α1 =
√

5, α2 = 2 α3 = α,
b1 = −1, b2 = −r, b3 = n. We obtain h(α1) = log

√
5, h(α2) = log 2, h(α3) =
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(logα)/2, D = 2, χ = 1, A1 = log 5, A2 = log 4, A3 = logα, B = (r log 4)/(log 5).
Therefore, with the notation of Proposition 5.2, we have

C1 =
5 · 165

6
· e3 · 9 · 3e

2

(
20.2 + log

(
35.5 · 4 log(2e)

))
< 1.8134 · 1010.

It follows that

(7) log |Λ| > −C2 log(8.3n),

with C2 = 7.788 · 1010.
From the discussion at the beginning of this subsection II, we easily get that

Λ = log

(
1 +

βn

2r
√

5
+ 2s−r

)
<

1

2r
√

5
+ 2s−r < 2s−r+1 <

n

αn/2
,

thus
log Λ < log n− n

2
logα.

Combined with (7), this gives

n ≤ 2C2 + 1

logα
log(8.3n),

which implies n < 1.1 · 1013.
Now we apply Proposition 5.3 with the choice j = n, θ = (logα)/(log 2), k = r,

µ = −(log 5)/(log 2). Since for any real a > 1 the function n 7→ n/an is decreasing
for an > e, we may choose A = 1.2 and B = α2/5. Simple computations yield
n < 103.

The Lucas case is simpler: we have a linear form in two logarithms

Λ := n logα− r log 2

and an application of [7] gives n < 104.
Thus Theorem 2.1 is completely proved for σ(Un) = 2. We employ a similar

reasoning to determine the Fibonacci and Lucas number with three or four binary
digits, so we shall give less numerical details in the cases σ(Un) = 3, 4. The
constants C3, . . . , C7 below are absolute.

III. The case σ(Un) = 3

In the present case

Un = 2r + 2s + 2t, with r > s > t,

and we put h = r − s. We consider the two linear forms

Λ := n logα− log ρ− r log 2,

as above, which satisfies
0 < |Λ| ≤ 2−h+1,

and
Λ1 := n logα− log ρ− log(2h + 1)− s log 2,

for which
0 < Λ1 ≤ 2−s+1 = 2−r+h+1.

By Proposition 5.2,

log |Λ1| > −C3(h+ 1) log 2 log(2en),

for a certain constant C3. Hence,

r < (C3 + 1)(h+ 1) log(2en).

We first treat the case of Lucas numbers. If Un = Ln then ρ = 1 and, by [7], we
get

log |Λ| > −C4 log2(2n), with C4 = 25× 8× logα× log 2,
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and, since log |Λ| ≤ −(h− 1) log 2, we obtain the upper bound

h ≤ 1 + C4 log2(2n)/ log 2.

A similar study of Λ1 gives

(8) n logα ≤ (r + 1) log 2 ≤ (C5 + 2)(h+ 1) log(2en).

Hence,
n ≤ (C5 + 2)(C4 + 2) log3(2en),

which implies n < 1017. But the continued fraction expansion of (logα)/(log 2)
gives

|n logα− r log 2| ≥ 1

136n
if n < 1020.

Thus

2−h+1 ≥ 1

136n
if n < 1017

and we get h ≤ 64. Now (8) implies n < 1014 (indeed n < 5 · 1013) and h ≤ 54.
Then one application of Proposition 5.3 gives n < 103 and Theorem 2.2 holds in
this case.

In the case of Fibonacci numbers, an application of Proposition 5.2 to Λ gives

h ≤ 1 + C6 log(2en),

and for Λ1 this result implies

s log 2 ≤ 1 + C6(h+ 1) log(2en),

hence
r log 2 ≤ (C6 + 1)(h+ 1) log(2en).

Finally,

n logα <
(C6 + 1)2 log2(2en)

log 2
,

and n < 3 ·1024. Then, an application of Proposition 5.3 to Λ gives n < 4.4×1017.
Now, using this bound on n and applying Proposition 5.3 to Λ1 for 1 ≤ h ≤ 105 =:
H, we obtain

1 ≤ h ≤ 105 =⇒ n < 150,000.

Then, applying again Proposition 5.3 to Λ, we see that n < 4.8 × 1016 if h ≥ H,
and four applications of Proposition 5.3 then imply n < 2,000. By applying again
Proposition 5.3 to Λ and Λ1, respectively, we get{

h ≥ 600 =⇒ n < 104,

h < 600 =⇒ n < 103,

and the asserted result follows from Lemma 5.1.

IV. The case σ(Un) = 4

In this case

Un = 2r + 2s + 2t + 2u, with r > s > t > u,

and we put h = r − s, k = s− t. By Lemma 5.4 we know that

u ≤ (log n)/(log 2).

Now we consider the three linear forms

Λ := n logα− log ρ− r log 2,

which satisfies
0 < |Λ| ≤ 2−h+1,
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and

Λ1 := n logα− log
(
ρ(2h + 1)

)
− s log 2,

for which

0 < |Λ1| ≤ 2−s+t+1 = 2−k+1,

and

Λ2 := n logα− log
(
ρ(2h+k + 2k + 1)

)
− t log 2,

which satisfies

0 < |Λ2| ≤ 2−t+u.

Applying Proposition 5.2 to each of these linear forms, we get now

h ≤ C7 log(2en), k ≤ C7 (h+ 1) log(2en), t− u ≤ C7 (h+ k + 1) log(2en).

From the trivial relation

r = h+ k + (t− u) + u

we deduce that

n ≤ C7 log(2en) + C7(C7 + 1) log2(2en) + C7(C7 + 1)2 log3(2en) +
log n

log 2
,

which leads to

n < 1032.

Now we proceed in several steps. First, by repeated use of Proposition 5.3 for
Λ, we prove that

h ≥ 200 =⇒ n < 104.

Then, using the above upper bounds, we verify successively that

h ≤ 200 =⇒ n < 4 · 1026 =⇒ h ≤ 110 =⇒ n < 2 · 1026,

where the first bound comes from Proposition 5.2 and the second one is obtained
by repeated use of Proposition 5.3 for Λ1. On using Proposition 5.3 for Λ2, we also
verify that

n < 2 · 1026 =⇒ k ≤ 190 =⇒ n < 2 · 1016,

and after a few more steps we conclude that

n ≤ 5 · 1015, h ≤ 75, k ≤ 80.

Then, a last application of Proposition 5.3 shows that n < 103. In view of
Lemma 5.1, Theorem 2.2 is completely proved for σ(Un) = 4.
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