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Abstract. Let θ = [0; a1, a2, . . .] be an algebraic number of degree at
least three. Recently, we have established that the sequence of partial
quotients (a`)`≥1 of θ is not too simple and cannot be generated by
a finite automaton. In this expository paper, we point out the main
ingredients of the proof and we briefly survey earlier works.

1. Introduction

It is widely believed that the continued fraction expansion of an irrational algebraic
number

θ = bθc+ [0; a1, a2, . . . , a`, . . .] = bθc+
1

a1 +
1

a2 +
1

. . .

either is eventually periodic (and we know that this is the case if, and only if, θ is a
quadratic irrational), or contains arbitrarily large partial quotients. Here, and in all what
follows, bxc and dxe denote, respectively, the integer part and the upper integer part of
the real number x.

A preliminary step consists in providing explicit examples of transcendental continued
fractions. The first result of this type goes back to Liouville [16], who constructed tran-
scendental real numbers with a very fast growing sequence of partial quotients. His key
tool is the so-called Liouville inequality which asserts that, if θ is a real algebraic number
of degree d ≥ 2, then there exists a positive constant c1(θ) such that

|θ − p/q| ≥ c1(θ) q−d, for every rational number p/q with q ≥ 1.

Subsequently, various authors used deeper transcendence criteria from Diophantine ap-
proximation to construct other classes of transcendental continued fractions. Of particular
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interest is the work of Maillet [19] (see also Section 34 of [22]), who was the first to give
explicit examples of transcendental continued fractions with bounded partial quotients.
A particular case of Maillet’s result asserts that if (a`)`≥1 is a non-eventually periodic
sequence of positive integers at most equal to M , and if there is an increasing sequence
(`n)n≥1 such that

a`n = a`n+1 = . . . = an`n = 1,

for n ≥ 1, then the real number

α = [0; a1, a2, . . .]

is transcendental. His proof is based on a general form of the Liouville inequality which
limits the approximation of real algebraic numbers θ of degree d ≥ 3 by quadratic irra-
tionals. More precisely, Maillet showed that there exists a positive constant c2(θ) such
that

|θ − γ| ≥ c2(θ)H(γ)−d, for every real quadratic number γ. (1.1)

Here, and everywhere in the present text, H(P ) denotes the height of the integer polyno-
mial P (X), that is, the maximum of the absolute values of its coefficients; furthermore,
H(γ) denotes the height of the algebraic number γ, that is, the height of its minimal
defining polynomial over Z. A rapid (and rough) calculation shows that the height of the
quadratic irrational real number

αn := [0; a1, . . . , a`n−1, 1],

where the notation 1 means that the partial quotient 1 is repeated infinitely many times,
satisfies

H(αn) ≤
`n∏
i=1

(ai + 2)2 ≤ (M + 2)2`n . (1.2)

This provides us with infinitely many very good approximations to α. Indeed, by construc-
tion, for n ≥ 1, the first n`n partial quotients of α and αn are the same, thus we derive
from (1.2) and (4.4) below that

|α− αn| < 22−n`n ≤ 4H(αn)−n(log 2)/(2 log(M+2)). (1.3)

It then follows from (1.1) that α cannot be algebraic of degree ≥ 3. As (a`)`≥1 is infinite
and not eventually periodic, α is transcendental.

A. Baker [9] used in 1962 Roth’s theorem for number fields obtained by LeVeque to
strongly improve upon the results of Maillet and make them more explicit. He observed
that, when infinitely many of the quadratic approximations found by Maillet lie in the same
quadratic number field, one can replace the use of (1.1) by that of LeVeque’s Theorem,
which asserts that, for any given real number field K, any positive real number ε, and any
real algebraic number θ lying outside K, there exists a positive constant c3(θ, ε) such that

|θ − γ| ≥ c3(θ, ε)H(γ)−2−ε, for every real algebraic number γ in K. (1.4)
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This is clearly relevant for the example mentioned above, since all the αn belong to the
quadratic field Q(

√
5). In particular, it follows from (1.3) and (1.4) that if (a`)`≥1 is a

non-eventually periodic sequence of positive integers at most equal to M , and if there is
an increasing sequence (`n)n≥1 such that

a`n = a`n+1 = . . . = abκ`nc = 1,

for n ≥ 1 and some real number κ > 4(log(M + 2))/(log 2), then the real number α =
[0; a1, a2, . . .] is transcendental.

Subsequently, further transcendence results have been obtained by applying a corollary
to the Schmidt Subspace Theorem which states that, for any positive real number ε and
any real algebraic number θ of degree at least 3, there exists a positive constant c4(θ, ε)
such that

|θ − γ| ≥ c4(θ, ε)H(γ)−3−ε, for every real quadratic number γ; (1.5)

see Corollary 3.2 below. The difference between (1.4) and (1.5) is that one takes into
account every real quadratic number in (1.5), while the approximants in (1.4) all belong to
the same number field. By means of (1.5), Davison [14], Queffélec [23] and other authors
[15, 7] established the transcendence of several families of continued fractions with bounded
partial quotients. In particular, the real number whose sequence of partial quotients is the
Thue–Morse sequence or any Sturmian or quasi–Sturmian sequence is transcendental [23,
7].

The next step, initiated in [1], has been the use of the Schmidt Subspace Theorem, in-
stead of its corollary (1.5), to get several combinatorial transcendence criteria for continued
fraction expansions [1, 3, 4, 5]. Recently in [10], we have shown how a slight modification
of their proofs allows us to considerably improve two of these criteria. In the present sur-
vey, we focus on the new combinatorial transcendence criterion for stammering continued
fractions established in [10] and explain the two main ingredients of its proof. We also
point out some of its applications, including that to the Cobham–Loxton–van der Poorten
conjecture for automatic continued fraction expansions.

2. Recent results

Throughout this note, we identify a sequence a = (a`)`≥1 of positive integers with the
infinite word a1a2 . . . a` . . ., as well denoted by a. This should not cause any confusion.

For n ≥ 1, we denote by p(n,a) the number of distinct blocks of n consecutive letters
occurring in the word a, that is,

p(n,a) := Card{a`+1 . . . a`+n : ` ≥ 0}.

The function n 7→ p(n,a) is called the complexity function of a. A well-known result of
Morse and Hedlund [20, 21] asserts that p(n,a) ≥ n + 1 for n ≥ 1, unless a is ultimately
periodic (in which case there exists a constant C such that p(n,a) ≤ C for n ≥ 1).
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Let α be an irrational real number and write

α = bαc+ [0; a1, a2, . . .].

Let a denote the infinite word a1a2 . . . A natural way to measure the intrinsic complexity
of α is to count the number p(n, α) := p(n,a) of distinct blocks of given length n in the
word a.

Let α be a real algebraic number of degree at least three. A first step towards a proof
that α has unbounded partial quotients would be to get a good lower bound for p(n, α).
Theorem 1.1 of [10], reproduced below, asserts that the complexity function of an algebraic
number of degree at least three cannot increase too slowly.

Theorem 2.1. Let a = (a`)`≥1 be a sequence of positive integers which is not ultimately
periodic. If the real number

α := [0; a1, a2, . . . , a`, . . .]

is algebraic, then

lim
n→+∞

p(n, α)

n
= +∞. (2.1)

Theorem 2.1 improves Theorem 7 from [7] and Theorem 4 from [1], where

lim
n→+∞

p(n, α)− n = +∞

was proved instead of (2.1). This gives a positive answer to Problem 3 of [1].
An infinite sequence a = (a`)`≥1 is an automatic sequence if it can be generated

by a finite automaton, that is, if there exists an integer k ≥ 2 such that a` is a finite-
state function of the representation of ` in base k, for every ` ≥ 1. We refer the reader
to [8] for a more precise definition and examples of automatic sequences. Let b ≥ 2 be
an integer. In 1968, Cobham [12] asked whether a real number whose b-ary expansion
can be generated by a finite automaton is always either rational or transcendental. After
several attempts by Cobham himself and by Loxton and van der Poorten [17], Loxton and
van der Poorten [18] asserted in 1988 that the b-ary expansion of an irrational algebraic
number cannot be generated by a finite automaton. The proof proposed in [18], which
rests on a method introduced by Mahler, contains unfortunately a gap. A positive answer
to Cobham’s question was finally given in [2], by means of the combinatorial transcendence
criterion established in [6]. Since the complexity function of every automatic sequence a
satisfies p(n,a) = O(n) (this was proved by Cobham [13] in 1972), Theorem 2.1 implies
straightforwardly the next result.

Theorem 2.2. The continued fraction expansion of an algebraic number of degree at least
three cannot be generated by a finite automaton.

Before stating our combinatorial transcendence criterion for continued fractions, we
introduce some notation. The length of a word W , that is, the number of letters composing
W , is denoted by |W |. For any positive integer k, we write W k for the word W . . .W
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(k times repeated concatenation of the word W ). More generally, for any positive real
number x, we denote by W x the word W bxcW ′, where W ′ is the prefix of W of length
d(x− bxc)|W |e.

Let a = (a`)`≥1 be a sequence of positive integers. We say that a satisfies Condition
(∗) if a is not ultimately periodic and if there exist w > 1 and two sequences of finite words
(Un)n≥1, (Vn)n≥1 such that:

(i) for every n ≥ 1, the word UnV
w
n is a prefix of the word a;

(ii) the sequence (|Un|/|Vn|)n≥1 is bounded;

(iii) the sequence (|Vn|)n≥1 is increasing.

Equivalently, the word a satisfies Condition (∗) if there exists a positive real number ε
such that, for arbitrarily large integers N , the prefix a1a2 . . . aN of a contains two disjoint
occurrences of a word of length bεNc.

The key tool for the proofs of Theorems 2.1 and 2.2 is the following combinatorial
transcendence criterion.

Theorem 2.3. Let a = (a`)`≥1 be a sequence of positive integers. Let (p`/q`)`≥1 denote
the sequence of convergents to the real number

α := [0; a1, a2, . . . , a`, . . .].

Assume that the sequence (q
1/`
` )`≥1 is bounded. If a satisfies Condition (∗), then α is

transcendental.

Theorem 2.3 was established in [10]. Its proof uses the Schmidt Subspace Theorem; see
Theorem 3.1 below. Consequently, the proofs of Theorems 2.1 and 2.2 rest ultimately on
the Schmidt Subspace Theorem. This is also the case for the similar results on expansions
of irrational algebraic numbers to an integer base; see [2, 6].

A simple combinatorial study (see e.g. [10]) shows that if (2.1) does not hold for
a real number α := [0; a1, a2, . . . , a`, . . .], then the sequence (a`)`≥1 either is ultimately
periodic, or satisfies Condition (∗) above. In the latter case, Theorem 2.3 implies that α
is transcendental. This shows that Theorem 2.1 is a consequence of Theorem 2.3.

3. The Schmidt Subspace Theorem

The proof of Theorem 2.3 rests on the Schmidt Subspace Theorem.

Theorem 3.1 (W. M. Schmidt). Let m ≥ 2 be an integer. Let L1, . . . , Lm be linearly
independent linear forms in x = (x1, . . . , xm) with algebraic coefficients. Let ε be a positive
real number. Then, the set of solutions x = (x1, . . . , xm) in Zm to the inequality

|L1(x) · · ·Lm(x)| ≤ (max{|x1|, . . . , |xm|})−ε

lies in finitely many proper subspaces of Qm.

Proof. See e.g. [25, 26].
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Roth’s theorem (that is, (1.4) with K = Q) is equivalent to the case m = 2 of Theorem
3.1. We point out an immediate consequence of the case m = 3 of Theorem 3.1, which
extends Roth’s theorem to approximation by quadratic numbers.

Corollary 3.2. Let θ be a real algebraic number of degree at least 3. Let ε be a positive
real number. Then, there are only finitely many integer polynomials P (X) of degree at
most 2 such that

|P (θ)| < H(P )−2−ε.

Consequently, there exists a positive constant c(θ, ε) such that

|θ − γ| > c(θ, ε)H(γ)−3−ε,

for any algebraic number γ of degree at most 2.

Proof. By Theorem 3.1 applied with the three linear forms X2θ
2 +X1θ+X0, X1, X2, the

set of integer triples (x0, x1, x2) satisfying

|x2θ2 + x1θ + x0| · |x1| · |x2| ≤ (max{|x0|, |x1|, |x2|})−ε (3.1)

lies in finitely many proper subspaces of Q3. If x1x2 = 0, then, by Roth’s theorem (that
is, (1.4) for K = Q), there are only finitely many integers y0, y2, z0, z1 such that y2z1 6= 0
and

|y2| · |y2θ2 + y0| < (max{|y0|, |y2|})−ε, |z1| · |z1θ + z0| < (max{|z0|, |z1|})−ε.

Consequently, we can assume that x1 and x2 are both non-zero.
Let a0X0 + a1X1 + a2X2 = 0 denote a proper subspace of Q3, with a0, a1, a2 in Z

and a0 6= 0. If (3.1) and a0x0 + a1x1 + a2x2 = 0 hold for an integer triple (x0, x1, x2) with
x1x2 6= 0, then

|x2θ2 + x1θ + x0| = |x2(θ2 − a2/a0) + x1(θ − a1/a0)|.

By Roth’s theorem, there are only finitely many integer pairs (x1, x2) such that x1x2 6= 0
and

|x2(θ2 − a2/a0) + x1(θ − a1/a0)| · |x1| · |x2| ≤ (max{|x1|, |x2|})−ε

Consequently, the triple (x0, x1, x2) is lying in a finite set, which depends on a0, a1, a2.
This proves the first statement of the corollary.

The second statement follows immediately since there is an absolute constant c such
that, for any integer polynomial P (X), we have

|P (θ)| ≤ cH(P ) · |θ − γ|,

where γ is the root of P (X) which is the closest to θ.

4. Auxiliary results on continued fractions
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Classical references on the theory of continued fractions include [22, 26].
Let α := [0; a1, a2, . . .] be a real irrational number. Set p−1 = q0 = 1 and q−1 = p0 = 0.

For ` ≥ 1, set p`/q` = [0; a1, a2, . . . , a`] and note that

q` = a`q`−1 + q`−2.

The theory of continued fraction implies that

|q`α− p`| < q−1`+1, for ` ≥ 1, (4.1)

and
q`+h ≥ q`(

√
2)h−1, for h, ` ≥ 1. (4.2)

It follows from (4.1) that, if two real irrational numbers α and α′ have the same first `
partial quotients for some integer ` ≥ 1, then

|α− α′| ≤ 2q−2` , (4.3)

where q` denotes the denominator of the `-th convergent to α, and

|α− α′| ≤ 22−`, (4.4)

by (4.2).
In this and the next sections, we use the notation

[0; a1, . . . , ar, ar+1, . . . , ar+s] := [0;U, V ],

where U = a1 . . . ar and V = ar+1 . . . ar+s, to indicate that the block of partial quotients
ar+1, . . . , ar+s is repeated infinitely many times. We also denote by ζ ′ the Galois conjugate
of a quadratic real number ζ. We reproduce below Lemma 6.1 from [11].

Lemma 4.1. Let α be a quadratic real number with ultimately periodic continued fraction
expansion

α = [0; a1, . . . , ar, ar+1, . . . , ar+s],

with r ≥ 3 and s ≥ 1, and denote by α′ its Galois conjugate. Let (p`/q`)`≥1 denote the
sequence of convergents to α. There exists an absolute constant κ such that, if ar 6= ar+s,
then we have

|α− α′| ≤ κ a2r max{ar−2, ar−1} q−2r .

Lemma 4.1 is an easy consequence of the theorem of Galois (see [22], page 83) which
states that the Galois conjugate of

[ar+1; ar+2, . . . , ar+s, ar+1]

is the quadratic number
[0; ar+s, . . . , ar+2, ar+1].

Although we do not use it in the computation (5.9) below, it can be considered as a key
observation for the proof of Theorem 2.3.
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5. Transcendence criterion for stammering continued fractions

In this section, we explain the main ingredients of the proof of Theorem 2.3. Let
a = (a`)`≥1 be a sequence of positive integers. Let w and w′ be non-negative real numbers
with w > 1. We say that a satisfies Condition (∗)w,w′ if a is not ultimately periodic and
if there exist two sequences of finite words (Un)n≥1, (Vn)n≥1 such that:

(i) for every n ≥ 1, the word UnV
w
n is a prefix of the word a;

(ii) the sequence (|Un|/|Vn|)n≥1 is bounded from above by w′;

(iii) the sequence (|Vn|)n≥1 is increasing.

Theorem 5.1. Let a = (a`)`≥1 be a sequence of positive integers. Let (p`/q`)`≥1 denote
the sequence of convergents to the real number

α := [0; a1, a2, . . . , a`, . . .].

Assume that the sequence (q
1/`
` )`≥1 is bounded. If there exist non-negative real numbers

w and w′ with w > 1 such that a satisfies Condition (∗)w,w′ , then α is transcendental.

Theorem 5.1, established in [10], improves Theorem 2 from [1] and Theorem 3.1 from
[5], where the assumption

w > ((2logM/ logm)− 1)w′ + 1 (5.1)

was required, with M = lim sup`→+∞ q
1/`
` and m = lim inf`→+∞ q

1/`
` . Furthermore, it

contains Theorem 3.2 from [3].
The reader is directed to [10] for a complete proof of Theorem 5.1. We content

ourselves to explain how Theorem 3.1 and Corollary 3.2 can be applied to prove the
transcendence of families of stammering continued fractions. We compare the various

results obtained under the assumption that the sequence (q
1/`
` )`≥1 converges, which makes

the comparisons easier.
Assume that the real numbers w and w′ are fixed, as well as the sequences (Un)n≥1

and (Vn)n≥1 occurring in the definition of Condition (∗)w,w′ . Set rn = |Un| and sn = |Vn|,
for n ≥ 1. We assume that the real number α := [0; a1, a2, . . .] is algebraic of degree at
least three. Throughout this section, the numerical constants implied in � are absolute.

We observe that α admits infinitely many good quadratic approximants obtained by
truncating its continued fraction expansion and completing by periodicity. With the above
notation, for n ≥ 1, the real number α is close to the quadratic number

αn = [0;Un, Vn].

Namely, since the first rn+bwsnc partial quotients of α and of αn are the same, we deduce
from (4.3) that

|α− αn| ≤ 2q−2rn+bwsnc. (5.2)
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Furthermore, αn is root of the quadratic polynomial (see e.g. [22])

Pn(X) := (qrn−1qrn+sn − qrnqrn+sn−1)X2

− (qrn−1prn+sn − qrnprn+sn−1 + prn−1qrn+sn − prnqrn+sn−1)X

+ (prn−1prn+sn − prnprn+sn−1),

and we deduce that
H(αn) ≤ H(Pn) ≤ 2qrnqrn+sn .

Consequently,
|α− αn| � H(αn)−2(log qrn+bwsnc)/(log qrnqrn+sn ).

Assuming that (q
1/`
` )`≥1 converges, our assumption that α is algebraic contradicts the last

assertion of Corollary 3.2 when

lim sup
n→+∞

rn + bwsnc
2rn + sn

>
3

2
,

that is, when
w > 2w′ + 3/2. (5.3)

This is the approach followed in [23, 7]. It applies for instance when (a`)`≥1 is the Thue–
Morse sequence

t := 1221211221121221 . . .

on {1, 2} defined as the fixed point beginning by 1 of the morphism τ defined by τ(1) = 12
and τ(2) = 21. Indeed, for each n ≥ 1, the prefix of length 5 · 2n of t is equal to its prefix
of length 3 · 2n raised to the power 5/3. Thus, we can take w = 5/3 and w′ = 0. The fact

that the sequence (q
1/`
` )`≥1 converges in this case has been established in [24].

The main new ingredient in [1] is the use of Theorem 3.1 with m = 4, instead of
Corollary 3.2, which is deduced from Theorem 3.1 with m = 3. Let us now explain to
which system of four linear forms we apply Theorem 3.1. By (4.1), we have

|(qrn−1qrn+sn − qrnqrn+sn−1)α− (qrn−1prn+sn − qrnprn+sn−1)|
≤ qrn−1|qrn+snα− prn+sn |+ qrn |qrn+sn−1α− prn+sn−1|
≤ 2 qrn q

−1
rn+sn

(5.4)

and, likewise,

|(qrn−1qrn+sn − qrnqrn+sn−1)α− (prn−1qrn+sn − prnqrn+sn−1)|
≤ qrn+sn |qrn−1α− prn−1|+ qrn+sn−1|qrnα− prn |
≤ 2 q−1rn qrn+sn .

(5.5)

Furthermore, we have

|Pn(α)| � H(Pn) · |α− αn| � qrn qrn+sn q
−2
rn+bwsnc. (5.6)
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We consider the four linearly independent linear forms

L1(X1, X2, X3, X4) =α2X1 − α(X2 +X3) +X4,

L2(X1, X2, X3, X4) =αX1 −X2,

L3(X1, X2, X3, X4) =αX1 −X3,

L4(X1, X2, X3, X4) =X1.

Instead of treating the coefficient of X in Pn(X) as a single variable, we cut it into two
variables. Evaluating these linear forms on the quadruple

zn := (qrn−1qrn+sn − qrnqrn+sn−1, qrn−1prn+sn − qrnprn+sn−1,
prn−1qrn+sn − prnqrn+sn−1, prn−1prn+sn − prnprn+sn−1),

it follows from (5.4), (5.5) and (5.6) that∏
1≤j≤4

|Lj(zn)| � q2rnq
2
rn+sn q

−2
rn+bwsnc. (5.7)

Again on the assumption that (q
1/`
` )`≥1 converges, we are able to apply Theorem 3.1 (and,

with some additional work, deduce that α is transcendental) only when

lim sup
n→+∞

rn + wsn
2rn + sn

> 1,

that is, when
w > w′ + 1. (5.8)

This is precisely the inequality (5.1) with m = M .
The novelty in [10] is the observation that the estimate (5.6) can be considerably

improved when rn is large. Namely, using (5.2), (5.4), and (5.5), we get

|Pn(α)| = |Pn(α)− Pn(αn)|
= |(qrn−1qrn+sn − qrnqrn+sn−1)(α− αn)(α+ αn)

− (qrn−1prn+sn − qrnprn+sn−1 + prn−1qrn+sn − prnqrn+sn−1)(α− αn)|
= |α− αn| · |(qrn−1qrn+sn − qrnqrn+sn−1)α− (qrn−1prn+sn − qrnprn+sn−1)

+ (qrn−1qrn+sn − qrnqrn+sn−1)α− (prn−1qrn+sn − prnqrn+sn−1)

+ (qrn−1qrn+sn − qrnqrn+sn−1)(αn − α)|
� |α− αn| ·

(
qrn q

−1
rn+sn + q−1rn qrn+sn + qrnqrn+sn |α− αn|

)
� |α− αn|q−1rn qrn+sn

� q−1rn qrn+sn q
−2
rn+bwsnc.

(5.9)

Compared to the estimate (5.6), which was used in [1], we gain a factor q−2rn . As we will
see below, this allows us eventually to replace the assumption (5.8) by (5.11) below. The
improvement can be explained by Lemma 4.1. Indeed, since

|Pn(α)| ≤ H(Pn) · |α− αn| · |α− α′n|,
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where α′n denotes the Galois conjugate of αn, we get an improvement on (5.6) when α′n
is close to α, that is, when α′n is close to αn. And Lemma 4.1 precisely asserts that this
situation holds when rn is large.

Using (5.9) we can slightly improve (5.3) by applying the first statement of Corollary
3.2 instead of the second one. Indeed, we can conclude that α is transcendental when there
exist ε > 0 and arbitrarily large integers n such that

q−1rn qrn+sn q
−2
rn+bwsnc q

2
rn q

2
rn+sn < (qrnqrn+sn)−ε.

If (q
1/`
` )`≥1 converges, this shows that the assumption

w > w′ + 3/2, (5.10)

is enough to deduce that α is transcendental.
By combining the use of Theorem 3.1 with m = 4 and (5.9), we are able to improve

(5.8) in the same way as (5.10) improves (5.3). Namely, we have∏
1≤j≤4

|Lj(zn)| � q2rn+sn q
−2
rn+bwsnc

� 2−(w−1)sn

� (qrnqrn+sn)−δ(w−1)sn/(2rn+sn),

if n is sufficiently large, where we have set

δ =
log 2

1 + lim sup`→+∞ q
1/`
`

.

Thus, with ε = δ(w − 1)/(2w′ + 2), which is positive when

w > 1, (5.11)

we see that ∏
1≤j≤4

|Lj(zn)| � (qrn qrn+sn)−ε

holds for any sufficiently large integer n.
We can then apply Theorem 3.1 to prove that α is transcendental. The details are

given in [10].

6. Two open questions

We conclude this survey by two open questions.
Let (a`)`≥1 be the sequence defined by a` = 2 if ` is a perfect square, and a` = 1

otherwise. Is the real number

[0; a1, a2, . . .] = [0; 2, 1, 1, 2, 1, 1, . . .]
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transcendental? Theorem 2.3 cannot be applied in this case since the sequence of squares
grows too slowly.

Theorem 2.2 asserts that automatic continued fractions are transcendental or quadra-
tic. Conjecturally, the same holds for morphic continued fractions (see [8] for a precise
definition). Since there exist morphic words a = (a`)`≥1 whose complexity function n 7→
p(n,a) grows as fast as a constant times n2, Theorem 2.3 is not strong enough to give a
positive answer to this conjecture.
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[23] M. Queffélec, Transcendance des fractions continues de Thue–Morse, J. Number
Theory 73 (1998), 201–211.
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