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Abstract. We introduce and study a new complexity function in combina-

torics on words, which takes into account the smallest second occurrence time

of a factor of an infinite word. We characterize the eventually periodic words

and the Sturmian words by means of this function. Then, we establish a new

result on repetitions in Sturmian words and show that it is best possible. Let

b ≥ 2 be an integer. We deduce a lower bound for the irrationality exponent

of real numbers whose sequence of b-ary digits is a Sturmian sequence over

{0, 1, . . . , b − 1} and we prove that this lower bound is best possible. As an

application, we derive some information on the b-ary expansion of log(1 + 1
a

),

for any integer a ≥ 34.

1. Introduction

Let A be a finite set called an alphabet and denote by |A| its cardinality. A word

over A is a finite or infinite sequence of elements of A. For a (finite or infinite)

word x = x1x2 . . . written over A, let n 7→ p(n,x) denote its subword complexity

function which counts the number of different subwords of length n occurring in x,

that is,

p(n,x) = #{xkxk+1 . . . xk+n−1 : k ≥ 1}, n ≥ 1.

Clearly, we have

1 ≤ p(n,x) ≤ |A|n, n ≥ 1.

A celebrated theorem by Morse and Hedlund [36] characterizes the eventually pe-

riodic words by means of the subword complexity function.

Theorem 1.1. Let x = x1x2 . . . be an infinite word. The following statements are

equivalent:
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(i) x is eventually periodic;

(ii) There exists a positive integer n with p(n,x) ≤ n;

(iii) There exists M such that p(n,x) ≤M for n ≥ 1.

Therefore, the least possible subword complexity for a non eventually periodic

infinite word x is given by p(n,x) = n+ 1 for every n ≥ 1.

Definition 1.2. A Sturmian word is an infinite word x such that p(n,x) = n+ 1

for every n ≥ 1.

There are uncountably many Sturmian words. There are several ways for de-

scribing them, one of them is given at the beginning of Section 3.

In the present paper, we introduce and study a new complexity function, which

takes into account the smallest second occurrence time of a factor of x. For an

infinite word x = x1x2 . . . set

r(n,x) = min{m ≥ 1 : xi+n−1i = xmm−n+1 for some i with 1 ≤ i ≤ m− n}.

Here and below, for integers i, j with i ≤ j, we write xji for the factor xixi+1 . . . xj

of x.

Said differently, r(n,x) denotes the length of the smallest prefix of x containing

two (possibly overlapping) occurrences of some word of length n.

One of the purposes of the present work is to characterize the eventually periodic

words and the Sturmian words by means of the function n 7→ r(n,x). This is the

object of Theorems 2.3 and 2.4.

In Section 3, by means of a precise combinatorial study of Sturmian words, we

establish that every Sturmian word s satisfies

(1.1) lim inf
n→+∞

r(n, s)

n
≤
√

10− 3

2
.

A similar result also follows from Theorem 2.1 of [22], but with
√

10 − 3
2 replaced

by a larger value strictly less than 2. We prove that the inequality (1.1) is best

possible by constructing explicitly a Sturmian word s for which we have equality

in (1.1).

By Sturmian number, we mean a real number for which there exists an integer

base b ≥ 2 such that its b-ary expansion is a Sturmian sequence over {0, 1, . . . , b−1}.

We show in Section 4 how it easily follows from (1.1) that the irrationality exponent
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of any Sturmian number is at least equal to 5
3 + 4

√
10

15 . We establish that this lower

bound is best possible and, more generally, that the irrationality exponent of any

Sturmian number can be read on its b-ary expansion (which means that infinitely

many of its very good rational approximants can be constructed by cutting its b-ary

expansion and completing by periodicity; see below Theorem 4.3).

Combined with earlier results of Alladi and Robinson [7], our result implies that,

for any integer b ≥ 2, the tail of the b-ary expansion of log(1 + 1
a ), viewed as an

infinite word over {0, 1, . . . , b − 1}, cannot be a Sturmian word when a ≥ 34 is an

integer.

The present paper illustrates the fruitful interplay between combinatorics on

words and Diophantine approximation, which has already led recently to several

progresses. It is organized as follows. Our new results are stated in Sections 2 to

4 and proved in Sections 5 to 8. We consider in Section 9 a recurrence function

studied by Cassaigne in [24]. The link between the function n 7→ r(n,x) and other

combinatorial exponents is discussed in Section 10.

2. A new characterization of periodic and Sturmian words

We begin this section by stating some immediate properties of the function

n 7→ r(n,x).

Lemma 2.1. For an arbitrary infinite word x written over a finite alphabet A, we

have:

(i) n+ 1 ≤ r(n,x) ≤ |A|n + n, (n ≥ 1).

(ii) There exists a unique integer j such that xj+n−1j = x
r(n,x)
r(n,x)−n+1 and 1 ≤ j ≤

r(n,x)− n.

(iii) r(n+ 1,x) ≥ r(n,x) + 1, (n ≥ 1).

Let b ≥ 2 and n ≥ 1 be integers. A de Bruijn word of order n over an alphabet

of cardinality b is a word of length bn + n − 1 in which every block of length n

occurs exactly once. Every de Bruijn word of order n over an alphabet with at

least three letters can be extended to a de Bruijn word of order n + 1 (see e.g.

[26, 31, 13]). When |A| ≥ 3, this establishes the existence of infinite words x

satisfying r(n,x) = |A|n + n, for every n ≥ 1. Thus, we can have equality in the

right hand side of (i) for every n ≥ 1.
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The lemma below shows that r(n,x) is bounded from above in terms of the

subword complexity function of x.

Lemma 2.2. For any infinite word x, we have

r(n,x) ≤ p(n,x) + n, n ≥ 1.

Proof. By the definition of r(n,x), all the r(n,x)− 1− (n− 1) factors of length n

of x
r(n,x)−1
1 are distinct. Since x

r(n,x)
r(n,x)−n+1 is a factor of x

r(n,x)−1
1 , we have

p(n,x) ≥ p(n, xr(n,x)−11 ) = p(n, x
r(n,x)
1 ) = r(n,x)− n. �

We stress that there is no analogue upper bound for the subword complexity

function of x in terms of r(n,x). Indeed, any infinite word x = x1x2 . . . over a

finite alphabet A and such that

x1 . . . x2j = x2j+1+2j+1 . . . x2j+2 , for j ≥ 1,

satisfies r(2j ,x) ≤ 2j+2 for j ≥ 1, thus r(n,x) ≤ 8n for every n ≥ 1. However, by

a suitable choice of x2j+1, . . . , x2j+1+2j , we can guarantee that p(n,x) = |A|n for

every n ≥ 1.

Our first result is a characterization of eventually periodic words by means of

the function n 7→ r(n,x). It is the analogue of Theorem 1.1.

Theorem 2.3. Let x = x1x2 . . . be an infinite word. The following statements are

equivalent:

(i) x is eventually periodic;

(ii) r(n,x) ≤ 2n for all sufficiently large integers n;

(iii) There exists M such that r(n,x)− n ≤M for n ≥ 1.

Our second result is a characterization of Sturmian words by means of the func-

tion n 7→ r(n,x).

Theorem 2.4. Let x = x1x2 . . . be an infinite word. The following statements are

equivalent:

(i) x is a Sturmian word;

(ii) x satisfies r(n,x) ≤ 2n+ 1 for n ≥ 1, with equality for infinitely many n.
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It is possible to precisely describe the sequence (r(n,x))n≥1 for some classical

infinite words x, including the Fibonacci word and the Thue-Morse word. The

proofs of the next results can be obtained by induction.

Let f denote the Fibonacci word f = 01001010 . . . over {0, 1} and (Fn)n≥0 the

Fibonacci sequence given by F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn for n ≥ 0.

The Fibonacci word is a Sturmian word and it satisfies r(m, f) = Fn + m for

Fn − 2 < m ≤ Fn+1 − 2 and n ≥ 3.

Let t = 01101001 . . . denote the Thue–Morse word over {0, 1}. Then, we have

r(1, t) = 3 and r(2n −m, t) = 5 · 2n−1 −m, if 0 ≤ m < 2n−1 and n ≥ 1.

There are several ways to measure the complexity of an infinite word x, beside

the functions n 7→ p(n,x) and n 7→ r(n,x) already mentioned; see, for instance,

[32]. One can also consider the return time function n 7→ R(n,x), which indicates

the first return time of the prefix of length n of x. The characterization of Sturmian

words by means of the function n 7→ R(n,x) is studied in [33]. The main drawback

is that R(·,x) is defined only when x is a recurrent word. Indeed, if x is an infinite

word over a finite alphabet and a is a letter, then the fact that R(n,x) is well

defined does not imply that R(n, ax) is also defined; however, we always have

r(n− 1,x) + 1 ≤ r(n, ax) ≤ r(n,x) + 1.

3. Combinatorial study of Sturmian and quasi-Sturmian words

We begin by a classical result on Sturmian words.

Theorem 3.1. Let θ and ρ be real numbers with 0 < θ < 1 and θ irrational. For

n ≥ 1, set

sn :=
⌊
(n+ 1)θ + ρ

⌋
−
⌊
nθ + ρ

⌋
, s′n :=

⌈
(n+ 1)θ + ρ

⌉
−
⌈
nθ + ρ

⌉
,

and define the infinite words

sθ,ρ := s1s2s3 . . . , s′θ,ρ := s′1s
′
2s
′
3 . . .

Then we have

p(n, sθ,ρ) = p(n, s′θ,ρ) = n+ 1, for n ≥ 1.

The infinite words sθ,ρ and s′θ,ρ are called the Sturmian words with slope θ and

intercept ρ. Conversely, for every infinite word x on {0, 1} such that p(n,x) = n+1
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for n ≥ 1, there exist real numbers θx and ρx with 0 < θx < 1 and θx irrational,

such that x = sθx,ρx or s′θx,ρx .

For θ and ρ as in Theorem 3.1 the words sθ,ρ and s′θ,ρ differ only by at most

two letters. Classical references on Sturmian words include [30, Chapter 6], [35,

Chapter 2], and [9, Chapter 9].

The function n 7→ r(n,x) motivates the introduction of the exponent of repetition

of an infinite word. Although the term ‘repetition’ usually refers to consecutive

copies of the same word, we have decided to use it in our context, where we allow

overlaps.

Definition 3.2. The exponent of repetition of an infinite word x, denoted by

rep(x), is defined by

rep(x) = lim inf
n→+∞

r(n,x)

n
.

A combinatorial study of Sturmian words whose slope has an unbounded se-

quence of partial quotients in its continued fraction expansion has been made in

Section 11 of [4].

Theorem 3.3. Let s be a Sturmian word. If its slope has an unbounded sequence

of partial quotients in its continued fraction expansion, then rep(s) = 1.

Theorem 3.3 follows from the proof of [4, Proposition 11.1]. For the sake of

completeness, we provide an alternative (in our opinion, simpler) proof in Section 7.

A result of Berthé, Holton, and Zamboni [14] on the initial critical exponent (see

Definition 10.1 below) of Sturmian words implies straightforwardly that, for every

Sturmian word s, there exists a positive real number δ(s) such that

rep(s) ≤ 2− δ(s).

However, the infimum of δ(s) taken over all the Sturmian words s is equal to 0. The

purpose of the next result is to show that the exponents of repetition of Sturmian

words are uniformly bounded from above by some constant strictly less than 2.

Theorem 3.4. Every Sturmian word s satisfies

rep(s) ≤
√

10− 3

2
= 1.6622776 . . . .
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Moreover, if a Sturmian word s′ satisfies

(3.1) rep(s′) =
√

10− 3

2
,

then the continued fraction expansion of the slope of s′ is eventually periodic and

of the form [0; a1, a2, . . . , aK , 2, 1, 1] for some integer K.

It was tempting to conjecture that the upper bound
√

10 − 3
2 in Theorem 3.4

could be replaced by the Golden Ratio ϕ := 1+
√
5

2 (note that the Fibonacci word

f satisfies rep(f) = ϕ). However, we establish in Section 7 that Theorem 3.4 is

best possible, by giving an explicit example of a Sturmian word whose exponent

of repetition is equal to
√

10 − 3
2 . For example, the Sturmian word s′ of slope

√
10−2
3 = [0; 2, 1, 1] and intercept 1

3 satisfies (3.1). A same kind of example has

been already studied by Cassaigne [24]. We discuss Cassaigne’s recurrence function

n 7→ R′(n) in Section 9.

A more precise result is proved in Section 7. Namely, we establish a necessary

and sufficient condition on a Sturmian word s′ ensuring that rep(s′) =
√

10− 3
2 and

give examples of such s′. We also remark that
√

10− 3
2 is an isolated point of the

set of real numbers rep(s), where s runs over the Sturmian words.

Actually the conclusion of Theorem 3.4 remains true for a slightly larger class

of words.

Definition 3.5. A quasi-Sturmian word x is an infinite word which satisfies

p(n,x) = n+ k, for n ≥ n0.

A structure theorem of Cassaigne [25] allows us to deduce the next theorem from

Theorem 3.4.

Theorem 3.6. Every quasi-Sturmian word s satisfies rep(s) ≤
√

10− 3
2 .

It can be deduced from Theorem 2.1 of [22] that every Sturmian or quasi-

Sturmian word s satisfies rep(s) ≤ 1.83929 . . . . The proof of Theorems 3.4 and

3.6 follows a completely different approach and yields a significant improvement.

We explain in the next section how Theorem 3.6 allows us to get new results on

the b-ary expansion of real numbers whose irrationality exponent is slightly larger

than 2.



8 YANN BUGEAUD AND DONG HAN KIM

4. Rational approximation of quasi-Sturmian numbers and

applications

Ferenczi and Mauduit [28] studied the combinatorial properties of Sturmian

words s and showed that, for some positive real number ε depending only on s,

they contain infinitely many (2 + ε)-powers of blocks (that is, a block followed by

itself and by its beginning of relative length at least ε) occurring not too far from

the beginning. Then, by applying a theorem of Ridout [38] from transcendence

theory, they deduce that, for any integer b ≥ 2, the tail of the b-ary expansion

of an irrational algebraic number, viewed as an infinite word over the alphabet

{0, 1, . . . , b− 1}, cannot be a Sturmian word; see also [8].

Subsequently, Berthé, Holton and Zamboni [14] established that any Sturmian

word s, whose slope has a bounded continued fraction expansion, has infinitely

many prefixes which are (2 + ε)-powers of blocks, for some positive real number ε

depending only on s. This gives non-trivial information on the rational approxima-

tion to real numbers whose expansion in some integer base is a Sturmian word.

Definition 4.1. The irrationality exponent µ(ξ) of a real number ξ is the supremum

of the real numbers µ such that the inequality∣∣∣∣ξ − p

q

∣∣∣∣ < 1

qµ

has infinitely many solutions in rational numbers p
q . If µ(ξ) is infinite, then ξ is

called a Liouville number.

Recall that the irrationality exponent of an irrational number ξ is always at least

equal to 2, with equality for almost all ξ, in the sense of the Lebesgue measure.

As observed in [1] (see also Section 8.5 of [17]), it follows from the results of

[14] and [4] that, for any integer b ≥ 2 and for any quasi-Sturmian word s over

{0, 1, . . . , b− 1}, there exists a positive real number η(s) such that the irrationality

exponent of any real number whose b-ary expansion coincides with s is at least

equal to 2 + η(s).

The reason for this is that, for an integer b ≥ 2, there is a close connection

between the exponent of repetition of an infinite word x written over {0, 1, . . . , b−1}

and the irrationality exponent of the real number whose b-ary expansion is given

by x.
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Theorem 4.2. Let b ≥ 2 be an integer and x = x1x2 . . . an infinite word over

{0, 1, . . . , b− 1}, which is not eventually periodic. Then, the irrationality exponent

of the irrational number ξx,b :=
∑
k≥1

xk

bk
satisfies

(4.1) µ(ξx,b) ≥
rep(x)

rep(x)− 1
,

where the right hand side is infinite if rep(x) = 1.

It immediately follows from Theorems 3.3 and 4.2 that any Sturmian number

constructed from a Sturmian sequence whose slope has unbounded partial quotients

is a Liouville number. This result was first established by Komatsu [34].

As mentioned in Section 3 for the related quantity δ(s), the infimum of η(s) over

all Sturmian words s is equal to 0 and one cannot deduce a non-trivial lower bound

for the irrationality exponents of Sturmian numbers. We improve this as follows.

Theorem 4.3. Let b ≥ 2 be an integer. Let s = s1s2 . . . be a Sturmian or a

quasi-Sturmian word over {0, 1, . . . , b− 1}. Then,

µ
(∑
j≥1

sj
bj

)
≥ 5

3
+

4
√

10

15
= 2.5099 . . . ,

with equality when s is the Sturmian word s′ defined in Theorem 3.4.

The first statement of Theorem 4.3 is an immediate consequence of Theorem 4.2

combined with Theorem 3.6. Its second statement directly follows from Theorem 4.5

below.

If there is equality in (4.1), we say that the irrationality exponent of ξx,b can be

read on its b-ary expansion. This is equivalent to say that, for every ε > 0, there

exist positive integers r, s, with r + s being arbitrarily large, such that∣∣∣ξx,b − pr,s
br(bs − 1)

∣∣∣ ≤ 1

b(r+s)(µ(ξx,b)−ε)
,

where pr,s is the nearest integer to br(bs−1)ξx,b. Or, if one prefers, this is equivalent

to say that, among the very good approximants to ξx,b, infinitely many of them can

be constructed by cutting its b-ary expansion and completing by periodicity (this

does not mean, however, that infinitely many convergents to ξx,b have a denomina-

tor of the form br(bs − 1)). Using the Diophantine exponent v′b introduced in [10]

(see also Section 7.1 of [17]), to say that the irrationality exponent of ξx,b can be

read on its b-ary expansion. simply means that v′b(ξx,b) = µ(ξx,b).
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Let b ≥ 2 be an integer. A covering argument shows that, for any positive real

number ε, the set of real numbers ξ such that there are infinitely many integer

triples (r, s, pr,s) with r ≥ 0, s ≥ 0 and∣∣∣ξ − pr,s
br(bs − 1)

∣∣∣ ≤ 1

b(r+s)(1+ε)
,

has Lebesgue measure zero. Consequently, the b-ary expansion xξ,b of almost every

real number ξ satisfies rep(xξ,b) = +∞, thus the right-hand side of inequality (4.1)

is equal to 1 almost always. This shows that, since the irrationality exponent of an

irrational number is always at least equal to 2, it can only very rarely be read on its

b-ary expansion. There are only few known examples for which this is the case; see

[16, 23] and the following result of Adams and Davison [6] (additional references

and a more detailed statement are given in Section 7.6 of [17]).

Theorem 4.4. Let b ≥ 2 be an integer and α = [a1; a2, a3 . . .] an irrational number

greater than 1. The irrationality exponent of the real number

ξα,b =

+∞∑
j=1

1

bbjαc

is given by

µ(ξα,b) = 1 + lim sup
n→+∞

[an; an−1, . . . , a1].

Theorem 4.4 gives us the irrationality exponent of any real number whose ex-

pansion in some integer base is a characteristic Sturmian word (that is, a Sturmian

word whose intercept is 0). It shows that equality holds in (4.1) when x is a char-

acteristic Sturmian word. We extend this result in Section 8 by proving that the

inequality in Theorem 4.2 is an equality for any Sturmian word x and any integer

base b ≥ 2.

Theorem 4.5. Let b ≥ 2 be an integer and x = x1x2 . . . a Sturmian word. Then,

the irrationality exponent of the irrational number
∑
k≥1

xk

bk
satisfies

µ
(∑
k≥1

xk
bk

)
=

rep(x)

rep(x)− 1
,

where the right hand side is infinite if rep(x) = 1.

The proof of Theorem 4.5 rests on the theory of continued fractions combined

with properties of the function n 7→ r(n,x) and of Sturmian words. Furthermore,
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a result obtained in the course of this proof implies that, given b and b′ multiplica-

tively independent integers, an irrational real number cannot have simultaneously

a Sturmian b-ary expansion and a Sturmian b′-ary expansion. This gives a partial

answer to Problem 3 of [18]. We will return to this question in a subsequent work.

We display below a statement equivalent to Theorem 4.3, but we need first to

introduce some notation. Let b denote an integer at least equal to 2. Any real

number ξ has a unique b-ary expansion, that is, it can be uniquely written as

ξ = bξc+
∑
`≥1

a`
b`

= bξc+ 0 . a1a2 . . . ,

where b·c denotes the integer part function, the digits a1, a2, . . . are integers from the

set {0, 1, . . . , b−1} and a` differs from b−1 for infinitely many indices `. A natural

way to measure the complexity of ξ is to count the number of distinct blocks of

given length in the infinite word a = a1a2a3 . . . For n ≥ 1, we set p(n, ξ, b) = p(n,a)

with a as above. Clearly, we have

p(n, ξ, b) = #{a`+1a`+2 . . . a`+n : ` ≥ 0}.

Theorem 4.6. Every irrational real number ξ with µ(ξ) < 5
3 + 4

15

√
10 satisfies

lim
n→+∞

(
p(n, ξ, b)− n

)
= +∞,

for every integer b ≥ 2. Furthermore, for every integer b ≥ 2, there exists an

irrational real number ξb with µ(ξb) = 5
3 + 4

15

√
10 and p(n, ξb, b) = n+ 1 for n ≥ 1.

The conclusion of the first assertion of Theorem 4.6 was proved to be true for

every irrational algebraic number ξ in [28], for every real number ξ whose irrational-

ity exponent is equal to 2 in [1] (see also Section 8.5 of [17]; note that, by Roth’s

theorem [39], every irrational algebraic number satisfies µ(ξ) = 2), and for every

irrational real number ξ satisfying µ(ξ) < 2.19149 . . . in [22].

We can deduce from Theorem 4.6 some information on the b-ary expansion of

several classes of real numbers, without knowing exactly their irrationality expo-

nent. Recall that, for example, Alladi and Robinson [7] (who improved earlier

results of A. Baker [12]) and Danilov [27] proved that, for any positive integer s,

the irrationality exponents of log(1 + s
t ) and

√
t2 − s2 arcsin s

t are bounded from

above by functions of t which tend to 2 as the integer t tends to infinity. The
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next statement then follows at once from Corollary 1 of [7], which implies that the

irrationality exponent of log(1 + 1
a ) is less than 5

3 + 4
15

√
10 for every integer a ≥ 34.

Corollary 4.7. For every integer b ≥ 2 and every integer a ≥ 34, we have

lim
n→+∞

(
p
(
n, log

(
1 +

1

a

)
, b
)
− n

)
= +∞,

For much larger values of a, a stronger result than the above corollary has been

established in [22]. Namely, for any positive real number ε, there exists an integer

a0 such that, for every integer b ≥ 2 and every integer a ≥ a0, we have

lim inf
n→+∞

p
(
n, log

(
1 + 1

a

)
, b
)

n
≥ 9

8
− ε.

The approach followed in [22] gives a non-trivial result only when the integer a

exceeds 23347.

5. Auxiliary combinatorial lemmas

The proofs of Theorems 2.3 and 2.4 rest on a series of combinatorial lemmas.

For a word U = u1 . . . un composed of n letters, denote by |U | = n its length

and set

Λ(U) = {1 ≤ k < n : ui = ui+k for all 1 ≤ i ≤ n− k}.

An element of Λ(U) is called a period of U . We stress that a period of a word of

length n may not be a divisor of n. A finite word U is called primitive if there is

no non-empty word V such that U = V n for some integer n ≥ 2.

Lemma 5.1 (Fine and Wilf Theorem [29]). Let U = u1 . . . un and h, k be in Λ(U).

If n ≥ h+ k − gcd(h, k), then U is periodic of period gcd(h, k).

Lemma 5.2. Let U = u1 . . . un be a finite word and λ in Λ(U). Then unn−λ+2a

with a 6= un−λ+1 is not a factor of U .

Proof. Since λ is in Λ(U), all the factors of length λ in U have the same number of

a’s. Since un−λ+1 6= a, the number of a’s in unn−λ+1 is one less than in unn−λ+2a,

thus the latter cannot be a factor of U . �

Lemma 5.3. Let x be an infinite word and n an integer with r(n,x) ≥ r(n−1,x)+

2. Then r(n,x) ≥ 2n+ 1.
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Proof. To shorten the notation, we simply write r(·) for r(·,x). Suppose that

r(n) ≥ r(n− 1) + 2 but r(n) ≤ 2n.

Let s, ` be the nonnegative integers satisfying

(5.1) xs+n−1s+1 = x
r(n−1)
r(n−1)−n+2, x

r(n)
r(n)−n+1 = x

r(n)−`
r(n)−n+1−`

with

(5.2) 0 ≤ s ≤ r(n− 1)− n, 1 ≤ ` ≤ r(n)− n ≤ n.

Then, we have

(5.3) xs+n 6= xr(n−1)+1,

for otherwise r(n) = r(n− 1) + 1.

Since

r(n− 1)− n− s+ 1 ∈ Λ
(
x
r(n−1)
s+1

)
,

by Lemma 5.2 and (5.3), the word x
r(n−1)+1
n+s+1 is not a factor of x

r(n−1)
s+1 .

Our assumption implies n+s+1 ≥ r(n)−n+1 and r(n−1)+1 ≤ r(n), thus by

(5.1), we have x
r(n−1)+1
n+s+1 = x

r(n−1)+1−`
n+s+1−` , which is not a factor of x

r(n−1)
s+1 . Therefore,

we have n+ s+ 1− ` < s+ 1, i.e., n < `, a contradiction to (5.2). �

Lemma 5.4. Let x be an infinite word and n an integer such that r(n + 1,x) =

r(n,x) + 1. Let j be the integer satisfying 1 ≤ j < r(n,x) − n + 1 and xj+n−1j =

x
r(n,x)
r(n,x)−n+1. Then, xj+n = xr(n,x)+1.

Proof. By assumption, there exists a unique integer h satisfying 1 ≤ h < r(n +

1,x) − n and xh+nh = x
r(n+1,x)
r(n+1,x)−n. In particular, we have xh+n−1h = x

r(n+1,x)−1
r(n+1,x)−n,

thus h = j and xj+n = xr(n,x)+1. �

Lemma 5.5. Let x be an infinite word satisfying r(i,x) ≤ 2i+ 1 for all i ≥ 1. Let

m,n be positive integers such that r(n,x) = 2n + 1 and m ≥ 2n + 1. If k is the

integer defined by r(k − 1,x) < m ≤ r(k,x), then k ≥ n and r(k,x)− k ≤ m− n.

Proof. Write r(·) for r(·,x). Observe that k ≥ n, since r(n − 1) < r(n) ≤ m. If

r(k) = m, then we get r(k)− k = m− k ≤ m− n, as required.
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If r(k− 1) < m < r(k), then r(k) ≥ r(k− 1) + 2 and we deduce from Lemma 5.3

that r(k) = 2k+1. Furthermore, we have k ≥ n+1. Let ` = min{i ≥ 1 : r(k− i) =

2(k − i) + 1}. Since r(n) = 2n+ 1, the integer ` is well-defined and

k ≥ n+ `.

For i = 1, . . . , `− 1, we have r(k− i) ≤ 2(k− i) and it follows from Lemma 5.3 that

r(k − i) = r(k − i− 1) + 1, thus,

r(k − 1)− r(k − `) = `− 1.

Since m ≥ r(k − 1) + 1 = r(k − `) + ` = r(k)− `, we have

r(k)− k ≤ (m+ `)− (n+ `) = m− n,

which completes the proof of the lemma. �

6. Proofs of Theorems 2.3 and 2.4

Proof of Theorem 2.3.

(iii) ⇒ (ii) : Immediate.

(ii) ⇒ (i) : It follows from Lemma 5.3 and Lemma 2.1 (iii) that there exists an

integer n0 such that r(n+ 1,x) = r(n,x) + 1 for every n ≥ n0. By Lemma 5.4, we

deduce that there exists an integer j such that xj+n = xr(n0,x)+n−n0+1, for n ≥ n0.

This shows that x is eventually periodic.

(i) ⇒ (iii) : Let r and s denote the length of the preperiod and that of the

period of x. Then, the infinite word starting at xr+1 is the same as the infinite

word starting at xr+s+1, thus we have r(n,x) ≤ n+ r + s for n ≥ 1.

Proof of Theorem 2.4.

(i) ⇒ (ii) : The inequality is clear by Lemma 2.2 and Theorem 2.3 implies that

there is equality for infinitely many n.

(ii) ⇒ (i) : Let n be an integer such that r(n,x) = 2n + 1. By the proof of

Lemma 2.2 we have p(n, x2n1 ) = n+ 1.

Let m be an integer with m ≥ 2n + 1. Then, by Lemma 5.5, there exists an

integer k such that k ≥ n, m ≤ r(k,x) and r(k,x)−k ≤ m−n. By Lemma 2.1 (ii),
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we get that x
r(k,x)
r(k,x)−k+1 = x

r(k,x)−j
r(k,x)−k+1−j for some integer j with 1 ≤ j ≤ r(k,x)−k.

Therefore, we have xmm−n+1 = xm−jm−n+1−j , which implies that

p(n, xm1 ) = p(n, xm−11 ).

Since this equality holds for every m ≥ 2n + 1 and p(n, x2n1 ) = n + 1, we deduce

that p(n,x) = n + 1. Thus, we have established the existence of arbitrary large

integers n such that p(n,x) = n+ 1. This shows that x is a Sturmian word.

7. Proof of Theorems 3.4 and 3.6

Through this section, we fix an infinite sequence (ak)k≥1 of positive integers. We

define inductively a sequence of words (Mk)k≥0 on the two letter-alphabet {0, 1}

by the formulas

(7.1) M0 = 0, M1 = 0a1−11 and Mk+1 = M
ak+1

k Mk−1 (k ≥ 1).

It is easy to check that the last two letters of Mk are 10 (resp. 01) if k is even (resp.

odd) and |Mk| ≥ 2. This sequence converges to the infinite word

sθ,0 := lim
k→+∞

Mk = 0a1−11 . . . ,

which is usually called the characteristic Sturmian word of slope

θ := [0; a1, a2, a3, . . .]

constructed over the alphabet {0, 1} (See e.g. [35]).

Let x be a Sturmian word of slope θ. We study the combinatorial properties of

x. An admissible word is a factor of x of finite length. Note that the set of factors

of x is the same as that of sθ,0 (see e.g. [35, Proposition 2.1.18]). Let (p`q` )`≥0

denote the sequence of convergents to the slope of x. Then, for k ≥ 0, we have

qk = |Mk| and pk is the number of digits 1 in Mk. It is known that only the last

two letters of Mk+1Mk and MkMk+1 are different (see e.g. [35, Proposition 2.2.2]).

For a non-empty finite word U , we write U− for the word U deprived of its last

letter. For k ≥ 1, set

M̃k = (MkMk−1)−− = (Mk−1Mk)−−

and observe that M̃k is a prefix of Mk+1.
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We will use the property that Mk+1Mk and Mk+1Mk+1Mk are primitive (see

e.g. [35, Proposition 2.2.3]) in conjunction with the following lemma.

Lemma 7.1. Let U be a primitive word. Then all the |U | factors of length |U | − 1

of UU−− are distinct.

Proof. Assume that there are integers i, j with 0 ≤ i < j ≤ |U | − 1 and

(UU−−)
i+|U |−1
i+1 = (UU−−)

j+|U |−1
j+1 .

Then, j − i and |U | are periods of (UU−−)
j+|U |−1
i+1 and

|U |+ (j − i)− gcd(|U |, j − i) ≤ |U |+ j − i− 1.

Thus, we deduce from Lemma 5.1 that (UU−−)
j+|U |−1
i+1 is periodic of period gcd(|U |, j−

i). Since

gcd(|U |, j − i) ≤ j − i ≤ |U | − 1,

this contradicts the fact that U is primitive. �

The next lemma shows that repetitions occur near the beginning of any Sturmian

word of slope θ.

Lemma 7.2. Let x be a Sturmian word of slope θ. Then, for k ≥ 1, there exists a

unique word Wk satisfying

(i) x = WkMkM̃k . . . , where Wk is a non-empty suffix of Mk,

or

(ii) x = WkMk−1MkM̃k . . . , where Wk is a non-empty suffix of Mk,

or

(iii) x = WkMkM̃k . . . , where Wk is a non-empty suffix of Mk−1,

and all the (2qk + qk−1) cases are mutually exclusive.

Furthermore, if x = WkMk−1MkM̃k . . . and Wk is a non-empty suffix of Mk,

then Wk+1 = WkMk−1. Moreover, if x = WkMkM̃k . . . and Wk is a non-empty

suffix of Mk−1, then Wk+1 = Wk.
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Proof. We first claim that, for each k ≥ 1, the word MkMkMk−1MkM̃k is admissi-

ble. This follows from the fact that Mk+3Mk+2 is admissible and

Mk+3 = · · ·Mk+2Mk+1 = · · ·MkMk+1 = · · ·MkMkMk−1,

Mk+2 = Mk+1Mk · · · = MkM̃k · · · .

Since MkMkMk−1 is primitive, Lemma 7.1 implies that any admissible word of

length 2qk + qk−1 − 1 is a factor of MkMkMk−1MkM̃k. These admissible words

are prefixes of WMkM̃k or WMk−1MkM̃k for some non-empty W which is a suffix

of Mk, and prefixes of WMkM̃k for some non-empty W which is a suffix of Mk−1.

Consequently, x = WM−k . . . or WMk−1M
−
k . . . with W which is a suffix of Mk or

x = WM−k . . . with W which is a suffix of or Mk−1 .

Since there are two admissible words of length 2qk + qk−1 − 1 starting with

M−k , namely MkMk−1M
−
k and MkMkM

−
k−1, it follows that if x = UM−k . . . for

some U , then x = UMkM̃k . . . . Hence we conclude that x = WMkM̃k . . . or

WMk−1MkM̃k . . . with W which is a suffix of Mk or x = WMkM̃k . . . with W

which is a suffix of or Mk−1. Putting Wk = W , we see that Wk satisfies one of the

cases (i), (ii), (iii), which are mutually exclusive by Lemma 7.1.

By the first assertion of the lemma, x starts with Wk+1M̃k+1, where Wk+1 is a

non-empty suffix of Mk+1 or Mk. If Wk+1 is a suffix of Mk, then put W ′ = Wk+1,

thus

x = Wk+1M̃k+1 · · · = W ′MkM̃k . . . .

If Wk+1 is a suffix of Mk+1 = M
ak+1

k Mk−1, then Wk+1 = W ′M t
kMk−1 for some

integer t ≥ 0 and a non-empty suffix W ′ of Mk or Wk+1 is a non-empty suffix of

Mk−1. If Wk+1 = W ′M t
kMk−1, with W ′ a suffix of Mk, then

x = Wk+1M̃k+1 · · · =

W
′MkM̃k . . . , if t ≥ 1,

W ′Mk−1MkM̃k . . . , if t = 0.

If Wk+1 is a suffix of Mk−1, then put W ′ = Wk+1, thus

x = Wk+1M̃k+1 · · · = W ′MkM̃k . . . .

By the first assertion of the lemma, we conclude that W ′ = Wk. If x =

W ′Mk−1MkM̃k . . . , then Wk+1 = W ′Mk−1 and if W ′ is a suffix of Mk−1, then

Wk+1 = W ′. �
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We are now in position to establish Theorems 3.3 and 3.4.

Proof of Theorem 3.3.

Let k and t be large integers such that Mk = (Mk−1)tMk−2. Let ` be the integer

part of
√
t. We distinguish two cases. If |Wk| > (`+ 1)|Mk−1|, then

r((`− 1)|Mk−1|,x) ≤ `|Mk−1|

and, otherwise, we check that

r((t− 1)|Mk−1|,x) ≤ |Wk|+ t|Mk−1| ≤ (t+ `+ 1)|Mk−1|.

As k and t can be taken arbitrarily large, we deduce that rep(x) = 1.

Further auxiliary results for the proof of Theorem 3.4.

Lemma 7.3. If x = UV . . . where V is a factor of MkM̃k+1 such that |V | > qk,

then we have

r(|V | − qk,x) ≤ |UV |.

Proof. Let V = v1 . . . vn be a factor of MkM̃k+1 such that |V | = n > qk. Since

MkM̃k+1 = Mk . . .MkM
−−
k−1 and Mk−1 is a prefix of Mk, we get vn−qk1 = vn1+qk .

Thus we have r(n− qk,x) ≤ |UV |. �

We establish two further lemmas on the combinatorial structure of Sturmian

words. For k ≥ 1, we set

ηk :=
qk−1
qk

, tk :=
|Wk|
qk

, εk :=
2

qk
.

Recall that ϕ denotes the Golden Ratio 1+
√
5

2 .

In the rest of the proof of the theorem, we assume that k is large enough to

ensure that qk−2 ≥ 6, thus, εk < ηk, εk <
1
6 and εk <

1−ηk
2 .

Lemma 7.4. (i) If x = WkMkM̃k . . . , where Wk is a suffix of Mk, then r(n,x)
n <

ϕ+ 2εk for some n with qk − 2 ≤ n ≤ |Wk|+ qk + qk−1 − 2.

(ii) If x = WkMkM̃k . . . , where Wk is a suffix of Mk−1, then r(n,x)
n < ϕ + 2εk

for some n with |Wk|+ qk − 2 ≤ n ≤ |Wk|+ qk+1 + qk − 2.
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Proof. (i) Since WkMkM̃k is a factor of MkM̃k+1 = MkMkM
−−
k+1, we have by

Lemma 7.3 r(|WkMkM̃k| − qk,x) ≤ |WkMkM̃k|, which yields that

r(|Wk|+ qk + qk−1 − 2,x)

|Wk|+ qk + qk−1 − 2
≤ |Wk|+ 2qk + qk−1 − 2

|Wk|+ qk + qk−1 − 2

= 1 +
1

tk + 1 + ηk − εk
< 1 +

1

tk + 1 + ηk
+ εk.

(7.2)

Furthermore, x = WkMkM̃k · · · = WkM̃k . . . , thus we have by Lemma 7.3

r(|M̃k| − qk−1,x) ≤ |WkM̃k|, which yields that

(7.3)
r(qk − 2,x)

qk − 2
≤ |Wk|+ qk + qk−1 − 2

qk − 2
= 1 +

tk + ηk
1− εk

< 1 + tk + ηk + 2εk.

Since for every positive real number x we have min(x, 1
1+x ) ≤ 1

ϕ , we derive from

(7.2) and (7.3) that

r(n,x)

n
< ϕ+ 2εk for some n with qk − 2 ≤ n ≤ |Wk|+ qk + qk−1 − 2.

(ii) Since x = WkMkM̃k · · · = WkM̃k . . . and WkM̃k is a factor of Mk−1M̃k, by

Lemma 7.3 we have r(|WkM̃k| − qk−1,x) ≤ |WkM̃k|, which yields that

r(|Wk|+ qk − 2,x)

|Wk|+ qk − 2
≤ |Wk|+ qk + qk−1 − 2

|Wk|+ qk − 2

= 1 +
ηk

tk + 1− εk
< 1 +

ηk
tk + 1

+ εk.

(7.4)

Since Wk is a suffix of Mk−1 which is a suffix of Mk+1, we deduce from Lemma 7.2

that x starts with either Wk+1Mk+1M̃k+1 or Wk+1MkMk+1M̃k+1, where Wk+1 =

Wk. If x = Wk+1Mk+1M̃k+1 . . . , then the proof is completed by (i) since qk+1 ≥

|Wk|+ qk and |Wk+1| = |Wk|. If x = Wk+1MkMk+1M̃k+1 · · · = Wk+1MkM̃k+1 . . . ,

then by Lemma 7.3 we obtain

r(|MkM̃k+1| − qk,x) ≤ |Wk+1MkM̃k+1|,

thus,

r(qk+1 + qk − 2,x)

qk+1 + qk − 2
≤ |Wk+1|+ qk+1 + 2qk − 2

qk+1 + qk − 2
= 1 +

|Wk+1|+ qk
qk+1 + qk − 2

≤ 1 +
|Wk|+ qk

2qk + qk−1 − 2
= 1 +

tk + 1

2 + ηk − εk
< 1 +

tk + 1

2 + ηk
+ εk.

Combined with (7.4), we deduce that there exists an integer n with |Wk|+ qk−2 ≤

n ≤ qk+1 + qk − 2 and

r(n,x)

n
≤ 1 +

√
ηk

2 + ηk
+ εk < 1 +

1√
3

+ εk = 1.57735 . . .+ εk.
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This completes the proof of the lemma. �

Lemma 7.5. Assume that x = WkMk−1MkM̃k . . . , where Wk is a suffix of Mk

and ak ≥ 3. If k is sufficiently large, then, for some integer n with qk
2 − 2 ≤ n ≤

qk + qk−1 − 2, we have

r(n,x)

n
<

√
17 + 9

8
+ 2εk = 1.640 . . .+ 2εk.

Proof. By the assumption ak ≥ 3, we get ηk = qk−1

qk
< 1

3 .

Since x = WkMk−1MkM̃k . . . = WkMk−1M̃k . . . , it follows from Lemma 7.3 that

r(|Mk−1M̃k| − qk−1,x) ≤ |WkMk−1M̃k|, which yields that

r(qk + qk−1 − 2,x)

qk + qk−1 − 2
≤ |Wk|+ qk + 2qk−1 − 2

qk + qk−1 − 2

= 1 +
tk + ηk

1 + ηk − εk
< 1 +

tk + ηk
1 + ηk

+ εk.

(7.5)

We also have that x = WkMk−1M̃k . . . = WkM
−−
k−1 . . . . Assume that |Wk| ≥

qk
2 ≥ 3. Since WkM

−−
k−1 is a suffix of MkM

−−
k−1 = M̃k, by Lemma 7.3, r(|WkM

−−
k−1|−

qk−1,x) ≤ |WkM
−−
k−1|, thus

r(|Wk| − 2,x)

|Wk| − 2
≤ |Wk|+ qk−1 − 2

|Wk| − 2
= 1 +

ηk
tk − εk

= 1 +
ηk
tk

+
ηkεk

tk(tk − εk)

< 1 +
ηk
tk

+
4εk

3(1− 2εk)
< 1 +

ηk
tk

+ 2εk.

(7.6)

By (7.5) and (7.6), we get

min
qk
2 −2≤n≤qk+qk−1−2

r(n,x)

n
<

1 + min
{
tk+ηk
1+ηk

, ηktk

}
+ 2εk, if |Wk| ≥ qk

2 .

1 + 1/2+ηk
1+ηk

+ εk, if |Wk| < qk
2 .

Since min
{
tk+ηk
1+ηk

, ηktk

}
≤ ηk+

√
5η2k+4ηk

2(1+ηk)
, we get

min
qk
2 −2≤n≤qk+qk−1−2

r(n,x)

n
< 1 +

max
{
ηk +

√
5η2k + 4ηk, 1 + 2ηk

}
2(1 + ηk)

+ 2εk.

Thus, using ηk <
1
3 , for some integer n with qk

2 − 2 ≤ n ≤ qk + qk−1 − 2 we have

r(n,x)

n
< 1 +

1
3 +

√
5
9 + 4

3

2(1 + 1
3 )

+ 2εk =

√
17 + 9

8
+ 2εk. �
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Completion of the proof of Theorem 3.4.

Suppose that lim infn→+∞
r(n,x)
n > 1.65. By Lemmas 7.2, 7.4 and 7.5, for all

large k we have ak ∈ {1, 2} and

x = WkMk−1MkM̃k . . . ,

where Wk is a suffix of Mk. Thus, for all large k we have Wk+1 = WkMk−1 from

Lemma 7.2.

We gather two auxiliary statements in a lemma.

Lemma 7.6. Assume that x = WkMk−1MkM̃k . . . , where Wk is suffix of Mk. If

k is sufficiently large, then we have

r(|Wk|+ qk + qk−1 − 2,x)

|Wk|+ qk + qk−1 − 2
< 1 +

1 + ηk
tk + 1 + ηk

+ εk,(i)

r(qk + qk−1 − 2,x)

qk + qk−1 − 2
< 1 +

tk + ηk
1 + ηk

+ εk.(ii)

Proof. Since x
|Wk|+qk+qk−1−2
1 = WkM̃k = x

|Wk|+2qk+2qk−1−2
qk+qk−1+1 , we get

r(|Wk|+ qk + qk−1 − 2,x) ≤ |Wk|+ 2qk + 2qk−1 − 2.

Also by Lemma 7.3, from the fact x = WkMk−1MkM̃k . . . = WkMk−1M̃k . . . we

get

r(qk + qk−1 − 2,x) ≤ |Wk|+ qk + 2qk−1 − 2. �

• If ak = 1 for all large k then ηk tends to 1
ϕ as k tends to infinity and we deduce

from

1− tk+1 = 1− tk + ηk
1 + ηk

=
1− tk
1 + ηk

that limk→+∞ tk = 1. By Lemma 7.6 (i), we then get

r(|Wk|+ qk + qk−1 − 2,x)

|Wk|+ qk + qk−1 − 2
< 1 +

1 + ηk
tk + 1 + ηk

+ εk,

where the right hand side tends to 1 + 1+1/ϕ
2+1/ϕ = ϕ as k tends to infinity.

Consequently, there are arbitrarily large integers k such that ak = 2.

• If ak+1 = 2, ak+2 = 2, then qk+2 = 5qk + 2qk−1, qk+1 = 2qk + qk−1, thus

ηk+2 =
2qk + qk−1
5qk + 2qk−1

=
2 + ηk
5 + 2ηk

,
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tk+2 =
|WkMk−1Mk|

qk+2
=
|Wk|+ qk + qk−1

5qk + 2qk−1
=
tk + 1 + ηk

5 + 2ηk
.

By Lemma 7.6 (ii), we get

r(qk+2 + qk+1 − 2,x)

qk+2 + qk+1 − 2
< 1 +

tk+2 + ηk+2

1 + ηk+2
+ εk = 1 +

tk + 3 + 2ηk
7 + 3ηk

+ εk < ϕ.

• If ak = 1, ak+1 = 2, ak+2 = 1, ak+3 = 2, then we have

qk+3 = 11qk−1 + 8qk−2, qk+2 = 4qk−1 + 3qk−2,

thus

ηk+3 =
4qk−1 + 3qk−2
11qk−1 + 8qk−2

=
4 + 3ηk−1
11 + 8ηk−1

,

tk+3 =
|Wk−1|+ qk−2 + qk−1 + qk + qk+1

qk+3
=
tk−1 + 5 + 4ηk−1

11 + 8ηk−1
.

By Lemma 7.6 (i) we may assume that

1 + ηk−1
tk−1 + 1 + ηk−1

> ϕ− 1, that is, tk−1 < (ϕ− 1)(1 + ηk−1).

Using Lemma 7.6 (ii), we get

r(qk+3 + qk+2 − 2,x)

qk+3 + qk+2 − 2
< 1 +

tk+3 + ηk+3

1 + ηk+3
+ εk = 1 +

tk−1 + 9 + 7ηk−1
15 + 11ηk−1

+ εk.

For ηk−1 ≤ ϕ− 1, we obtain

tk−1 + 9 + 7ηk−1
15 + 11ηk−1

≤ ϕ+ 8 + (ϕ+ 6)ηk−1
15 + 11ηk−1

≤ ϕ+ 8 + (ϕ+ 6)(ϕ− 1)

15 + 11(ϕ− 1)

=
7ϕ+ 3

11ϕ+ 4
=

5
√

5 + 69

122
= 0.6572 . . .

For ηk−1 > ϕ− 1, we get

tk−1 + 9 + 7ηk−1
15 + 11ηk−1

≤ 10 + 7ηk−1
15 + 11ηk−1

<
7ϕ+ 3

11ϕ+ 4
=

5
√

5 + 69

122
= 0.6572 . . . <

√
10− 5

2
.

• If ak+1 = 2, ak+2 = 1, ak+3 = 1, ak+4 = 1, then by Lemma 7.6 (ii) we may

assume that

(7.7)
tk+1 + ηk+1

1 + ηk+1
=
|Wk+1|+ qk
qk+1 + qk

=
|Wk|+ qk + qk−1

3qk + qk−1
=
tk + 1 + ηk

3 + ηk
> ϕ− 1.

We have qk+4 = 8qk + 3qk−1, qk+3 = 5qk + 2qk−1, thus

ηk+4 =
5qk + 2qk−1
8qk + 3qk−1

=
5 + 2ηk
8 + 3ηk

,

tk+4 =
|Wk|+ qk−1 + qk + qk+1 + qk+2

qk+4
=
tk + 6 + 3ηk

8 + 3ηk
.
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By Lemma 7.6 (i), we get

r(|Wk+4|+ qk+4 + qk+3 − 2,x)

|Wk+4|+ qk+4 + qk+3 − 2
< 1 +

1 + ηk+4

tk+4 + 1 + ηk+4
+ εk

= 1 +
13 + 5ηk

tk + 19 + 8ηk
+ εk

< 1 +
13 + 5ηk

(ϕ− 1)(3 + ηk) + 18 + 7ηk
+ εk

< 1 +
18

21 + 4ϕ
+ εk

= 1.6552 . . .+ εk <
√

10− 3

2
,

where we used the inequality (7.7).

Suppose that lim infn→+∞
r(n,x)
n ≥

√
10 − 3

2 . We have established that there

exists an integer K such that the slope of x is equal to [0; a1, a2, . . . , aK , 2, 1, 1] and

for all k ≥ K

x = Wk+1MkMk+1M̃k+1 · · · = WkMk−1MkMkM̃k . . . .

We establish now that, under these assumptions, we have

lim inf
n→+∞

r(n,x)

n
=
√

10− 3

2
.

Let k be an integer with k > K. By Lemma 7.6 (i),

r(|W3k+K |+ q3k+K + q3k−1+K − 2,x)

|W3k+K |+ q3k+K + q3k−1+K − 2
< 1 +

1 + η3k+K
t3k+K + 1 + η3k+K

+ ε3k+K .

Since

ηk =
qk−1
qk

= [0; ak, ak−1, . . . , a1]

and

tk =
qk−2 + qk−3 + . . .+ qK−1 + |WK |

qk

= ηkηk−1 + ηkηk−1ηk−2 + . . .+ ηkηk−1 · · · ηK +
|WK |
qk

,

we check that

(7.8) lim
k→+∞

η3k+K =

√
10

2
− 1 and lim

k→+∞
t3k+K =

8−
√

10

6
,

giving that

lim inf
n→+∞

r(n,x)

n
≤
√

10− 3

2
.

Let us now show that this inequality is indeed an equality.
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Since MkMk−1 is primitive, Lemma 7.1 implies that all of the first (qk + qk−1)

factors of length (qk+qk−1−1) of the word x = WkMk−1MkMkM̃k . . . are distinct,

thus we have

r(qk + qk−1 − 1,x) ≥ 2qk + 2qk−1 − 1.

The next |Wk| factors of x of length (qk + qk−1− 1) are identical with its first |Wk|

factors since, for 1 ≤ i ≤ |Wk|, we have

x
i+qk+qk−1−2
i = x

i+2qk+2qk−1−2
i+qk+qk−1

= (Wk)
|Wk|
i (M̃k)

i+qk+qk−1−|Wk|−2
1 .

By the fact that the last two letters of MkMk−1 and Mk−1Mk are different, we get

x|Wk|+qk+qk−1−1 6= x|Wk|+2qk+2qk−1−1.

It follows that, for 1 ≤ i ≤ |Wk|, we have

x
i+|Wk|+qk+qk−1−2
i 6= x

i+|Wk|+2qk+2qk−1−2
i+qk+qk−1

.

Therefore, we get

r(|Wk|+ qk + qk−1 − 1,x) ≥ 2|Wk|+ 2qk + 2qk−1 − 1.

It then follows from Lemma 2.1 (iii) that

r(n,x) ≥

n+ qk + qk−1, qk + qk−1 − 1 ≤ n ≤ |Wk|+ qk + qk−1 − 2,

n+ |Wk|+ qk + qk−1, |Wk|+ qk + qk−1 − 1 ≤ n ≤ qk+1 + qk − 2.

We also check that

lim
k→+∞

η3k+1+K =

√
10− 2

3
, lim

k→+∞
η3k+2+K =

√
10− 1

3
.

lim
k→+∞

t3k+1+K =
8−
√

10

9
, lim

k→+∞
t3k+2+K =

2

3
.

Combined with (7.8) we get

lim inf
k→+∞

|Wk|+ 2qk + 2qk−1 − 2

|Wk|+ qk + qk−1 − 2
= 1 + lim inf

k→+∞

1 + ηk
tk + 1 + ηk

=
√

10− 3

2

and

lim inf
k→+∞

|Wk|+ qk+1 + 2qk + qk−1 − 2

qk+1 + qk − 2
= 1 + lim inf

k→+∞

tk+1 + ηk+1

1 + ηk+1
=

5

3
.

Therefore, we conclude that

rep(x) = lim inf
n→+∞

r(n,x)

n
=
√

10− 3

2
.
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This completes the proof of Theorem 3.4.

We remark that, in the course of the proof of Theorem 3.4, we have established

that if rep(x) <
√

10− 3
2 for a Sturmian word x, then rep(x) ≤ 5

√
5+191
122 = 1.6572 . . ..

Consequently,
√

10− 3
2 is an isolated point of the set of real numbers rep(s), where

s runs over the Sturmian words.

Examples of Sturmian words x such that rep(x) =
√

10− 3
2 .

In the proof of Theorem 3.4 we have established that a Sturmian word s′ satisfies

rep(s′) =
√

10− 3

2

if and only if the continued fraction expansion of the slope of s′ is eventually

periodic and of the form [0; a1, a2, . . . , aK , 2, 1, 1] for some integer K and s′ =

WkMk−1MkM̃k . . . for all sufficiently large k.

Set θ = [0; a1, a2, . . . ] = [0; 2, 1, 1] =
√
10−2
3 . With Mk defined as before, for

k ≥ 2, the word Wk = 1M0M1 . . .Mk−2 is a suffix of Mk. Define

s′ = lim
k→+∞

Wk = lim
k→+∞

(
1M0M1 . . .Mk−2

)
= 100101001001 . . . .

By applying Theorem 1 and Proposition 1 of [11] with en = 1 for n ≥ 1, we see

that the intercept of s′ is equal to

(1− θ)

(
1 +

∞∑
n=0

(−1)n+1θ1 · · · θn+1en+1

)
= 1− θ −

∞∑
k=0

(qkθ − pk) =
1

3
,

where θ1 = [0; a1 − 1, a2, . . . ] and θk = [0; ak, ak+1, . . . ].

The example of Cassaigne [24] for the minimal value of lim supn→+∞
R′(n)
n is

given by the fixed point of the substitution σ defined by

σ(0) = 01001010, σ(1) = 010.

Set

c := lim
k→+∞

σk(0) = 0100101001001001010010010100100100101001001 . . .

The word c is a Sturmian word of slope [0; 2, 1, 2, 1]. Let (Mc
k )k≥0 be the corre-

sponding sequence of words given by (7.1). Then it is easy to check by induction
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that 010σ(Mc
k ) = Mc

k+3010 for k ≥ 0. Therefore, we have

σ(01Mc
0M

c
1M

c
2 . . . ) = 01001010 010 σ(Mc

0 ) σ(Mc
1 ) σ(Mc

2 ) . . .

= 01Mc
0M

c
1M

c
2 010σ(Mc

0 ) σ(Mc
1 )σ(Mc

2 ) . . .

= 01Mc
0M

c
1M

c
2M

c
3M

c
4 . . . ,

and it follows that c = 01Mc
0M

c
1M

c
2M

c
3M

c
4 . . . , thus rep(c) =

√
10− 3

2 .

Let τ be the substitution given by τ(0) = 10 and τ(1) = 0. We check by induction

that 0τ(Mc
k ) = Mk+10 holds for all k ≥ 0. We conclude that c and s′ are related

by

τ(c) = τ(01Mc
0M

c
1M

c
2M

c
3M

c
4 . . . )

= 10 0τ(Mc
0 )τ(Mc

1 )τ(Mc
2 )τ(Mc

3 )τ(Mc
4 ) . . .

= 10M1M2M3M4M5 · · · = s′.

Proof of Theorem 3.6.

Let y be an infinite word defined over a finite alphabet A such that the sequence

(p(n,y) − n)n≥1 is bounded and y is not ultimately periodic. It follows from

Theorem 1.1 that the sequence (p(n,y)−n)n≥1 of positive integers is nondecreasing

and bounded. Thus, it is eventually constant. There exist positive integers k and

n0 such that

p(n,y) = n+ k, for n ≥ n0.

It then follows from a result of Cassaigne [25] that there are a finite word W , a

Sturmian word s defined over {0, 1} and a morphism φ from {0, 1}∗ into A∗ such

that φ(01) 6= φ(10) and

y = Wφ(s).

Write s = s1s2 . . . Let n be a large positive integer. The word Vn := s
r(n,s)
r(n,s)−n+1

of length n has two occurrences in s
r(n,s)
1 . Consequently, the word φ(Vn) has two

occurrences in the prefix of y of length |W |+ |φ(s
r(n,s)
1 )|, thus

r(|φ(Vn)|,y) ≤ |W |+ |φ(s
r(n,s)
1 )|.
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A classical property of Sturmian words asserts that 0 and 1 have a frequency in s.

Consequently, by arguing as in [1], there exists a real number δ such that

|φ(s1s2 . . . sn)| = δn+ o(n), for every n ≥ 1.

Let ε be a positive real number. For n large enough there exist real numbers ηn

and µn with |ηn|, |µn| ≤ εn and

r(δn+ ηn,y) ≤ |W |+ δr(n, s) + µn.

As n can be taken arbitrarily large, this implies that

rep(y) = lim inf
n→+∞

r(n,y)

n
≤ δ

δ − ε
lim inf
n→+∞

r(n, s)

n
+

ε

δ − ε
.

Since ε can be chosen arbitrarily small, we deduce that

rep(y) ≤ lim inf
n→+∞

r(n, s)

n
= rep(s).

In view of Theorem 3.4, this proves Theorem 3.6.

8. Rational approximation

In this section and in the next one, for a finite word W and a real number

w ≥ 1, we write Ww for the concatenation of bwc copies of W and the prefix of

length d(w − bwc)|W |e of W .

Proof of Theorem 4.2.

Since the irrationality exponent of an irrational real number is at least equal to 2,

we can assume that rep(x) < 2. Let n be a positive integer such that r(n,x) < 2n.

By the theorem of Lyndon and Schützenberger (Theorem 1.5.2 in [9]), this implies

that there are finite words W,U, V (we do not indicate the dependence on n) and

a positive integer t such that |(UV )tU | = n and W (UV )t+1U is the prefix of x of

length r(n,x). Observe that

|WUV | = |W (UV )t+1U | − |(UV )tU | = r(n,x)− n.
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Setting ξ =
∑
k≥1

xk

bk
, there exists an integer s such that ξ and the rational number

s
b|W |(b|UV |−1) have the same r(n,x) first digits in their b-ary expansions, thus∣∣∣ξ − s

b|W |(b|UV | − 1)

∣∣∣ ≤ 1

b|W (UV )t+1U | =
1

b|WUV |+|(UV )tU |

=
1

b|WUV |bn|WUV |/(r(n,x)−n) .

We derive that

µ(ξ) ≥ 1 + lim sup
n→+∞

n

r(n,x)− n
,

thus, µ(ξ) is infinite if rep(x) = 1 and

µ(ξ) ≥ 1 +
1

rep(x)− 1
,

otherwise. This proves the theorem.

Proof of Theorem 4.5.

We assume that the reader is familiar with the theory of continued fractions (see

e.g. Section 1.2 of [15]).

Set ξ :=
∑
k≥1

xk

bk
. Write ξ = [0; d1, d2, . . .] and let (

pj
qj

)j≥1 denote the sequence

of its convergents.

Let N := (nk)k≥1 be the increasing sequence of all the integers n such that

r(n + 1,x) ≥ r(n,x) + 2. Let k be a positive integer. By Lemma 5.3 we have

r(nk + 1,x) = 2nk + 3.

We deduce from the definition of the sequence N that

(8.1) r(nk + `,x) = 2nk + 2 + `, 1 ≤ ` ≤ nk+1 − nk.

Set αk = r(nk,x)
nk

. Observe that αk ≤ 2 + 1
nk

and

(8.2) rep(x) = lim inf
k→+∞

αk.

Let k be an integer for which αk < 2 (infinitely many such k do exist since

rep(x) < 2). Let Wk, Uk, Vk be the words associated with nk as in the previous

proof and wk, uk, vk their lengths, which satisfy wk + uk + vk = (αk − 1)nk. There

exists an integer sk such that the αknk first digits of x and those of the b-ary

expansion of the rational number sk
bwk (buk+vk−1) coincide. Consequently, we get

(8.3)
∣∣∣ξ − sk

bwk(buk+vk − 1)

∣∣∣ ≤ 1

bαknk
.
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A classical theorem of Legendre (see e.g. Theorem 1.8 of [15]) asserts that, if the

irrational real number ζ and the rational number p
q with q ≥ 1 satisfy |ζ− p

q | <
1

2q2 ,

then p
q is a convergent of the continued fraction expansion of ζ.

Since αk < 2, we get αk ≤ 2− 1
nk

. As

2
(
bwk(buk+vk − 1)

)2
< 2b2(αk−1)nk ≤ bαknk

holds if αknk ≤ 2nk−1, Legendre’s theorem and the assumption αk < 2 imply that

the rational number sk
bwk (buk+vk−1) , which may not be written under its reduced

form, is a convergent, say ph
qh

, of the continued fraction expansion of ξ.

Let ` be the smallest positive integer such that αk+` < 2.

We first establish that ` ≤ 2 if nk is sufficiently large.

Assume that r(nk+1,x) = 2nk+1 + εk+1 and r(nk+2,x) = 2nk+2 + εk+2, with

εk+1, εk+2 ∈ {0, 1}. Put ηk := r(nk+2,x)− r(nk+1,x). Since

αk+2nk+2 = r(nk+2,x) = r(nk+1 + (nk+2 − nk+1),x)

= 2nk+1 + 2 + nk+2 − nk+1 = nk+2 + nk+1 + 2,
(8.4)

we get nk+2 = nk+1 + 2− εk+2, thus

ηk = 2(nk+1 + 2− εk+2) + εk+2 − 2nk+1 − εk+1 = 4− εk+1 − εk+2.

This shows that ηk ∈ {2, 3, 4}.

By a well-known property of Sturmian sequences (see [35] on page 46), for any

n ≥ 1, there exists a unique factor Zn (called a right special factor) of x of length

n such that Zn0 and Zn1 are both factors of x.

It follows from our assumption r(nk+1 + 1,x) > r(nk+1,x) + 1 that Znk+1
=

x
r(nk+1,x)
r(nk+1,x)−nk+1+1. Likewise, we get Znk+2

= x
r(nk+2,x)
r(nk+2,x)−nk+2+1, thus

Znk+1
= x

r(nk+1,x)
r(nk+1,x)−nk+1+1 = x

r(nk+2,x)
r(nk+2,x)−nk+1+1 = x

r(nk+1,x)+ηk
r(nk+1,x)+ηk−nk+1+1.

It then follows from the theorem of Lyndon and Schützenberger (Theorem 1.5.2 in

[9]) that there exists an integer tk, a word Tk of length ηk and a prefix T ′k of Tk

such that

Znk+1
= (Tk)tkT ′k.

We deduce that

tk ≥
nk+1 − 3

4
.
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Since |Tk| ≤ 4 and a Sturmian word cannot contain unbounded powers of a fixed

word (see [9, Corollary 10.6.6]), there exists an integer t such that no factor of x is

a t-th power.

Consequently, if k is large enough, then we cannot have simultaneously r(nk+1,x) ≥

2nk+1 and r(nk+2,x) ≥ 2nk+2. This implies that ` = 1 or ` = 2.

Since αk+` < 2, it follows from Legendre’s theorem that the rational number

sk+`

bwk+` (buk+`+vk+`−1) , which may not be written under its reduced form, is a conver-

gent, say
pj
qj

, of the continued fraction expansion of ξ. The (αknk + 1)-th digit of

the b-ary expansion of
pj
qj

is equal to the (αknk + 1)-th digit of x and differs from

the (αknk + 1)-th digit of the b-ary expansion of ph
qh

. Consequently, the rational

numbers ph
qh

and
pj
qj

are distinct.

Here, the indices h and j depend on k. We have

(8.5) qh ≤ bwk(buk+vk − 1) ≤ b(αk−1)nk

and

qj ≤ bwk+`(buk+`+vk+` − 1) ≤ b(αk+`−1)nk+` .

Note that it follows from (8.4) that

(αk+2 − 1)nk+2 = nk+1 + 2.

and, likewise,

(αk+1 − 1)nk+1 = nk + 2,

Note that nk+1 ≤ nk + 2 if αk+1 ≥ 2.

The properties of continued fractions give that

(8.6)
1

2qhqh+1
≤
∣∣∣ξ − ph

qh

∣∣∣ ≤ 1

qhqh+1

and

1

2qjqj+1
≤
∣∣∣ξ − pj

qj

∣∣∣ ≤ 1

qjqj+1
.

This implies that

qj+1 ≥
bαk+`nk+`

2qj
≥ bnk+`

2
.

Since αk < 2, we get

qh ≤ b(αk−1)nk ≤ bnk−1 <
bnk+`

2
≤ qj+1.
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Combined with ph/qh 6= pj/qj , this gives

qh < qh+1 ≤ qj < qj+1.

It follows from

qh ≥
bαknk

2qh+1

and

(8.7) qh+1 ≤ qj ≤ b(αk+`−1)nk+` ≤ bnk+4,

that

(8.8) qh ≥
bαknk

2bnk+4
.

Since qh ≤ bwk(buk+vk − 1) ≤ b(αk−1)nk , this shows that the rational number

sk
bwk (buk+vk−1) is not far from being reduced, in the sense that the greatest common

divisor of its numerator and denominator is at most equal to 2b4. Furthermore, we

deduce from (8.3), (8.5), (8.6), (8.7), and (8.8) that

(8.9)
1

(2b4qh)αk/(αk−1)
≤
∣∣∣ξ − ph

qh

∣∣∣ ≤ 1

q
αk/(αk−1)
h

.

Moreover, it follows from

qh+1 ≥
bαknk

2qh
≥ bnk

2

that

1 ≤ qj
qh+1

≤ 2b4.

Consequently, all the partial quotients dh+2, . . . , dj are less than 2b4 and we get∣∣∣ξ − p`
q`

∣∣∣ > 1

(q` + q`+1)q`
>

1

(d`+1 + 2)q2`
≥ 1

2(b4 + 1)q2`
,

for ` = h+ 1, . . . , j − 1.

Now, we are armed to conclude the proof. We consider the increasing sequence

K of integers k such that αk < 2. Let k be an element of K and assume that k is

sufficiently large. We have established that there exist integers h(k) and j(k) such

that all the partial quotients dh(k)+2, . . . , dj(k) are less than 2b4. Furthermore, (8.9)

provides us with a precise estimate of dh(k)+1. The definitions of h and j show that

if k′ is the next element after k in the sequence K, then h(k′) = j(k). Consequently,
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we have a precise estimate of all but finitely many partial quotients of ξ and we

deduce from (8.2) and (8.9) that

µ(ξ) = lim sup
k→+∞

αk
αk − 1

=
rep(x)

rep(x)− 1
.

This completes the proof of the theorem.

9. On the recurrence function of an infinite word

Cassaigne [24] studied the recurrence function n 7→ R′(n) of an infinite word

x = x1x2 . . . , which is defined as the length of the shorted prefix of x containing

an occurrence of every factor of x of length n. Then it is not difficult to check that

R′(n) ≥ p(n,x) + n− 1 and the equality holds if and only if r(n,x) = p(n,x) + n.

Moreover, for a Sturmian word x, we have the following relation between r(n,x)

and R′(n).

Proposition 9.1. For any Sturmian word x, we have

lim sup
n→+∞

R′(n)

n
=

rep(x)

rep(x)− 1
.

Therefore, it follows from Theorem 3.4 that

lim sup
n→+∞

R′(n)

n
≥ 5

3
+

4
√

10

15
= 2.5099 . . . ,

and this value is optimal.

Proof. Let x = x1x2x3 . . . be a Sturmian word. Let n be a positive integer such

that R′(n) ≥ 2n+ 1. Since p(n,x) = n+ 1, there exist integers i, j such that

0 ≤ i < j ≤ R′(n)− n and xi+ni+1 = xj+nj+1 .

It follows from the definition of R′(n) that x
R′(n)
R′(n)−n+1 is not a factor of x

R′(n)−1
1 .

Thus, there exists m ≥ 0 such that

xi+n+mi+1 = xj+n+mj+1 , xi+n+m+1 6= xj+n+m+1, and j + n+m+ 1 ≤ R′(n).

Therefore, xi+n+m+1
i+m+1 and xj+n+m+1

j+m+1 are the two factors of x of length n + 1 ex-

tending the right special factor xi+m+n
i+m+1 , and x

R′(n)+1
1 contains all the factors of x

of length n+ 1. This shows that R′(n+ 1) = R′(n) + 1 whenever R′(n) ≥ 2n+ 1.
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Let (nk)k≥1 be the increasing sequence of all the integers n such that r(n+1,x) ≥

r(n,x) + 2. It then follows from (8.1) that

rep(x) = lim inf
k→+∞

r(nk,x)

nk
= lim inf

k→+∞

nk + nk−1 + 2

nk
= 1 + lim inf

k→+∞

nk−1
nk

.

For every positive integer n, we have R′(n) = 2n if, and only if, r(n,x) = 2n +

1. This shows that R′(nk + 1) = 2(nk + 1) holds for every positive integer k.

Furthermore, we have established above that R′(n + 1) = R′(n) + 1 if n is not an

element of the sequence (nk + 1)k≥1. Consequently, we have

lim sup
n→+∞

R′(n)

n
= lim sup

k→+∞

R′(nk + 2)

nk + 2
= lim sup

k→+∞

nk+1 + nk + 3

nk + 2

= 1 + lim sup
k→+∞

nk+1

nk
= 1 +

1

rep(x)− 1
.

This proves the proposition. �

10. Links with other combinatorial exponents

There are various combinatorial exponents associated with infinite words. One

of them, the initial critical exponent, was introduced in 2006 by Berthé, Holton,

and Zamboni [14].

Definition 10.1. The initial critical exponent of an infinite word x, denoted by

ice(x), is the supremum of the real numbers ρ for which there exist arbitrary long

prefixes V of x such that V ρ is a prefix of x.

The definition of the Diophantine exponent of an infinite word appeared in [2],

but this notion was implicitly used in earlier works of the same authors.

Definition 10.2. The Diophantine exponent of an infinite word x, denoted by

dio(x), is the supremum of the real numbers ρ for which there exist arbitrary long

prefixes of x that can be factorized as UV w, with U and V finite words and w a

real number such that
|UV w|
|UV |

≥ ρ.

It follows from Definitions 9.1 and 9.2 that every infinite word x satisfies

(9.1) 1 ≤ ice(x) ≤ dio(x) ≤ +∞.

Furthermore, there are words x such that ice(x) < dio(x).
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The following lemma shows that the Diophantine exponent and the exponent of

repetition are closely related.

Lemma 10.3. Let x be an infinite word written over a finite alphabet. We have

rep(x) = 1 (resp. = +∞) if and only if dio(x) = +∞ (resp. = 1). Furthermore, if

1 < dio(x) < +∞, then we have

rep(x) =
dio(x)

dio(x)− 1
≤ ice(x)

ice(x)− 1
.

Proof. In view of (9.1), it only remains for us to prove the first equality. To see

that rep(x) ≤ dio(x)
dio(x)−1 it suffices to note that if UV w is a prefix of x, where w > 1

is chosen such that |UV w| = |U |+ w|V |, then

r(|V |w−1,x)

|V |w−1
≤ |UV

w|
|V |w−1

≤ |UV w|/|UV |
(|UV w|/|UV |)− 1

.

Conversely, if r(n,x) = Cn for some rational number C and some integer n, then

the prefix of x of length Cn can be written under the form UV w, where w > 1 and

|UV | = (C − 1)n. This implies that dio(x) ≥ C
C−1 . Letting C tend to rep(x), we

get dio(x)(rep(x)− 1) ≥ rep(x), that is, rep(x) ≥ dio(x)
dio(x)−1 . �

One motivation for considering the function n 7→ r(n,x) comes from Diophantine

approximation. Indeed, the following transcendence criteria have been recently

established in [5, 3, 21, 19], although they were not highlighted in these papers, in

which the subword complexity function n 7→ p(n,x) occurs in place of n 7→ r(n,x).

Theorem 10.4. Let A be a finite set of integers. Let x = x1x2 . . . be an infinite

word over A, which is not eventually periodic. If

lim inf
n→+∞

r(n,x)

n
< +∞,

or if there exists a real number η with η < 1/11 and

lim sup
n→+∞

r(n,x)

n(log n)η
< +∞,

then, for every integer b ≥ 2, the real number
∑
k≥1

xk

bk
is transcendental.

Recall that a real number is algebraic of degree two if and only if its continued

fraction expansion is eventually periodic.
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Theorem 10.5. Let A be a finite set of positive integers. Let x = x1x2 . . . be an

infinite word over A. If x is not eventually periodic and

lim inf
n→+∞

r(n,x)

n
< +∞,

then the real number [0;x1, x2, . . .] is transcendental.

The interested reader is referred to the survey [20], where the combinatorial

assumption made on the infinite word x is precisely the following (the same as-

sumption is made in [3, 21, 19]): we suppose that x is not eventually periodic and

that there exist three sequences of finite words (Un)n≥1, (Vn)n≥1 and (Wn)n≥1 such

that:

(i) For every n ≥ 1, the word WnUnVnUn is a prefix of the word x;

(ii) The sequence (|Vn|/|Un|)n≥1 is bounded from above;

(iii) The sequence (|Wn|/|Un|)n≥1 is bounded from above;

(iv) The sequence (|Un|)n≥1 is increasing.

One sees that this assumption exactly means that dio(x) exceeds 1 and is, by

Lemma 10.3, equivalent to the one made in the above transcendence criteria. Using

Lemma 2.2, we deduce immediately that r(n,x) can be replaced by p(n,x) in

Theorems 10.4 and 10.5. Consequently, Lemma 8.1 of [20] (which was also used in

[3, 19]) is not needed to deduce Theorems 3.1 and 3.2 of [20] from the combinatorial

transcendence criteria stated in Section 4 of that paper. This shows that considering

the function n 7→ r(n,x) is indeed the right point of view.

We end this section with a theorem established in [4]. It is stated in that paper

with the subword complexity function n 7→ p(n,x), but, in that paper as well, the

proofs actually work if this function is replaced by n 7→ r(n,x). For the definition

of Mahler’s classification, the reader is directed to Chapter 3 of [15].

Theorem 10.6. Let ξ be a real number such that its expansion x in some integer

base b ≥ 2 satisfies

lim sup
n→+∞

r(n,x)

n
< +∞.

If rep(x) = 1, then ξ is a Liouville number. Otherwise, ξ is either an S-number or

a T -number in Mahler’s classification.
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S. Ferenczi, C. Mauduit and A. Siegel. Lecture Notes in Mathematics 1794. Springer-Verlag,

Berlin, 2002.
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Université de Strasbourg, CNRS, IRMA, UMR 7501, 7 rue René Descartes, 67084
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