A NEW COMPLEXITY FUNCTION, REPETITIONS IN
STURMIAN WORDS, AND IRRATIONALITY EXPONENTS OF
STURMIAN NUMBERS

YANN BUGEAUD AND DONG HAN KIM

ABSTRACT. We introduce and study a new complexity function in combina-
torics on words, which takes into account the smallest second occurrence time
of a factor of an infinite word. We characterize the eventually periodic words
and the Sturmian words by means of this function. Then, we establish a new
result on repetitions in Sturmian words and show that it is best possible. Let
b > 2 be an integer. We deduce a lower bound for the irrationality exponent
of real numbers whose sequence of b-ary digits is a Sturmian sequence over
{0,1,...,b — 1} and we prove that this lower bound is best possible. As an
application, we derive some information on the b-ary expansion of log(1 + %),

for any integer a > 34.

1. INTRODUCTION

Let A be a finite set called an alphabet and denote by |.A] its cardinality. A word
over A is a finite or infinite sequence of elements of A. For a (finite or infinite)
word X = x1xo ... written over A, let n — p(n,x) denote its subword complexity
function which counts the number of different subwords of length n occurring in x,
that is,

p(n,x) = #{TkTpt1 - Than—1 : k>1} n>1
Clearly, we have
1<p(n,x) <|A", n>1.
A celebrated theorem by Morse and Hedlund [36] characterizes the eventually pe-

riodic words by means of the subword complexity function.

Theorem 1.1. Let x = x1x2 ... be an infinite word. The following statements are

equivalent:
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(i) x is eventually periodic;
(ii) There exists a positive integer n with p(n,x) < n;

(#ii) There exists M such that p(n,x) < M forn > 1.

Therefore, the least possible subword complexity for a non eventually periodic

infinite word x is given by p(n,x) = n + 1 for every n > 1.

Definition 1.2. A Sturmian word is an infinite word x such that p(n,x) =n +1

for every n > 1.

There are uncountably many Sturmian words. There are several ways for de-
scribing them, one of them is given at the beginning of Section 3.

In the present paper, we introduce and study a new complexity function, which
takes into account the smallest second occurrence time of a factor of x. For an

infinite word x = 125 ... set

i+n—1 _ _m

r(n,x) = min{m > 1: z; = x4 for some i with 1 <4 <m —n}.

Here and below, for integers ¢, j with ¢ < j, we write 1:3 for the factor x;x;41...2;
of x.

Said differently, r(n,x) denotes the length of the smallest prefix of x containing
two (possibly overlapping) occurrences of some word of length n.

One of the purposes of the present work is to characterize the eventually periodic
words and the Sturmian words by means of the function n — r(n,x). This is the
object of Theorems 2.3 and 2.4.

In Section 3, by means of a precise combinatorial study of Sturmian words, we

establish that every Sturmian word s satisfies

(1.1) lim inf "% < V10 — g

,S
n—+too  n

A similar result also follows from Theorem 2.1 of [22], but with /10 — 3 replaced
by a larger value strictly less than 2. We prove that the inequality (1.1) is best
possible by constructing explicitly a Sturmian word s for which we have equality
in (1.1).

By Sturmian number, we mean a real number for which there exists an integer
base b > 2 such that its b-ary expansion is a Sturmian sequence over {0,1,...,b—1}.

We show in Section 4 how it easily follows from (1.1) that the irrationality exponent
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of any Sturmian number is at least equal to g + %;70. We establish that this lower
bound is best possible and, more generally, that the irrationality exponent of any
Sturmian number can be read on its b-ary expansion (which means that infinitely
many of its very good rational approximants can be constructed by cutting its b-ary
expansion and completing by periodicity; see below Theorem 4.3).

Combined with earlier results of Alladi and Robinson [7], our result implies that,
for any integer b > 2, the tail of the b-ary expansion of log(1 + %), viewed as an
infinite word over {0,1,...,b — 1}, cannot be a Sturmian word when a > 34 is an
integer.

The present paper illustrates the fruitful interplay between combinatorics on
words and Diophantine approximation, which has already led recently to several
progresses. It is organized as follows. Our new results are stated in Sections 2 to
4 and proved in Sections 5 to 8. We consider in Section 9 a recurrence function
studied by Cassaigne in [24]. The link between the function n — r(n,x) and other

combinatorial exponents is discussed in Section 10.

2. A NEW CHARACTERIZATION OF PERIODIC AND STURMIAN WORDS

We begin this section by stating some immediate properties of the function

n—r(n,x).

Lemma 2.1. For an arbitrary infinite word x written over a finite alphabet A, we
have:

(i)n+1<r(nx) <|A"+n, (n>1).

(ii) There exists a unique integer j such that z§+"_1 = z:EZ:g_nH and1 <75 <

r(n,x) —n.

(iii) r(n+1,x) > r(n,x)+1, (n>1).

Let b > 2 and n > 1 be integers. A de Bruijn word of order n over an alphabet
of cardinality b is a word of length 0™ +n — 1 in which every block of length n
occurs exactly once. Every de Bruijn word of order n over an alphabet with at
least three letters can be extended to a de Bruijn word of order n 4+ 1 (see e.g.
[26, 31, 13]). When |A| > 3, this establishes the existence of infinite words x
satisfying r(n,x) = |A|" + n, for every n > 1. Thus, we can have equality in the

right hand side of (i) for every n > 1.



4 YANN BUGEAUD AND DONG HAN KIM

The lemma below shows that r(n,x) is bounded from above in terms of the

subword complexity function of x.
Lemma 2.2. For any infinite word x, we have
r(n,x) <pn,x)+n, n>1.

Proof. By the definition of r(n,x), all the r(n,x) — 1 — (n — 1) factors of length n

of 27"~ 1 are distinct. Since I:EZ’X_”H is a factor of 2" ™" we have
p(n,x) > p(n,xq(n’x)fl) = p(n, xq(n’x)) =r(n,x) —n. O

We stress that there is no analogue upper bound for the subword complexity
function of x in terms of r(n,x). Indeed, any infinite word x = z1xo... over a

finite alphabet A and such that
Z1...Toj = Toj+iqoitq...Loi+2, for j > 1,

satisfies 7(27,x) < 29%2 for j > 1, thus r(n,x) < 8n for every n > 1. However, by
a suitable choice of giy1,...,Toi+1105, We can guarantee that p(n,x) = | A" for
every n > 1.

Our first result is a characterization of eventually periodic words by means of

the function n +— r(n,x). It is the analogue of Theorem 1.1.

Theorem 2.3. Let x = 122 ... be an infinite word. The following statements are
equivalent:

(i) x is eventually periodic;

(i) r(n,x) < 2n for all sufficiently large integers n;

(iii) There exists M such that r(n,x) —n < M forn > 1.

Our second result is a characterization of Sturmian words by means of the func-

tion n — r(n, x).

Theorem 2.4. Let x = x122 ... be an infinite word. The following statements are
equivalent:
(i) x is a Sturmian word;

(ii) x satisfies r(n,x) < 2n+ 1 for n > 1, with equality for infinitely many n.
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It is possible to precisely describe the sequence (r(n,x)),>1 for some classical
infinite words x, including the Fibonacci word and the Thue-Morse word. The
proofs of the next results can be obtained by induction.

Let f denote the Fibonacci word f = 01001010... over {0,1} and (F),),>o the
Fibonacci sequence given by Fy = 0, Fy = 1 and F, 10 = Fy41 + F, for n > 0.
The Fibonacci word is a Sturmian word and it satisfies r(m,f) = F, + m for
F,-2<m<F,4y1—2andn > 3.

Let t = 01101001 ... denote the Thue-Morse word over {0,1}. Then, we have

r(l,t) =3 and r(2" —m,t) =5-2""1 —m if 0 <m < 2" Land n > 1.

There are several ways to measure the complexity of an infinite word x, beside
the functions n — p(n,x) and n +— r(n,x) already mentioned; see, for instance,
[32]. One can also consider the return time function n — R(n,x), which indicates
the first return time of the prefix of length n of x. The characterization of Sturmian
words by means of the function n — R(n,x) is studied in [33]. The main drawback
is that R(-,x) is defined only when x is a recurrent word. Indeed, if x is an infinite
word over a finite alphabet and a is a letter, then the fact that R(n,x) is well

defined does not imply that R(n,ax) is also defined; however, we always have
r(n—1,x)+ 1 <r(n,ax) < r(n,x) + 1.
3. COMBINATORIAL STUDY OF STURMIAN AND QUASI-STURMIAN WORDS

We begin by a classical result on Sturmian words.

Theorem 3.1. Let 0 and p be real numbers with 0 < 0 < 1 and 0 irrational. For

n>1, set
sni=[(n+1)0+p] = [n0+p], s, = [(n+1)0+p] = [n0 +p],
and define the infinite words
S0,p = 515253..., Sp , = 515585 ...

Then we have
p(n,sg,,) = p(n, Slgm) =n+1, forn>1.
The infinite words sg,, and sy , are called the Sturmian words with slope ¢ and

intercept p. Conversely, for every infinite word x on {0, 1} such that p(n,x) = n+1
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for n > 1, there exist real numbers Ox and px with 0 < 0x < 1 and 0y irrational,

such that x = sg, . or sy

x,Px

For 6 and p as in Theorem 3.1 the words sg , and sg) o differ only by at most
two letters. Classical references on Sturmian words include [30, Chapter 6], [35,
Chapter 2], and [9, Chapter 9].

The function n +— r(n,x) motivates the introduction of the exponent of repetition
of an infinite word. Although the term ‘repetition’ usually refers to consecutive
copies of the same word, we have decided to use it in our context, where we allow

overlaps.

Definition 3.2. The exponent of repetition of an infinite word x, denoted by
rep(x), is defined by
(n,x)

r
rep(x) = lnlg_g.l(f) —

A combinatorial study of Sturmian words whose slope has an unbounded se-
quence of partial quotients in its continued fraction expansion has been made in

Section 11 of [4].

Theorem 3.3. Let s be a Sturmian word. If its slope has an unbounded sequence

of partial quotients in its continued fraction expansion, then rep(s) = 1.

Theorem 3.3 follows from the proof of [4, Proposition 11.1]. For the sake of
completeness, we provide an alternative (in our opinion, simpler) proof in Section 7.
A result of Berthé, Holton, and Zamboni [14] on the initial critical exponent (see
Definition 10.1 below) of Sturmian words implies straightforwardly that, for every

Sturmian word s, there exists a positive real number §(s) such that
rep(s) <2 —4(s).

However, the infimum of d(s) taken over all the Sturmian words s is equal to 0. The
purpose of the next result is to show that the exponents of repetition of Sturmian

words are uniformly bounded from above by some constant strictly less than 2.

Theorem 3.4. FEvery Sturmian word s satisfies

3
rep(s) < V10 — 5 = 1.6622776....
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Moreover, if a Sturmian word s’ satisfies

(3.1) rep(s’) = v10 — g,

then the continued fraction expansion of the slope of s' is eventually periodic and

of the form [0;aq,as,...,ak,2,1,1] for some integer K.

It was tempting to conjecture that the upper bound /10 — % in Theorem 3.4
could be replaced by the Golden Ratio ¢ := 1+T\/g (note that the Fibonacci word
f satisfies rep(f) = ). However, we establish in Section 7 that Theorem 3.4 is
best possible, by giving an explicit example of a Sturmian word whose exponent

3

of repetition is equal to v/10 — 5. For example, the Sturmian word s’ of slope

@ = [0;2,1,1] and intercept % satisfies (3.1). A same kind of example has
been already studied by Cassaigne [24]. We discuss Cassaigne’s recurrence function
n+— R'(n) in Section 9.

A more precise result is proved in Section 7. Namely, we establish a necessary
and sufficient condition on a Sturmian word s’ ensuring that rep(s’) = v10— 2 and
give examples of such s’. We also remark that /10 — % is an isolated point of the
set of real numbers rep(s), where s runs over the Sturmian words.

Actually the conclusion of Theorem 3.4 remains true for a slightly larger class

of words.
Definition 3.5. A quasi-Sturmian word x is an infinite word which satisfies
p(n,x) =n+k, forn>ng.

A structure theorem of Cassaigne [25] allows us to deduce the next theorem from

Theorem 3.4.

[\l

Theorem 3.6. Every quasi-Sturmian word s satisfies rep(s) < /10 —

It can be deduced from Theorem 2.1 of [22] that every Sturmian or quasi-
Sturmian word s satisfies rep(s) < 1.83929.... The proof of Theorems 3.4 and
3.6 follows a completely different approach and yields a significant improvement.

We explain in the next section how Theorem 3.6 allows us to get new results on
the b-ary expansion of real numbers whose irrationality exponent is slightly larger

than 2.
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4. RATIONAL APPROXIMATION OF QUASI-STURMIAN NUMBERS AND

APPLICATIONS

Ferenczi and Mauduit [28] studied the combinatorial properties of Sturmian
words s and showed that, for some positive real number € depending only on s,
they contain infinitely many (2 + ¢)-powers of blocks (that is, a block followed by
itself and by its beginning of relative length at least £) occurring not too far from
the beginning. Then, by applying a theorem of Ridout [38] from transcendence
theory, they deduce that, for any integer b > 2, the tail of the b-ary expansion
of an irrational algebraic number, viewed as an infinite word over the alphabet
{0,1,...,b— 1}, cannot be a Sturmian word; see also [8].

Subsequently, Berthé, Holton and Zamboni [14] established that any Sturmian
word s, whose slope has a bounded continued fraction expansion, has infinitely
many prefixes which are (2 + €)-powers of blocks, for some positive real number ¢
depending only on s. This gives non-trivial information on the rational approxima-

tion to real numbers whose expansion in some integer base is a Sturmian word.

Definition 4.1. The irrationality exponent () of a real number £ is the supremum
of the real numbers i such that the inequality
1
q q"
2

has infinitely many solutions in rational numbers P If (&) is infinite, then & is

called a Liouville number.

Recall that the irrationality exponent of an irrational number £ is always at least
equal to 2, with equality for almost all £, in the sense of the Lebesgue measure.

As observed in [1] (see also Section 8.5 of [17]), it follows from the results of
[14] and [4] that, for any integer b > 2 and for any quasi-Sturmian word s over
{0,1,...,b— 1}, there exists a positive real number 7(s) such that the irrationality
exponent of any real number whose b-ary expansion coincides with s is at least
equal to 2+ n(s).

The reason for this is that, for an integer b > 2, there is a close connection
between the exponent of repetition of an infinite word x written over {0, 1,...,b—1}
and the irrationality exponent of the real number whose b-ary expansion is given

by x.
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Theorem 4.2. Let b > 2 be an integer and x = x1T2 ... an infinite word over
{0,1,...,b— 1}, which is not eventually periodic. Then, the irrationality exponent
of the irrational number &x p := 21@1 T satisfies

rep(x)

(4.1) H(fx,b) > W’

where the right hand side is infinite if rep(x) = 1.

It immediately follows from Theorems 3.3 and 4.2 that any Sturmian number
constructed from a Sturmian sequence whose slope has unbounded partial quotients
is a Liouville number. This result was first established by Komatsu [34].

As mentioned in Section 3 for the related quantity d(s), the infimum of n(s) over
all Sturmian words s is equal to 0 and one cannot deduce a non-trivial lower bound

for the irrationality exponents of Sturmian numbers. We improve this as follows.

Theorem 4.3. Let b > 2 be an integer. Let s = s182... be a Sturmian or a
quasi-Sturmian word over {0,1,...,b—1}. Then,
‘iﬂ) S0 Llozgg)ogg
“(;bﬂ‘ =375 DU

with equality when s is the Sturmian word s’ defined in Theorem 3.4.

The first statement of Theorem 4.3 is an immediate consequence of Theorem 4.2
combined with Theorem 3.6. Its second statement directly follows from Theorem 4.5
below.

If there is equality in (4.1), we say that the irrationality exponent of {xp, can be
read on its b-ary expansion. This is equivalent to say that, for every ¢ > 0, there
exist positive integers r, s, with r 4+ s being arbitrarily large, such that

Dr,s < 1
br(bs — 1)1 = plr+s)(uExs)—2)’

gx,b -

where p, , is the nearest integer to b”(b°—1)& . Or, if one prefers, this is equivalent
to say that, among the very good approximants to {x s, infinitely many of them can
be constructed by cutting its b-ary expansion and completing by periodicity (this
does not mean, however, that infinitely many convergents to {x ; have a denomina-
tor of the form b"(b* — 1)). Using the Diophantine exponent v; introduced in [10]
(see also Section 7.1 of [17]), to say that the irrationality exponent of {x 1, can be

read on its b-ary expansion. simply means that vy (&x,p) = p(€x,p)-
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Let b > 2 be an integer. A covering argument shows that, for any positive real
number ¢, the set of real numbers £ such that there are infinitely many integer

triples (r, s, prs) with r > 0,5 > 0 and

Pr.s 1
£~ br(bs — 1) = pr+s)(1+e)’

has Lebesgue measure zero. Consequently, the b-ary expansion x¢ 3 of almost every
real number & satisfies rep(x¢ ;) = +00, thus the right-hand side of inequality (4.1)
is equal to 1 almost always. This shows that, since the irrationality exponent of an
irrational number is always at least equal to 2, it can only very rarely be read on its
b-ary expansion. There are only few known examples for which this is the case; see
[16, 23] and the following result of Adams and Davison [6] (additional references

and a more detailed statement are given in Section 7.6 of [17]).

Theorem 4.4. Let b > 2 be an integer and o = [a1; as, a3 . ..] an irrational number

greater than 1. The irrationality exponent of the real number

400

1
fa,b:Z m

j=1
is given by

M(ga,b) =1+ limsup [an; Ap—1y+-+, al]'

n—s+4o0

Theorem 4.4 gives us the irrationality exponent of any real number whose ex-
pansion in some integer base is a characteristic Sturmian word (that is, a Sturmian
word whose intercept is 0). It shows that equality holds in (4.1) when x is a char-
acteristic Sturmian word. We extend this result in Section 8 by proving that the
inequality in Theorem 4.2 is an equality for any Sturmian word x and any integer

base b > 2.

Theorem 4.5. Let b > 2 be an integer and X = x1x2 ... a Sturmian word. Then,
the irrationality exponent of the irrational number ), -, T satisfies
ﬂ) _ rep(x)
M(Z bk /)  rep(x) — 1’
E>1

where the right hand side is infinite if rep(x) = 1.

The proof of Theorem 4.5 rests on the theory of continued fractions combined

with properties of the function n — r(n,x) and of Sturmian words. Furthermore,
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a result obtained in the course of this proof implies that, given b and o’ multiplica-
tively independent integers, an irrational real number cannot have simultaneously
a Sturmian b-ary expansion and a Sturmian b’-ary expansion. This gives a partial
answer to Problem 3 of [18]. We will return to this question in a subsequent work.

We display below a statement equivalent to Theorem 4.3, but we need first to
introduce some notation. Let b denote an integer at least equal to 2. Any real
number ¢ has a unique b-ary expansion, that is, it can be uniquely written as

s=lg+> g =le+0ma..,
>1

where |- | denotes the integer part function, the digits aj, as, ... are integers from the
set {0,1,...,b—1} and ay differs from b— 1 for infinitely many indices ¢. A natural
way to measure the complexity of £ is to count the number of distinct blocks of
given length in the infinite word a = ajasaz ... For n > 1, we set p(n, &, b) = p(n,a)

with a as above. Clearly, we have
p(n, &, b) = #{asrr1aea .. apin 1 € > 0}

Theorem 4.6. Every irrational real number £ with u(§) < g + % 10 satisfies

lim (p(n,g, b) — n) = +00,

n—-+4oo

for every integer b > 2. Furthermore, for every integer b > 2, there exists an

irrational real number & with (&) = g + % 10 and p(n,&,b) =n+1 forn > 1.

The conclusion of the first assertion of Theorem 4.6 was proved to be true for
every irrational algebraic number ¢ in [28], for every real number £ whose irrational-
ity exponent is equal to 2 in [1] (see also Section 8.5 of [17]; note that, by Roth’s
theorem [39], every irrational algebraic number satisfies u(€) = 2), and for every
irrational real number ¢ satisfying u(€) < 2.19149... in [22].

We can deduce from Theorem 4.6 some information on the b-ary expansion of
several classes of real numbers, without knowing exactly their irrationality expo-
nent. Recall that, for example, Alladi and Robinson [7] (who improved earlier
results of A. Baker [12]) and Danilov [27] proved that, for any positive integer s,
the irrationality exponents of log(1 + ) and v/#?> — s arcsin £ are bounded from
above by functions of ¢ which tend to 2 as the integer ¢ tends to infinity. The
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next statement then follows at once from Corollary 1 of [7], which implies that the

irrationality exponent of log(1 + %) is less than % + %\/10 for every integer a > 34.

Corollary 4.7. For every integer b > 2 and every integer a > 34, we have

1
lim (p(n,log(l + 7),b) - n) = 400,
n—-+o0o a

For much larger values of a, a stronger result than the above corollary has been
established in [22]. Namely, for any positive real number ¢, there exists an integer

ap such that, for every integer b > 2 and every integer a > ag, we have

1
lim inf p(n,log(l + “>,b) > g — €.
n—+o00 n 8

The approach followed in [22] gives a non-trivial result only when the integer a

exceeds 23347.

5. AUXILIARY COMBINATORIAL LEMMAS

The proofs of Theorems 2.3 and 2.4 rest on a series of combinatorial lemmas.
For a word U = wuy ...u, composed of n letters, denote by |U| = n its length
and set

AU)={1<k<n:u; =ujpg forall 1 <i<n-—Ek}.

An element of A(U) is called a period of U. We stress that a period of a word of
length n may not be a divisor of n. A finite word U is called primitive if there is

no non-empty word V such that U = V"™ for some integer n > 2.

Lemma 5.1 (Fine and Wilf Theorem [29]). Let U = uy ... u, and h,k be in A(U).
Ifn > h+k — ged(h, k), then U is periodic of period ged(h, k).

Lemma 5.2. Let U = uy...uy, be a finite word and X in A(U). Then uy_, ,a

with a # wp—xy1 @5 not a factor of U.

Proof. Since X is in A(U), all the factors of length A in U have the same number of
a’s. Since u,_xy1 # a, the number of a’s in u;,_y, is one less than in u;_,_ ,a,

thus the latter cannot be a factor of U. O

Lemma 5.3. Let x be an infinite word and n an integer with r(n,x) > r(n—1,%x)+

2. Then r(n,x) > 2n + 1.
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Proof. To shorten the notation, we simply write r(-) for (-,x). Suppose that
r(n) >r(n—1)4+2 but r(n) < 2n.

Let s, ¢ be the nonnegative integers satisfying

s+n—1 _ _r(n—1) r(n) _r(n)—¢
(51) xsil - xr(n71)7n+2’ xr(n)fn+1 - irr(n)fnleff
with
(5.2) 0<s<r(n—1)—mn, 1<i<r(n)—n<n.

Then, we have

(53) Ls+4n 7é xr(n—1)+1v
for otherwise r(n) =r(n—1) + 1.
Since
rln—1)—n—s+1 eA(x:ffl)),

by Lemma 5.2 and (5.3), the word x;(f;rll)ﬂ is not a factor of ngrnl_l)

Our assumption implies n+s+1 > r(n)—n+1and r(n—1)+1 < r(n), thus by

(5.1), we have x:ff;fl)ﬂ = ;T;rll)fé_z, which is not a factor of x:S:ll_l). Therefore,
we have n+s+1—£¢ < s+ 1, ie., n </ a contradiction to (5.2). O

Lemma 5.4. Let x be an infinite word and n an integer such that r(n + 1,x) =

j+n—1

r(n,x) + 1. Let j be the integer satisfying 1 < j < r(n,x) —n+1 and x;

r(n,x) _
r(n,x)—n+1" Then, Ljt+n = Tr(nx)+1-

Proof. By assumption, there exists a unique integer h satisfying 1 < h < r(n +

h4+n _ _r(n+l,x)

o h4n—1 _ _r(n+l,x)—1
1,x) —nand 2,7 = Tyl 1x) =

In particular, we have x, = Tyt x)—n

thus h = j and =10 = Tp(nx)41- O

Lemma 5.5. Let x be an infinite word satisfying r(i,x) < 2i+1 for all i > 1. Let
m,n be positive integers such that r(n,x) =2n+1 and m > 2n+ 1. If k is the

integer defined by r(k — 1,x) < m < r(k,x), then k > n and r(k,x) —k <m —n.

Proof. Write r(-) for r(-,x). Observe that k& > n, since r(n — 1) < r(n) < m. If

r(k) = m, then we get r(k) — k =m — k < m — n, as required.
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Ifr(k—1) <m < r(k), then r(k) > r(k—1) +2 and we deduce from Lemma 5.3
that r(k) = 2k + 1. Furthermore, we have k > n+1. Let { = min{¢ > 1 : r(k—1i) =
2(k — i) + 1}. Since r(n) = 2n + 1, the integer ¢ is well-defined and

k>n+L.

Fori=1,...,£—1, we have r(k —i) < 2(k —1) and it follows from Lemma 5.3 that
r(k—i)=r(k—i—1)+1, thus,

r(k=1)—rk—¥0)=¢-1.
Sincem >rk—1)+1=r(k—¥¢)+¢=r(k)— £, we have
r(k)—k<(m+4€—(n+£)=m-—n,

which completes the proof of the lemma. O

6. PROOFS OF THEOREMS 2.3 AND 2.4

Proof of Theorem 2.3.

(iii) = (ii) : Immediate.

(ii) = (i) : It follows from Lemma 5.3 and Lemma 2.1 (iii) that there exists an
integer ng such that r(n + 1,x) = r(n,x) + 1 for every n > ny. By Lemma 5.4, we
deduce that there exists an integer j such that x;1, = 2y (ng,x)+n—ne+1, for n > ng.
This shows that x is eventually periodic.

(i) = (iii) : Let r and s denote the length of the preperiod and that of the
period of x. Then, the infinite word starting at z,,; is the same as the infinite

word starting at x,ysy1, thus we have r(n,x) <n+r+ s forn > 1.

Proof of Theorem 2.4.

(i) = (ii) : The inequality is clear by Lemma 2.2 and Theorem 2.3 implies that
there is equality for infinitely many n.

(ii) = (i) : Let n be an integer such that r(n,x) = 2n + 1. By the proof of
Lemma 2.2 we have p(n,z3") = n + 1.

Let m be an integer with m > 2n 4+ 1. Then, by Lemma 5.5, there exists an

integer k such that £ > n, m <r(k,x) and r(k,x) —k < m—n. By Lemma 2.1 (ii),
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r(k,x) _ r(kx)—j

k) k41 = Lok )kt 1—j for some integer j with 1 < j < r(k,x)—k.

we get that x

Therefore, we have 7,y = 2,777 ., ;, which implies that

p(n, o) = p(n,a7"™").

Since this equality holds for every m > 2n + 1 and p(n,z?") = n + 1, we deduce
that p(n,x) = n + 1. Thus, we have established the existence of arbitrary large

integers n such that p(n,x) = n + 1. This shows that x is a Sturmian word.

7. PROOF OF THEOREMS 3.4 AND 3.6

Through this section, we fix an infinite sequence (ay)x>1 of positive integers. We
define inductively a sequence of words (Mjy)r>0 on the two letter-alphabet {0,1}
by the formulas

(7.1) My=0, M;=0"""1and M1 =M"*" My_y  (k>1).

It is easy to check that the last two letters of My, are 10 (resp. 01) if k is even (resp.

odd) and | M| > 2. This sequence converges to the infinite word
sp0:= lim My =0""11...,
k—-+o0
which is usually called the characteristic Sturmian word of slope
0 :=1[0;a1,a2,as,...|

constructed over the alphabet {0,1} (See e.g. [35]).

Let x be a Sturmian word of slope . We study the combinatorial properties of
x. An admissible word is a factor of x of finite length. Note that the set of factors
of x is the same as that of spo (see e.g. [35, Proposition 2.1.18]). Let (Z—:f)gzo
denote the sequence of convergents to the slope of x. Then, for £ > 0, we have
qr = |My| and py is the number of digits 1 in Mj. It is known that only the last
two letters of My My, and My My, are different (see e.g. [35, Proposition 2.2.2]).

For a non-empty finite word U, we write U~ for the word U deprived of its last

letter. For k > 1, set

My, = (MuMy—1)" = (Mg My)"~

and observe that M is a prefix of My 1.
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We will use the property that M1 My and My M1 My are primitive (see

e.g. [35, Proposition 2.2.3]) in conjunction with the following lemma.

Lemma 7.1. Let U be a primitive word. Then all the |U| factors of length |U| — 1
of UU™ ™ are distinct.

Proof. Assume that there are integers ¢,j with 0 <i < j <|U| —1 and

(o) = oy

Then, j — 4 and |U| are periods of (UU“)zﬂUlfl and

U+ (j — i) —ged(|U|,j — i) < |U| +j —i—1.
Thus, we deduce from Lemma 5.1 that (UU”)jHUl_1 is periodic of period ged(|U|, j—

i+1

i). Since
ged(|U],j —i) < j—i < Ul -1,

this contradicts the fact that U is primitive. O

The next lemma shows that repetitions occur near the beginning of any Sturmian

word of slope 6.

Lemma 7.2. Let x be a Sturmian word of slope 8. Then, for k > 1, there exists a
unique word Wy satisfying

(i) x = Wi MM, . .., where Wy, is a non-empty suffiz of My,
or

(i) x = WiMy_1 MMy, . .., where Wy, is a non-empty suffiz of My,
or

(iti) x = Wi MM, ..., where Wy is a non-empty suffiz of Mj_1,
and all the (2q, + qr—1) cases are mutually exclusive.

Furthermore, if x = WiMy_1 MMy, ... and Wy, is a non-empty suffix of My,
then Wiy1 = WiMg_1. Moreover, if x = WkMkMk ... and Wy, is a non-empty
suffix of My,_1, then Wi41 = Wy.
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Proof. We first claim that, for each k£ > 1, the word My, My, Mj,_1 My, M, is admissi-
ble. This follows from the fact that My 3Mj o is admissible and

Mz = MyioMpi1 = MpyMyy1 = - M MpMy_q,

Mo = My g1 My -+ = My My, -+ .

Since My My Mj,_; is primitive, Lemma 7.1 implies that any admissible word of
length 2qr 4+ qr_1 — 1 is a factor of MkMkMk_leMk. These admissible words
are prefixes of W My M, or W My,_1 My, M, for some non-empty W which is a suffix
of My, and prefixes of W Mj, M, for some non-empty W which is a suffix of Mj_;.
Consequently, x = WM, ... or WM_1 M, ... with W which is a suffix of M}, or
x=WM, ... with W which is a suffix of or Mj_; .

Since there are two admissible words of length 2¢; + gr—1 — 1 starting with
M, , namely MyMy_1 M, and MMM, ,, it follows that if x = UM, ... for
some U, then x = UMkMk.... Hence we conclude that x = WMkMk... or
W My, My Mj, ... with W which is a suffix of M, or x = WM Mj, ... with W
which is a suffix of or Mjy_1. Putting W, = W, we see that W}, satisfies one of the
cases (i), (ii), (iii), which are mutually exclusive by Lemma 7.1.

By the first assertion of the lemma, x starts with Wk+1Mk+1, where Wi is a
non-empty suffix of My 1 or M. If Wy is a suffix of My, then put W' = W4,
thus

X =Wis1 Myyq - =W MM, . ...

If W41 is a suffix of Mpyq = M,?’““Mk_l, then Wiy1 = W/ M} M;_, for some
integer ¢t > 0 and a non-empty suffix W’ of M} or Wy, is a non-empty suffix of

M. If Wiy = W/ M} Mj,_q, with W’ a suffix of My, then

~ W' MM, . .., ift>1,
X = Wi 1My -+ = )
W' My_1 MM, ..., ift=0.
If Wyy1 is a suffix of My_1, then put W’ = Wy, thus
X = Wk+1Mk+1 e = W’MkMk e

By the first assertion of the lemma, we conclude that W/ = W,. If x =
W My _1 MM, ..., then Wiy = W'M,_; and if W’ is a suffix of Mj_1, then
Wk+1 = W/. D
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We are now in position to establish Theorems 3.3 and 3.4.
Proof of Theorem 3.3.

Let k and t be large integers such that My = (Mk,l)th,g. Let ¢ be the integer
part of v/t. We distinguish two cases. If |[W},| > (¢ + 1)|Mj_1|, then

(€ = 1)[ M1, x) < €| My—1|
and, otherwise, we check that
r((t = D[My-1],x) < [Wi| + t{Mp_1| < (t + £+ 1)| My .

As k and t can be taken arbitrarily large, we deduce that rep(x) = 1.

Further auzxiliary results for the proof of Theorem 3.4.

Lemma 7.3. Ifx = UV ... where V is a factor of MyMy 1 such that V| > qx,

then we have

r(|V] — q,x) < |UV|.

Proof. Let V = vy...v, be a factor of MkMk+1 such that |V]| = n > gx. Since
MMy = M. ..MM, and Mj,_4 is a prefix of My, we get vy~ % = (LA
Thus we have r(n — g, x) < |UV]. O

We establish two further lemmas on the combinatorial structure of Sturmian

words. For k > 1, we set

QK1 W 2
Nk ‘= , ty = s £k 1= —.
dk 9k qk

Recall that ¢ denotes the Golden Ratio #
In the rest of the proof of the theorem, we assume that k is large enough to

ensure that qx_o > 6, thus, e, < nk, € < % and ), < 17277;5-,.

Lemma 7.4. (i) If x = Wi MM, ..., where Wy is a suffix of My, then T(nTx) <
© + 2¢ey, for some n with qx — 2 <n < |Wi|+ qx + qu—1 — 2.

(ii) If x = WMy My, ..., where Wy is a suffiz of My_1, then @ < @+ 2¢p
for some n with |Wi|+ qr —2 < n < [Wi|+ g1 + qr — 2.



A NEW COMPLEXITY FUNCTION AND REPETITIONS IN STURMIAN WORDS 19

Proof. (i) Since Wi MM, is a factor of MyMy1 = MMM, 7, we have by
Lemma 7.3 r(|WkMkMk| - q,x) < \WkMk]\;[kL which yields that

r(IWhl +aqr +qr-1 —2,%) _ [Wi|+2q +qrp_1 — 2
<

(7.2) Wil+ax +qe—1—2 = [Wi|+qp+qu-1—2
‘ 1 1
=1+ <1+ + k.
ty +1+nr —ex ty +1+m ¥
Furthermore, x = Wi MMy, - = WkMk..., thus we have by Lemma 7.3

(M| — qr_1,%x) < |WiMj|, which yields that
tk + Mk

r(gr — 2,x) < (Wil + gk + qe—1 — 2 14
1

7.3
(7.3) . —2 qr — 2 — €k

<1+t + N + 2¢eg.

< 1 we derive from

Since for every positive real number x we have min(z, H%) < 5

(7.2) and (7.3) that
M < @+ 2¢, for some n with g —2 <n < |[Wi|+ g + qr—1 — 2.
(ii) Since x = Wi MMy, -+ = WMy ... and Wi, M, is a factor of Mk,lj\;[k, by
Lemma 7.3 we have r(\Wk]\;[k| - qp-1,%) < |Wk]\2fk|, which yields that
(Wil + ar — 2,%) < (Wil +aqr + qe—1 — 2
Wil +aq—2  — Wi+ qx — 2

Nk Mk
<1 .
ty+1—¢p +tk+1+8k

(7.4)
—1+

Since Wy, is a suffix of Mj,_1 which is a suffix of M1, we deduce from Lemma 7.2
that x starts with either Wk+1Mk+1Mk+1 or Wk+1MkMk+1Mk+1, where Wi,1 =
W If x = Wk+1Mk+1Mk+1 ..., then the proof is completed by (i) since gx+1 >
(Wi| + qi and [Wi1| = [Wi|. If x = Wit M Mir Mgy -+ = Wit MgMieg - .,
then by Lemma 7.3 we obtain

(| M M| = qr, x) < [Wigr Mg My,

thus,
r(Qk+1 + gk — 2,X) < |Wk+1\+qk+1+2q;c—2:1+ Wieti| + qr
Qe+1+aqr —2 Q1+ qr — 2 Q1+ qr — 2
W, t 1 t 1
§1+M:1+ kTt <1+ kit + €.
2qr + qrp—1 — 2 24+ m — ek 2+ g

Combined with (7.4), we deduce that there exists an integer n with |Wy|+qr —2 <

n < qry1 +qr — 2 and

T(n,X) Tk 1
<14+ +ep <14+ —+4+¢e,=157735... + €.
= 2+ k /3 k k
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This completes the proof of the lemma. O
Lemma 7.5. Assume that x = WiMy_1 MM ... , where Wy, is a suffiz of My

and ay, > 3. If k is sufficiently large, then, for some integer n with 4 —2 <n <

qx + qr—1 — 2, we have

1
r(n,x) _ \/78+9 + 2 = 1.640... + 2¢y.

n

Proof. By the assumption ay > 3, we get n, = q’;;l < 3.
Since x = Wy Mj,_1 MM, ... = Wi My_1 M, . .. , it follows from Lemma 7.3 that
T(‘MkflMﬂ — qkfl,X) < |WkMk,1Mk|, which yields that

r(gk + qr—1 — 2,X%) < |[Wi| + qx + 2qx—1 — 2

(7.5) Qe +qr-—1—2 ke + qr—1 — 2
' t t
S TR L L e/ L
1+n —ex 1+
We also have that x = WM_1Mj, ... = WM, .... Assume that |[Wj| >

% > 3. Since Wi M, 7 is a suffix of My M, - = Mk, by Lemma, 7.3, r(|WkMk—_—1| _
Qk—1,%) < |[WipM, 7|, thus

Wil —2 W, 1—2
(| Wi ’X)g‘ Kl + Q-1 S e T TR
(7.6) |Wh| —2 |Wh| —2 ty — ek ty  th(tr —ex)
. Mk dey, Mk
<l4+—4 ——< 14 =4 2¢.
tk + 3(1 — 2€k) + tk ek

By (7.5) and (7.6), we get

: tetne Mk 3 k.
q . r(n,x) _ 1—|—m1n{1+nk,tk}+25k, if (W] > 4.
Ik _2<n<qr+qn_1—2 n 1/24n : .
i 14 1250 gy if [Wy| < %
/ 2
Since min{tl’finnlf7 %’C‘} < %’ we get
. r(n, x) <1+maX{nk+\/5ni+4nk,1+2nk} Ly

min — Ek-

L —2<n<qr+qp_1-2 n 2(1 +77k)

Thus, using 7, < %, for some integer n with £+ —2 <n < g + qx—1 — 2 we have

1 5 4
,+\/j :
rx) g 3TNV VITED O




A NEW COMPLEXITY FUNCTION AND REPETITIONS IN STURMIAN WORDS 21

Completion of the proof of Theorem 3.4.

Suppose that liminf, @ > 1.65. By Lemmas 7.2, 7.4 and 7.5, for all

large k we have a; € {1,2} and
X = WkMk_leMk ey

where W, is a suffix of M. Thus, for all large k we have Wy 11 = Wi My_; from
Lemma 7.2.

We gather two auxiliary statements in a lemma.

Lemma 7.6. Assume that x = WiMy_1 MM, ... , where Wy, is suffiz of My. If

k is sufficiently large, then we have

(Wl + gk + qr—1 — 2,%) <1 L+
Wi + qx + qe—1 — 2 te + 1+ nk

_1—2 t
r(qr + qr—1 7X)<1+ E+ Mk
k. + qr—1 — 2 14+

€k,

(i)

(i)

+ €k

. W, -2 y Wi | +205 +2q5 -1 —2
Proof. Since x|"VFIT et a7 gy v xgk_t(lltjﬁj ®=177 " we get

(Wil + ar + qe—1 — 2, %) < [Wi| + 2q1 + 2qk—1 — 2.

Also by Lemma 7.3, from the fact x = WiMy_1 MMy, ... = WiMg_1 My, ... we
get

r(ge + qr—1 — 2,%x) < |Wg|+ qr + 2qr—1 — 2. O

e If ap, = 1 for all large k then 7 tends to i as k tends to infinity and we deduce
from
e+ 11—t
1+ 1+
that limg_, 1 ot = 1. By Lemma 7.6 (i), we then get

1—tpp=1—

7’(|Wk| + gk + qr—1 — 2,X) <1 1+
(Wil + qr + qr—1 — 2 te + 1+

€k,

where the right hand side tends to 1 + ;ﬁ?‘; = p as k tends to infinity.

Consequently, there are arbitrarily large integers k such that a; = 2.
o Waps =2, arz =2, then gerz = 506 + 2061, Q1 = 20k + Gu—s, thus

2k @1 24
5qi +2qk—1 5 +2m’

Nk+2 =
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borg = (WM 1 M| Wil +aqr + a1 te+1+m
y = — —
- Qk+2 oGk + 2qK—1 5+ 2ny,

By Lemma 7.6 (ii), we get

(Ghrs + Qa1 — 2,X trso + th+3+2
(Qh+2 + Qs )<1+ k2t g b e <o

Qr42 + Qry1 — 2 1+ Nkq2 T+ 3k

elfar =1, apy1 =2, agr2 =1, ap+s = 2, then we have

qr+3 = 11qr—1 +8qr—2, Qqri2 =4qr—1 + 3qk—2,

thus
Agr—1 +3qk—2 _ 4+ 3
11gk—1 4+ 8qr—2 11+ 8nk_1’

brq = IWi—1|+qr—2+qr—1+q+ Q1 te1+5+ 401
3= = :
- Tk+3 11+ 8mk—1

By Lemma 7.6 (i) we may assume that

Nk+3 =

T+ m—1

S TRSL S 1, thatis,  fe1 < (0 — 1)1+ 1),
P e k-1 < (= 1)1+ k1)

Using Lemma 7.6 (ii), we get

-2 t tr_ 9+ Tng_
7(Qr+3 + Qrg2 ,X) <14 k+3+77k+3+€k:1+ k—1+ 9+ Tng—1 e
Qk+3 + Qri2 — 2 1+ nk+s 15+ 11nk—1
For nx—1 < ¢ — 1, we obtain
o + 9+ T 948+ (04 6)m—r _ 948+ (p+6)(p—1)
15+ 11py — 15+ 11nk—1 - 15+ 11(p —1)
_To¥3 _SVEH60 e
1lp+4 122

For np—1 > ¢ — 1, we get

o1+ 9+ T 104+ T _ Tp+3 ~ 5V5+69
154+ g1~ 15+1lmpy  1lo+4 122

=0.6572...<¢T—g.

o If a1 =2, agy2 = 1, akys3 = 1, agyqs = 1, then by Lemma 7.6 (ii) we may

assume that

it mer - Wepal+ae - Wil+aet g et 1+m >0

7.7
(7.7) T+ nk41 Gr+1 + Gk 3qr + qr—1 3+ Mk

— 1.

We have gr44 = 8qr + 3qr—1, qr+3 = 5qr + 2qx—1, thus

5k + 2qk—1 _ 5+ 21k
8qr + 3qx—1 8+ Ik ’

Mk+a =

_ Wil + @1+ + Gk + Gki2 _ te 6+ 3m

tk
+4 Qk+4 8 + 3,
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By Lemma 7.6 (i), we get

r(|Wk+4| + Qk+4a + Qr+3 — 2,X) <1 w
[Wial + @rya + Qs — 2 thaa + 1+ Ny
13+5T}k
= 0ok,
tr + 19 + 81
13+5’I7k
<1+ +e
(e—1)B+m) + 18+ "
<1+ 18 +
21+ 4p @ F

3
:1.6552...+5k<\ﬁ—5,

where we used the inequality (7.7).

Suppose that liminf, ;. w > V10 — % We have established that there

exists an integer K such that the slope of x is equal to [0; a1, as,...,ax,2,1,1] and

forall k > K
X = Wk+1MkMk+1Mk+1 e = WkMkfleMkMk e

We establish now that, under these assumptions, we have

iminf "X _ g 3.

n——+oo n 2

Let k be an integer with k£ > K. By Lemma 7.6 (i),

r([Wakt k| + @3k+x + @B3e—14K — 2,X) 1+ m3pyx
<1+ + E3k+ K-
Wkt | + @3e+ K + @36—14K — 2 taprr + 14 M3kak
Since
dk—1
e = —— = [O;Gk,ak—lwuﬂﬂ
qk
and
t = Q-2+ Q-3+ ...+ qx -1 + |Wk|
qk
_ Wk
= NeMk—1 + MeMe—1Mk—2 + - -« + MkNk—1 " NK + P
we check that
V10 8 — 10
. li =—-—1 d li t =
(7.8) koo PREE 2 an ks oo SR 6
giving that
.o r(n,x) 3
liminf ——= < V10 — —.
n—+00 n 2

Let us now show that this inequality is indeed an equality.
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Since My Mj,_ is primitive, Lemma 7.1 implies that all of the first (g + qx—1)
factors of length (gx+qr—1—1) of the word x = Wi Mjy_1 My, My M, . .. are distinct,
thus we have

gk + qr—1 — 1,%) > 2q +2qx—1 — 1.
The next |Wy| factors of x of length (g + qx—1 — 1) are identical with its first |W|

factors since, for 1 < i < |Wy|, we have

i+qrt+qr—1—2 _ _i+2qx+2qr-1—2 _ (Wil /v \i+ar+qe—1—|Wi|—2
x; = (Wk); " (Mg), :

% T Vitqrtqr—1

By the fact that the last two letters of My My _1 and My _1 M}, are different, we get

L\We|+aqe+qu—1—1 7é L|Wh |4+2qx+2qp-1—1"

It follows that, for 1 < i < |[Wy|, we have

xi+|Wk|+‘Ik+q1c—1*2# i+ | W |42k +2qx—1—2
% i+qr+qr—1 .

Therefore, we get
r(IWk| + a + qr—1 — 1,%x) > 2|Wi| + 2gx + 2,1 — 1.
It then follows from Lemma 2.1 (iii) that

n+ gk + qe—1, G+ qo—1—1<n < |Wi|+q + qu-1— 2,
r(n,x) >

n+ Wil +ar + qe—1, (Wil + @+ @-1—1<n < g1 +aqr—2.

We also check that

lim 7m3pp14x = M, lim m3pyor i = £
k—+oo 3 k—+oo 3

lim 344145 = H7 lim f3p424Kx = 2
k——+o00 9 k—+o0 3

Combined with (7.8) we get

W, 2 2q_1— 2 1 3
g VL F 20 £ 201 =2 e LEe g5 3
k—too |Wik|+ gk + qr—1 — 2 k—+oo T + 1 4+ mg 2
and
2 _1—2
L inf (W] + k1 + 2qk + g1 — 14 liminf beer F 0641 _ 5
k—+o0 Qk+1 + Q. — 2 k=400 1+ N1 3

Therefore, we conclude that

rep(x) = liminfm =10 — §

n—+oo n 2
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This completes the proof of Theorem 3.4.

We remark that, in the course of the proof of Theorem 3.4, we have established
that if rep(x) < v/10—2 for a Sturmian word x, then rep(x) < 5\/?272191 =1.6572....
3

Consequently, v/10 — 5 is an isolated point of the set of real numbers rep(s), where

s runs over the Sturmian words.
Ezamples of Sturmian words x such that rep(x) = v/10 — 3.

In the proof of Theorem 3.4 we have established that a Sturmian word s’ satisfies

rep(s’) = V10 — g

if and only if the continued fraction expansion of the slope of s’ is eventually

periodic and of the form [0;aq,as,...,ax,2,1,1] for some integer K and s’ =
Wi M1 My M, . .. for all sufficiently large k.
Set 6 = [0;a1,az,...] = [0;2,1,1] = @. With M) defined as before, for

k > 2, the word Wy, = 1MoM ... My_5 is a suffix of Mj. Define

s'= lim Wy= lim (1MoM, ... Mj_5) = 100101001001. ...

k——+oo k——+oo

By applying Theorem 1 and Proposition 1 of [11] with e, = 1 for n > 1, we see

that the intercept of s’ is equal to

oo

> 1
(1-9) (1 + ;(—1)”“01 T 9n+1en+1> =1-6- Z(qkﬁ —pr) = 3

k=0

where 0; = [0;a1 — 1,a9,...] and 6 = [0; ag, ak41,- - -]

’
Rén) is

The example of Cassaigne [24] for the minimal value of limsup,, , .

given by the fixed point of the substitution o defined by
o(0) = 01001010, o(1) = 010.
Set

c:= lim o"(0)=0100101001001001010010010100100100101001001 . ..

k—+o0

The word c is a Sturmian word of slope [0;2,1,2,1]. Let (Mf)g>o be the corre-

sponding sequence of words given by (7.1). Then it is easy to check by induction
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that 0100 (My) = M 3010 for k > 0. Therefore, we have

o(OLMEMEMS ...) = 01001010 010 o(ME) o(ME) o(MS). ..
= 01MEMEMS 0100 (ME) o(ME)o(MS) . ..

= O1MEMEMEMEME . ..,

and it follows that ¢ = 01MSMFMSMSME ..., thus rep(c) = V10 — 2.

Let 7 be the substitution given by 7(0) = 10 and 7(1) = 0. We check by induction
that 07 (Mg) = Mj4+10 holds for all k¥ > 0. We conclude that ¢ and s’ are related
by

(c) = T(01MEMEMEMEME . ..
=10 07 (M§)7(MT)7(M3)7(M3)7 (M) - ..

= 10M1M2M3M4M5 e = S/.

Proof of Theorem 3.6.

Let y be an infinite word defined over a finite alphabet A such that the sequence
(p(n,y) — n)p>1 is bounded and y is not ultimately periodic. It follows from
Theorem 1.1 that the sequence (p(n,y)—n),>1 of positive integers is nondecreasing
and bounded. Thus, it is eventually constant. There exist positive integers k& and

ng such that

p(n,y)=n+k, forn>mng.

It then follows from a result of Cassaigne [25] that there are a finite word W, a
Sturmian word s defined over {0,1} and a morphism ¢ from {0,1}* into .A* such

that ¢(01) # ¢(10) and

y = Wo(s).

Write s = s152... Let n be a large positive integer. The word V,, := s:gzzzginﬂ

of length n has two occurrences in sg(n’s). Consequently, the word ¢(V;,) has two

occurrences in the prefix of y of length |W| + |¢(s;(n’s))\, thus

r(l6(Va)l,y) < [W]+ [o(s7"))).
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A classical property of Sturmian words asserts that 0 and 1 have a frequency in s.

Consequently, by arguing as in [1], there exists a real number § such that
|p(s182...8,)] = dn+o(n), foreveryn > 1.

Let € be a positive real number. For n large enough there exist real numbers 7,

and p, with [n,], |pn| < en and
(00 + 1, y) < W[+ 0r(n, ) + fin.

As n can be taken arbitrarily large, this implies that

0
rpty) = timing S < 5 timing FR

r(n,s) N €

Since € can be chosen arbitrarily small, we deduce that

minf T(8)
<1 f ——=
reply) < fmlal =

= rep(s).

In view of Theorem 3.4, this proves Theorem 3.6.

8. RATIONAL APPROXIMATION

In this section and in the next one, for a finite word W and a real number
w > 1, we write W% for the concatenation of |w]| copies of W and the prefix of

length [(w — |w])|W|] of W.
Proof of Theorem 4.2.

Since the irrationality exponent of an irrational real number is at least equal to 2,
we can assume that rep(x) < 2. Let n be a positive integer such that r(n,x) < 2n.
By the theorem of Lyndon and Schiitzenberger (Theorem 1.5.2 in [9]), this implies
that there are finite words W, U,V (we do not indicate the dependence on n) and
a positive integer ¢ such that [(UV)!U| = n and W(UV)!T1U is the prefix of x of
length r(n,x). Observe that

[WUV| = |WUV)TU| - |(UV)IU] = r(n,x) — n.
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Setting £ = ), -, 7, there exists an integer s such that £ and the rational number
m have the same r(n,x) first digits in their b-ary expansions, thus

S 1 1
£ bIW\(b\UVI —1) A bW (UV)HIU| - pIWUVI[+|(UV)tU|

1
= WUV pnlWUV/(r(n,x)—n) °

We derive that

u(©) > 1+ limsup —— "
n—stoo r(N,x)—n

thus, p(§) is infinite if rep(x) = 1 and

otherwise. This proves the theorem.

Proof of Theorem 4.5.

We assume that the reader is familiar with the theory of continued fractions (see
e.g. Section 1.2 of [15]).

Set £ :=3 )5, 3. Write § = [0;d1,ds,.. ] and let (Z—j)jzl denote the sequence
of its convergents.

Let N := (ng)r>1 be the increasing sequence of all the integers n such that
r(n + 1,x) > r(n,x) + 2. Let k be a positive integer. By Lemma 5.3 we have
r(nk + 1,x) = 2ny + 3.

We deduce from the definition of the sequence N that

(8.1) r(ng+40,x) =2np+2+¢, 1<{<ngy1—ng.
Set ay, = 7"(27’;") Observe that oy < 2 + n—lk and

(8.2) rep(x) = lkim inf ay.

—+o0

Let k be an integer for which aj < 2 (infinitely many such k do exist since
rep(x) < 2). Let Wy, U, Vi be the words associated with nj as in the previous
proof and wy, ug, vy their lengths, which satisfy wy + ur + vp = (o — 1)ng. There
exists an integer s, such that the agng first digits of x and those of the b-ary

expansion of the rational number coincide. Consequently, we get

Sk
bWk (b1l/k+1}k 71)

Sk 1
§— bwk (huetve — 1) < poknk

(8.3)
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A classical theorem of Legendre (see e.g. Theorem 1.8 of [15]) asserts that, if the

irrational real number ¢ and the rational number %7 with ¢ > 1 satisfy | — %\ < ﬁ,
then % is a convergent of the continued fraction expansion of (.

Since ay < 2, we get ap < 2 — nik As
Q(bwk (buk+7)k _ 1))2 < 2b2(0¢k—1)nk < pENE

holds if axny < 2ny —1, Legendre’s theorem and the assumption ay < 2 imply that

the rational number which may not be written under its reduced

Sk
b“’k (b“k+“k 71) )
form, is a convergent, say %, of the continued fraction expansion of &.
Let ¢ be the smallest positive integer such that oy, < 2.
We first establish that £ < 2 if ny, is sufficiently large.
Assume that r(ngy1,x) = 2ngy1 + epr1 and r(ngr2,X) = 2ngro + Egto, with

€kt1,Ext2 € {0,1}. Put ng := r(ngs2,%x) — r(ngs1,X). Since

Qpyangy2 = T(Ngy2,X) = 1(Ngr1 + (Mer2 — Ney1),X)
(8.4)
= 2np41 + 2+ Ngyo — Mgl = Mgt + N1 + 2,

we get ngyo = Ng4+1 + 2 — €42, thus

Mk = 2(Nkt1 + 2 — €rg2) + Eht2 — 2Npy1 — k1 =4 — Epp1 — Epto.

This shows that n, € {2,3,4}.

By a well-known property of Sturmian sequences (see [35] on page 46), for any
n > 1, there exists a unique factor Z, (called a right special factor) of x of length
n such that 7,0 and Z,,1 are both factors of x.

It follows from our assumption 7(ng41 + 1,x) > r(ngq1,x) + 1 that Z,,, =

r(Ng4+1,X) . . _r(nrg2,x) )

R TS Likewise, we get Z, ., = (s o) = s 2410 thus

7 _ o r(nky1,x) _ o r(nky2,x) _ o m(epa,x)+mk
Th+1 r(ng+1,X)—ng+1+1 r(ng42,%)—npp1+1 r(Net1,%)+0k —npt1+1

It then follows from the theorem of Lyndon and Schiitzenberger (Theorem 1.5.2 in
[9]) that there exists an integer t, a word T} of length n; and a prefix T}, of T
such that

Z

Nk+1

= (T 1.

We deduce that
Nk4+1 — 3
—

~
S
v
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Since |T;| < 4 and a Sturmian word cannot contain unbounded powers of a fixed
word (see [9, Corollary 10.6.6]), there exists an integer ¢ such that no factor of x is
a t-th power.

Consequently, if k is large enough, then we cannot have simultaneously r(ngy1,x) >
2ngy1 and r(ngso,X) > 2ng4o. This implies that £ =1 or £ = 2.

Since ag4¢ < 2, it follows from Legendre’s theorem that the rational number

Skt
bWk+£ (b“’k{»l"'“k«#l_l) )

which may not be written under its reduced form, is a conver-

gent, say %, of the continued fraction expansion of £. The (agng + 1)-th digit of

the b-ary expansion of 2—; is equal to the (agxni + 1)-th digit of x and differs from

the (axng + 1)-th digit of the b-ary expansion of %. Consequently, the rational
Ph

numbers o and % are distinct.
J

Here, the indices h and j depend on k. We have
(85) qn é pWk (buk+vk _ 1) S b(akfl)nk

and

qj < bWk (pUurretvite 1) < plekreDnire
Note that it follows from (8.4) that

(Qryo — D)npyo = npy1 + 2.
and, likewise,
(kg1 — D)ngg1 = ng + 2,

Note that ng11 < ng + 2 if agyq > 2.

The properties of continued fractions give that

1 1
(8.6) s——<le- 2 <
2qnqn+1 qn qhgn+1
and
L ‘g _pij o b
2qiq5+1 ~ g 7 gigi+1
This implies that
bak+tznk+e b7lk+tz
: >
qj+1 =2 2% <
Since oy < 2, we get
bnk+i.

Qh S b(akfl)nk S bnk71 <

< gj+1-
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Combined with pp, /g, # pj/q;, this gives
an < qnt1 < g5 < gj+1-

It follows from

b(xknk
qn =

2qn41
and
(87) Ghy1 < 4 < b(ak+é—1)nk+tz < bnk+4,
that

baknk
(8'8) qn > W

Since qp, < bWk (purtve — 1) < blax=Dnk - this shows that the rational number
m is not far from being reduced, in the sense that the greatest common

divisor of its numerator and denominator is at most equal to 2b*. Furthermore, we

deduce from (8.3), (8.5), (8.6), (8.7), and (8.8) that

1 Ph 1
(8.9) WS' %’—W-
Moreover, it follows from
baknk bnk
> > —
dh+1 Z 2~ 2
that
1< 3 < opt,
dh+1
Consequently, all the partial quotients dj2,...,d; are less than 2b* and we get
Do 1 1 1

) - &‘ ” (qe + qes1)aqe ~ (des1 +2)q? = 2(b* +1)¢?’
for{=h+1,...,5—1.
Now, we are armed to conclude the proof. We consider the increasing sequence
K of integers k such that oy < 2. Let k be an element of I and assume that k is
sufficiently large. We have established that there exist integers h(k) and j(k) such
that all the partial quotients dp(x)2, - - -, dj(x) are less than 2b*. Furthermore, (8.9)
provides us with a precise estimate of dj(x)41. The definitions of h and j show that

if &’ is the next element after k in the sequence K, then h(k’) = j(k). Consequently,
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we have a precise estimate of all but finitely many partial quotients of £ and we

deduce from (8.2) and (8.9) that

. o rep(x)
= limsu = .
#e) k—>+o£ ap—1  rep(x)—1

This completes the proof of the theorem.

9. ON THE RECURRENCE FUNCTION OF AN INFINITE WORD

Cassaigne [24] studied the recurrence function n — R’(n) of an infinite word
X = x1Z2 ..., which is defined as the length of the shorted prefix of x containing
an occurrence of every factor of x of length n. Then it is not difficult to check that
R'(n) > p(n,x) + n — 1 and the equality holds if and only if 7(n,x) = p(n,x) + n.
Moreover, for a Sturmian word x, we have the following relation between r(n,x)

and R'(n).

Proposition 9.1. For any Sturmian word x, we have

/
lim sup R (n) = rep(x) .
notoo T rep(x) — 1

Therefore, it follows from Theorem 3.4 that

! 4/1
limsup 0 5 2 L AVI0 o pgg
n—o4oo M 3 15
and this value is optimal.
Proof. Let x = x1xox3... be a Sturmian word. Let n be a positive integer such

that R/(n) > 2n + 1. Since p(n,x) = n + 1, there exist integers 4, j such that

0<i<j<R(n)—-n and z/I} = miﬂl

R'(n)

R'(n)—1
R'(n)—n+ 1 .

It follows from the definition of R'(n) that z , is not a factor of

Thus, there exists m > 0 such that

i+n+ j+n+m . /
v = 93;-+1 v Tifnimil #F Tjgnims1, and j+n+m+1< R(n).

j+n+m+1
Jj+m-+1

i+m+n
i+m—+1>

of length n + 1. This shows that R'(n+ 1) = R'(n) + 1 whenever R'(n) > 2n + 1.

i+n+m-+1

itmy1 and x

are the two factors of x of length n 4+ 1 ex-

and a:f”/(")Jrl contains all the factors of x

Therefore, =

tending the right special factor x
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Let (nx)x>1 be the increasing sequence of all the integers n such that r(n+1,x) >
r(n,x) + 2. It then follows from (8.1) that

.. . T(ng,x .. Nt +2 7
rep(x):%mlnfwzlémlnf#:l—l—lklmmf bl
— 400 Nk —+00 Nk —+o00 N

For every positive integer n, we have R'(n) = 2n if, and only if, r(n,x) = 2n +
1. This shows that R'(ny + 1) = 2(ng + 1) holds for every positive integer k.
Furthermore, we have established above that R'(n + 1) = R'(n) + 1 if n is not an

element of the sequence (n; + 1)x>1. Consequently, we have

. R'(n) . R(ng+2) . Nk+1 + Nk + 3
limsup —— = limsup ————— = limsup ——
n—otoo M k—too Mk +2 k—+oo ng + 2
=1+ limsup Ml _ A —
k—too Tk rep(x) — 1
This proves the proposition. [l

10. LINKS WITH OTHER COMBINATORIAL EXPONENTS

There are various combinatorial exponents associated with infinite words. One
of them, the initial critical exponent, was introduced in 2006 by Berthé, Holton,

and Zamboni [14].

Definition 10.1. The initial critical exponent of an infinite word x, denoted by
ice(x), is the supremum of the real numbers p for which there exist arbitrary long

prefixes V' of x such that V7 is a prefix of x.

The definition of the Diophantine exponent of an infinite word appeared in [2],

but this notion was implicitly used in earlier works of the same authors.

Definition 10.2. The Diophantine exponent of an infinite word x, denoted by
dio(x), is the supremum of the real numbers p for which there exist arbitrary long
prefixes of x that can be factorized as UV™, with U and V finite words and w a

real number such that
uve|
uV|

2 p-
It follows from Definitions 9.1 and 9.2 that every infinite word x satisfies
(9.1) 1 <ice(x) < dio(x) < +00.

Furthermore, there are words x such that ice(x) < dio(x).
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The following lemma shows that the Diophantine exponent and the exponent of

repetition are closely related.

Lemma 10.3. Let x be an infinite word written over a finite alphabet. We have
rep(x) =1 (resp. = +00) if and only if dio(x) = o0 (resp. = 1). Furthermore, if

1 < dio(x) < 400, then we have

dio(x) ice(x)
rep(x) = dio(x) —1 ~ ice(x) — 1°
Proof. In view of (9.1), it only remains for us to prove the first equality. To see
that rep(x) < diii(o}g‘zl it suffices to note that if UV is a prefix of x, where w > 1
is chosen such that [UVY| = |U| + w|V|, then

r(VIetx) _ UVe UVl
VP S VS OVeovh -1
Conversely, if r(n,x) = Cn for some rational number C' and some integer n, then
the prefix of x of length Cn can be written under the form UV™, where w > 1 and
[UV| = (C — 1)n. This implies that dio(x) > <. Letting C tend to rep(x), we

Cc—
get dio(x)(rep(x) — 1) > rep(x), that is, rep(x) > %}S‘ll. O

One motivation for considering the function n — r(n, x) comes from Diophantine
approximation. Indeed, the following transcendence criteria have been recently
established in [5, 3, 21, 19], although they were not highlighted in these papers, in

which the subword complexity function n — p(n,x) occurs in place of n — r(n,x).

Theorem 10.4. Let A be a finite set of integers. Let x = x1xo ... be an infinite

word over A, which is not eventually periodic. If

rin,x
lim inf M < 400,
n——+00 n

or if there exists a real number n with n < 1/11 and

lim sup r(n,x)

—— < +00,
s tod n(log n)7

then, for every integer b > 2, the real number Zkzl I is transcendental.

Recall that a real number is algebraic of degree two if and only if its continued

fraction expansion is eventually periodic.
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Theorem 10.5. Let A be a finite set of positive integers. Let x = x1x2... be an

infinite word over A. If x is not eventually periodic and

r(n,x
lim inf M < 400,
n—-+o0o n

then the real number [0;x1,x2,...] is transcendental.

The interested reader is referred to the survey [20], where the combinatorial
assumption made on the infinite word x is precisely the following (the same as-
sumption is made in [3, 21, 19]): we suppose that x is not eventually periodic and
that there exist three sequences of finite words (Up)n>1, (Vn)n>1 and (Wy,)n>1 such

that:

(i) For every n > 1, the word W,,U,,V,,U,, is a prefix of the word x;
(ii

(i

)
) The sequence (|V,,|/|Un|)n>1 is bounded from above;
) The sequence (|W,,|/|Uy|)n>1 is bounded from above;

(iv) The sequence (|U,|)n>1 is increasing.

One sees that this assumption exactly means that dio(x) exceeds 1 and is, by
Lemma 10.3, equivalent to the one made in the above transcendence criteria. Using
Lemma 2.2, we deduce immediately that r(n,x) can be replaced by p(n,x) in
Theorems 10.4 and 10.5. Consequently, Lemma 8.1 of [20] (which was also used in
[3, 19]) is not needed to deduce Theorems 3.1 and 3.2 of [20] from the combinatorial
transcendence criteria stated in Section 4 of that paper. This shows that considering
the function n +— r(n,x) is indeed the right point of view.

We end this section with a theorem established in [4]. Tt is stated in that paper
with the subword complexity function n — p(n,x), but, in that paper as well, the
proofs actually work if this function is replaced by n — r(n,x). For the definition

of Mahler’s classification, the reader is directed to Chapter 3 of [15].

Theorem 10.6. Let £ be a real number such that its expansion X in some integer
base b > 2 satisfies

(n,%)

) r
limsup ——= < +o0.
n—+4o00 n

Ifrep(x) = 1, then £ is a Liouville number. Otherwise, £ is either an S-number or

a T-number in Mahler’s classification.
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