A KIT ON LINEAR FORMS IN THREE LOGARITHMS

MAURICE MIGNOTTE

ABSTRACT. In this paper we give a general presentation of the results to be used to get a ‘good’
lower bound for a linear form in three logarithms of algebraic numbers in the so-called rational
case. We recall the best existing general result — Matveev’s theorem — and we add a powerful
new lower bound for linear forms in three logarithms. We treat in detail the ‘degenerate’ case,
i.e. the case when the conditions of the zero-lemma are not satisfied.

1. INTRODUCTION

In this paper we give a general presentation of the results to be used to get a ‘good’ lower bound
for a linear form in three logarithms of algebraic numbers. We recall the best existing general
result — Matveev’s theorem — and we add a powerful new lower bound for linear forms in three
logarithms in the so-called rational case, i.e. when the coefficients of the linear form are rational
integers. We use this result as a first step in our computation of a lower bound. Even if this
is not necessary from the logical point of view, this helps a lot for the study of the ‘degenerate’
case, i.e. the case when the conditions of the zero-lemma are not satisfied. We treat in detail the
degenerate case, using linear forms in two logarithms. In the degenerate case, another approach
(see [12]) is to use determinants of interpolation especially built according to the conditions of the
zero-lemma; maybe this approach gives better results but this is not clear in our case. It seems
that the published results in this case give weaker results than ours.

Essentially, the present paper is extracted from [2] and [3], but we give much more details in
order that this presentation is almost self-contained. Our method is the method of interpolation
determinants introduced by Michel Laurent in [5], [6] and [7]. In the case of three logarithms,
this method was used by C.D. Bennett et al. [1]. But the present paper brings some progress
when compared to [1]: we treat the general case of algebraic numbers (not only multiplicatively
independent rational integers), many technical details have been improved and, more importantly,
a new zero-lemma of Michel Laurent leads to much better estimates.

Our aim, suggested by the title a kit..., is to explain how to deal with concrete cases to get
a lower bound of a linear form A in three logarithms of algebraic numbers. The process contains
three steps. First, using a general estimate of Matveev, we obtain some lower bound, say Bj.
Then, this first result is used in our estimate for which there are two cases, the non-degenerate
case and the degenerate case. In the non-degenerate case we get a second lower bound Bs, and if
B5 is smaller than B; we study the degenerate case. In this case, we consider our linear form in
three logarithms as a linear form in two logarithms and we apply the results of Laurent-Mignotte-
Nesterenko [9] to this linear form and get a third lower bound Bs. Of course, the conclusion is
|A| > min{Bs, Bs}. In the degenerate case, there are other ways to proceed in the literature, see
the comments in Section 5.
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2. MATVEEV’S THEOREM FOR THREE LOGARITHMS

First, we need the special case of three logarithms of the Theorem of E. M. Matveev, thus we
quote his result. This theorem enables us to get a first bound in our studies and this bound can
be used as the departure for further improvements. The reason for this should appear later.

Theorem 1 (Matveev). Let A1, A2, A3 be Q—linearly independent logarithms of non-zero algebraic
numbers and let by, ba, bs be rational integers with by # 0. Define a;; = exp(\;) for j =1, 2, 3
and
A =01 A1 + oo + b3As.
Let D be the degree of the number field Q(aq, aa, a3) over Q. Put
x = [R(a1, ag, as3) : R].
Let A1, As, A3 be positive real numbers, which satisfy
A; > max{Dh(a;),|);],0.16} (1< j <3).
Assume that
B> max{l,max{|bj|Aj/A1; 1<j< 3}}

Define also
5x 16° 4 3¢\ X I
C, = ox e’ (7+2x) <?> (20.2+log(3 D log(eD))).
Then
log |A| > —Cy D* Ay A3 A3 log (1.5eDBlog(eD)).
Proof. See [10]. O

3. A NEW ESTIMATE ON LINEAR FORMS IN THREE LOGARITHMS

We present the type of linear forms in three logarithms that we shall study. We consider
three non-zero algebraic numbers 1, a2 and as and positive rational integers by, bs, bs with
ged(by, ba, b3) = 1, and the linear form

A =bslogas —bylogay — bzlogas # 0.
We restrict our study to the following cases:

e the real case: «j, az and ag are real numbers > 1, and the logarithms of the «a;
are all real (and > 0). Moreover, in concrete cases, a1, ae and ag are multiplicatively
independent. Of course, then the loga;’s are Q-linearly independent.

e the complex case: a1, as and az are complex numbers # 1 of modulus one, and
the logarithms of the a; are arbitrary determinations of the logarithm (then any of these
determinations is purely imaginary). In practical examples, two of these a’s are multi-
plicatively independent and the third one is a root of unity. We shall see later that (see
Corollary 3.10), in this case, the log ;s are again Q-linearly independent.

In practice this restriction does not cause any inconvenience since
A = max{|R(A)], [S(A)[},
and so we can always reduce to the above cases.
Without loss of generality, we may assume that
ba|log | = by]log an| + bs|log as| £ [A].

But notice than this introduces some important dissymmetry between the roles of the
coefficients b1, by and bs.
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Like the authors of [1], we use Laurent’s method, and consider a suitable interpolation determi-
nant A.

We shall choose rational positive integers K, L, R, S, T, with K, L > 2, we put N = K2L and
we assume RST > N. Let ¢ be an index such that (k;, m;,¢;) runs trough all triples of integers

with0<k <K-1,0<m; <K-1and 0</{; <L —1. So each number 0, ..., K — 1 occurs
KL times as a k;, and similarly as an m;, and each number 0, ..., L — 1 occurs K? times as an /;.
Put

by = dib}, bg = dsb, by = dibly = dsby, B1 = b1/by = b /by, B3 = bs/by = bs /by,

where
dl = ng(bl, bg) and dg = ng(bg, bg)
With the above definitions, let

A = det { (ijl2 + Sjbll) (tjbl?/ + Sjbél) af“”i agz’SJ aém} :
k’i m;

where 7}, s;, t; are non-negative integers less than R, S, T, respectively, such that (r;, s;,¢;) runs
over N distinct triples.
Let
L-1 R-1 S—1 T-1 S—1

i =4 — ——, = =
5 7o Co

and

K-1 *m
b= (by10)(b5C0) <H k’) :
k=1
Following [9], Lemme 8, we can prove that

(R—1bs+(S— Db (T =1y + (S —1)bs

logb < log 54, + log o
2log(2nK/e/?) 246772 +logK
—2log K +3 —
o8+ K—1 3K(K — 1)

Then, we have Eij\;_ol Ai =0 and ([1], formula (2.1))

Xirja;isj ag\itj _ ai\i(Tj+Sjﬁl)ag\i(tj"l'sjBS)e)\iSjA/bz _ ai\i(rj-l‘sjﬁl)agi(tj-i'sjﬁs)(1 + 91'3'1\')
)

251
where
97{] _ e}\iSjA/bg _ 1
A/
and
LSeLSIAl/(2b2)
A = [A]- 67,
2/bo|

where all |6;;] are < 1. Proof: since s;, ba, L and |A| are all positive, |A;| < L/2 and also s; < S
we have

-1 LS|A
¢ <1, where z= S[A]

0,:| <
10351 < et ’ 2bs

> 0.
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3.1. Preliminaries. This subsection contains some technical results used in the estimates of the
interpolation determinant.

Lemma 3.1. Let K, L, R, S, T be positive integers, put N = KL and assume N < RST, put
also

n—1

and (r1,...,rn) €{0,1,...,R—1}N. Suppose that for each r € {0,1,..., R—1} there are at most
ST indices such that rj =r. Then

N
Zgnrn_MR SGRa
n=1
where
N
L—-1 NLR (1 N
Mp= ("= . d  Gp=—t(o- 1 ),
R ( 2 );T o R=3 (4 12RST>
Proof. Apply [9], Lemme 4. O

As in [1] or [12] p. 192, for (k,m) € N?, we put ||(k,m)| =k + m. And we put
O(Ko, 1) = min{|| (k1,ma)l| + - + [[(kr, m1)|},
where the minimum is taken over if the I couples (k1,m1), ..., (kr,m;) € N? which are pairwise

distinct and satisfy mq, ..., my < Ky. Then, we have:

Lemma 3.2. Let Ky, L and I be positive integers with Ko > 3, L > 2 and I > Ko(Ko+1)/2.
Then

I? (Ko—1)(Ko+1) Ko(Ko+2)(Ko+ 1)
@(KO’I)Z(z(KOH)) <1 - I - - 1212 - >

Proof. This is an improvement of the Lemma 1.4 of [1]. We follow more or less the proof of this
result.
The argument is elementary: the smallest value for the sum ||(k1,m1)| + -+ + |[(kr,m7)|| is
reached when we choose successively, for each integer n =0, 1, ... all the points in the domain
D, = {(k,m) e N?; m < Ko, k+m =n},
and stop when the total number of points is I. Moreover,

n+1, if n <Ky,

Card(D,) =
ard(Dn) {K0+1, if n> Ko

Hence the number of points obtained when n varies between 0 and, say, A — 1 (with A > Kj) is

Ko—1 A—-1
;(n+1)+n;<0(Ko+1): (A—Ko+%> (Ko+1) = <A—%) (Ko + 1).

With this notation, the number I of points can be written as
Ky .
I= A—7 (Ko+1)4+r, with 0<r <Ky,

provided that I > Ky(Ko + 1)/2, which is one hypothesis of the Lemma.
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Then, the computation of [1] shows that
Ko—1 A-1

O(Ko, 1) 2 O(Ko, I):= Y n(n+1)+ Y n(Ko+1)+74,
n=0 n=Kj
where
Ko—1 A—1
Z n(n+1)+ Z n(Ko+1)
n=0 n=Ko
Ko —1)Ky(2Kp — 1 Ko — 1K K 1
:(0 )60( 0 )+(02) 0, 02+ (A(A - 1) - Ko(Kqg — 1))
_ (KO - 1)K0(2K0+2) n Ko+1 A(A— 1) _ (KQ — 1)K0(K0+1)
6 2 2
_ Kol (A(A - L ror - 1)) .
2 3
And we get
In terms of I,
K() I—r
A= —+ ——.
2 +K0+1
We have,
90  Ko+1 oA oA 24 -1 r 1 r
G i e S o S B A

which shows that the minimum of O is reached either for r = 0 or r = K. It is easy to verify
that © takes the same value for » = 0 and r = K + 1 (which is indeed out of the range of r), this
implies that the minimum is reached for r = 0. It follows that

20(Ko, I) <K0 I > <@+ I _1) _ Ko(Ky—1)

Ko+1 2 Ko+1 2 Ko+1 3
K? I? Kol K 1 K2 K
=04 4 0 __0_7__04__0
4 (K0+1)2 Ko+1 2 Ko+1 3 3
I? (Ko— DI K02 Ky

(Ko+12 ' Ko+1 12 6

1Y (Ko —1)(Ko+1) Ko(Ko+2)(Ko+ 1)
_<K0+1) (H : I : - 12120 )

which proves the lemma. O

The version of Liouville inequality that we use is the same as in [9] (p. 298-99) or in [12] Ex. 3.2,
p- 106:

Lemma 3.3. Let a1, as and as be non-zero algebraic numbers and a polynomial f € Z[X1, Xa, X3)
such that f(aq, e, as) # 0, then
f (a1, a2, a3)] > |f|7PH (a]) " (03)®(a3)™ x exp{=D(dih(a1) + dah(az) + dzh(az)) },
where D = [Q(a1, g, as) : Q] / [R(a1, e, a3) : R],
di =degy. f, i=1, 2,3, lfl = Inax{|f(zl,z2,23)| sz <1, i = 1,2,3},
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and h(a) is the absolute logarithmic height of the algebraic number «, and o = max{1, |a|}.
Remark. See also [12] Ex. 3.5, p. 108, for a stronger version using projective height.

Lemma 3.4. Let K > 1 be an integer, then

4
K-1 KK—1) _
2log(2nK/e?/?) 24672 +1logK
10g<H k!) > 2log K — 34 2BCTK/eVT) 24 6m " +log K
k=1

K-1 3K(K—-1)
Proof. This is a consequence of a variant of the proof of Lemme 8 of [9]. O

3.2. An upper bound for |A|. Let
zi=rj+sifi—no  and =1+ ;0 — (o,
so |z;| <mo and |(j] < {p. Since,

B! b b ki
<7°g 2 ]-: S5 1) = ]z ' zj]“ -+ terms in z; of degree less than £;,

t;by +s; b'{)
mi

and similary for ( , using the multilinearity of determinants we obtain the formula

bl kib//mi
A — det 2 2 ijicjmialfl’r‘j OéQllsj O[geltj .

ki! mi!
Let N N N
L-1 L—-1 L-1
Ml:T Tj, MQZT Sj, MgZTth.
j=1 j=1 j=1
From the two above relations, and the definition of );, it follows that

kipnm,
by b
2 2

A = ay M asM2 3 M3 det,

ijiijial)\i(Tj+Sjﬁ1)a3)\i(tj+Sjﬁg) (1 + Alew)> .

Since ), A; = 0, we deduce that

A= 041M1042M2O[3M3 det

2 G e P ash (14 A/%‘)) |

Expanding this determinant, we obtain
A = a1M1a2M2a3M3 Z (AI)N_IZIAz,
ICN

where N'=1{0,1,...,N — 1} and Az is the determinant of a certain matrix Mz defined below.
Let 3

bl ib/I mg
#;(2,¢) = 2 72
)\iz )\ZC

[where a7 = exp(Aizlogas) and similarly for «3*°] and

Br(x)i; = {Gﬁj(wzjaw@), if i €1,

) Nz N\,
Zklgml jiwz 31(7

0:;0j(xz;,2¢;), if i &I
Then, Mz = (®z(1);;) and letting ¥z(z) = det(Pz(x)), gives
[Az] = |det(@z(1))| = [¥z(1)!
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Now, let
Jz = order(V,0),

the maximum modulus principle implies

U (1)] < p~ 7 |111|21X|‘1/I( z)|.

Since |z;] < no and [(;| < Co,

b/QZ kingmi Sk 5
v <Nl =/~ mi
X Aizo(i)) L + AiCo(iy) 1 )}

Ugg@)exp{ﬂ((z 2a) ogan + (D Ao ) log az

Pt 1 N NLR NLS NLT
g 4 12RST7 1 2 g, 2 2 g, 3 2 g
Then, using Lemma 1 and the relation Zi]igl Ai =0, we get
N-1 N-1
Z Nizoiy = D Ailri+ i1 —m0) = > Xilri + siB1)
i=0 i=0
N-1 N-1
L—-1
= zz: (& - —> To(i) + 51 ; (& - T) So(i)s

and thus

N-1

Z Aizo(iy < G1 + P1Ga.

i=0
In a similar way,

N-1

Z Ailo(i) < Gz + B3Ga.

i=0

It follows that (recall that ba|log as| = b1|logay| + bs|logas| £ |A])

exp {p((z AiZo(i))|log o | + (Z AiCo(i)) | log 0<3|) }

< exp {p((G1 + BiGa)[log au| + (G + BaGa) log s ) }

A
< exp{p (Gluogan + G| log o + |b_2|> +G3|loga3|>}.

As in [1], we see that if

(*) A/ <p—KL

then, for p > 2,

Al NLSIA| _ ooy N pK?L _ KL .
— < pg—— pK°L— < < 10
b =P, 2 1 = 2)kL S1gokL =1V 5

for K > 3 and L > 5. Putting these estimates together, we get that condition (*) implies the
upper bound

pG2

|A| < 1.001 a1M1+PG1 a2M2+P02 a3M3+PG3 NI x 2sz(ki+mi)

(o) =4 ()= T

sz' Hml' ceS(N) p’z ’
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where
Jz = order(¥z,0).
Under condition (*), we have

AN < p KLN=IZ)=Jz
pJI -

If |Z] <0.5N then

NKL 4 1
KL(N —|Z|) > 05KLN >~ (142 4+
(N —[Z) 205 =4 <+L+2K—1>

as soon as K >3 and L > 5, conditions that we assume from now on.
If |Z] > 0.5 N, then using Lemma 1.3 of [1] or Lemma 6.4 of [12], we obtain

Jr > O(Ky,|Z]), for Kog=2(K—1).
Now, |Z| > 0.5 K?L implies |Z| > 2.5 K? and using Lemma 2 we get (with the notation I = |Z|)

12 (Ko —1)(Ko+1) Ko(Ko+2)(Ko+1)?
2(K0+1)<1+ - I - - = 012120 >

KL(N—1)+J; > KL(N —1)+

It is easy to verify that the right handside is a decreasing function of I in the range [N/2, N], since
L > 5, and we get (recall that N = K2L and Ko = 2K — 2)

N2 <1+K§—1 _KQ(KO+2)(KO+1)2)
)

KL(N —|T]) + J7 >

2(Kp+1 N 12N2
_ N? ( 2K 2K(Ky—1) KKO(K0+1)(K0+2))
4K \ Ko +1 N 6N2
:N_2(1+ 1 +2(2K—3)_2(K—1)(2K—1)>
4K 2K —1 KL 3K2L2
:N_2<1+£+ 1 _i_i+ 2 _L>
4K L 2K-1 3L? KL KL?> 3KZ2L?
o
T 4K L 2K-1 3L KL)’
because L > 5, and this implies, in all cases,
N2 4 1 6 4
KL(N_|Z|)+JIZE<1+f+m_ﬁ_@)'

Thus, gathering all the previous estimates and using the relations

N—-1 N-1
(K - 1)K N

ki= Y mi=-——"t— KL= (K1),
1=0 i:Om 2 2( )

and the definition of b, we obtain the following result (see [2]).

L That is: the function of a complex variable z given by
Y(x) = det(fi(zzy, ij))1§i,j§1

has a zero at & = 0 of multiplicity at least (Ko, ), when f;(z,¢) = 2Fi¢™i¢;(l1z + 12¢), where ¢; is an analytic
function in C.
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Proposition 3.5. With the previous notation, if K >3, L > 5 and A’ < p~ 5L, for some real
number p > 2, then

3 3
N
log |A] < ZMi10g|ai| +pZGi|10gai| +log(N!) + Nlog2 + ) (K —1)logb
i=1 i=1
_ (NKL n NKL  NK
1 42K —-1) 3L

N
— 7) log p + 0.001.

3.3. A lower bound for |A|. Using a Liouville estimate as in Lemma 3.3 above, we get (as in [2]):

Proposition 3.6. If A #0 then

3
D1
log |A| > — — NlogN + ;(Ml + G;) log ||
> D—1
2D Gih(a;) — —— (K —1) Nlogb.
=1

Proof. We have A = P(ay, a2, a3) where P € Z[X;, X2, X3] is given by
N

/ / /! /!
PG X, X0) = Y salo) T (170 o) (0 ol e e e,
cEGN i=1 ¢ ¢
and where
N N N
= Zéﬂ‘g(i), Ngo = Zéisg(i), Ngo = Zfitg(z)
i=1 i=1 i=1
By Lemma 1,
|degy, P — M;| <Gy, i=1,2,3.
Let
Vi=|M;+G;|, U=[M-G], i=12,3,
then
A=a1"asas"? P(afl, st a;l),
where

degy, P<V;—U;, i=1,2,3.
By our Liouville estimate

3
10g|ﬁ(a;1, ay a3 h)| = —(D—1)log |P| — ’DZ(Vi —U;) h(w).
i=1
Now we have to find an upper bound for | P| (or for | P|, which is equal to | P|). By the multilinearity
of the determinant, for all n, ¢ € C,

.b/ _b/ _ k; t-b” _b// _ m;
P(z1, 22, 2z3) = det <(TJ 2t 5]’;'1 ™ (8505 + 2'3 ¢) czq BT g tisi zglitj) .
(N i+

Choose

(R— 1)t + (S — 1), (T — 1)b + (S — 1)blt
2 ) C = D) .

Notice that, for 1 <

|rjby + 5507 — "

n
<j<

R—1)b — Db\ M T—1)b —Dbs\™
( 2+ )1) ; Itjb5+5jb§,’—<’“i < <( Jba + (5 )3>

2d3
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and that
-1

N-1
B _(K-1)K . N
gki_gmi_fKL_E(K—l),

3

then Hadamard’s inequality implies

< /2 ((R=Dba + (8 = Db\ VM (T = 1o + (S = 1) VN

(i) ()

4
K-—1 TR(K-1)
R—-1 S—1 T-1 S—1
b= (blzno)(b/QICO) <H kl) , where 1y = + 1 , o= + 55 .
k=1

Recall that

Thus we get,
|P| S NN/2 b(K*l)N/Q'
Collecting all the above estimates, we find

3 3
log |A] > —(D — 1) (10g (NN/Q) + w logb) ~DY (Vi — U h(a) + 3 Vilog lal.
=1 i=1

The inequalities Dh(w;) > log |a;| > 0 imply
Vi log |al| - 'D(V; - Uz) h(al) > (Ml + Gl) log |Oéi| — QDGlh(Oéz)

and the result follows. O

3.4. Synthesis. Under the hypotheses of the previous Propositions we get

3 3
D-1 D-1
B NlogN + E (M; + G;) log|a;| — 2D E G;h(o;) — T(K— 1) Nlogb

i=1 i=1

3 3

N

< ZMilog|ai| +pZGi|logai| +log(N!) + Nlog2 + 5 (K —1)logd
i=1 i=1

<NKL NKL NK

N
B S b 0.001.
1+ Tier—1) 3 2> o8P+

Or, after some simplification,

3

D-1
5 NlogN < E Gi(p|log oi| — log ;| 4+ 2Dh(a;)) + log(N!) + N log 2
i=1
K-1 NKL NKL KN N
——— DNlogb— — -— 1 0.001.
T ©8 (4 TIeK -1 " 3L 2>°gp+

This result implies (divide by N/2 and use N! < 0.96 N(N/e)¥, true for N > 7) the following
proposition (already appearing in [2]):
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Proposition 3.7. With the previous notation, if K >3, L >5, p > 2, and if A # 0 then
A/ > p—KL
provided that
KL L 2K
(T + 1 1- 3_L> logp > (D +1)log N + gL(a1 R + a2S + asT)
+D(K —1) logb — 2log(e/2),
where the a; are positive real numbers which satisfy
a; > p|log a;| — log |a;| + 2D h(«;), i=1, 2, 3.
3.5. A zero-lemma. To conclude we need to find conditions under which one of our determinants
A is non-zero, a so-called zero-lemma. We use a zero-lemma due to M. Laurent [8] which is already
used in [3] and improves [4] and provides an important improvement on the zero-lemma of [1]:

Proposition 3.8 (M. Laurent). Suppose that K, L are positive integers and that X1, Yo and X3
are finite subsets of C2 x C* containing the origin and such that

{Card{)\:cl +pxe ¢ (x1,20,y) € 51} > K, V(A p) #(0,0),

) Card{y : (z1,22,y) € 1} > L,

and
(i)
and also that

(iii) Card ¥3 > 6K°L.

Then, the only polynomial P € C[X1, X»,Y]| with degy, P < K fori =1, 2, and degy P < L which
is zero on the set X1 + Yo + X3, is the zero polynomial.

Card{()\‘rl + ,u“r%y) : (Ilax%y) € 22} >2KL, V(AMUJ) 7£ (050)7
Card{(x1,z2) : (x1,72,y) € Yo} > 2K?,

We now study the above conditions in detail. For j = 1, 2, 3, we shall consider finite sets X;
defined by

Ejz{(r—l—sﬁl,t—i—sﬁg,,a{a;ag) :0<r<R;,0<s<S,, OStSTj},

where R;, S; and T} are positive integers and where

_bl_b’1 _b3_bg
ﬁl_g_gu ﬁS—E—b—g

Of course, this choice corresponds to the entries of the arithmetical matrices introduced previously.
We have to consider the multiplicative group G generated by the three algebraic numbers a7,
as and as.

Concerning the above group, the following elementary lemma is important.

Lemma 3.9. Suppose that oy, as and as are non-zero complex numbers. Let by, by and b3 be
non-zero rational integers. Let loga; be any determination of the logarithm of oy for j =1, 2, 3
and put
A= bQ 10g042 — b1 10g041 — b3 logag.
Let
Bi1=0b1/bz, B3 =0b3/ba.

Then the following conditions are equivalent:



12 MAURICE MIGNOTTE

(a) The map
¥ 73 — C3, (rys,t) — (r+ B1s,t+ Bss, agagag)

is not one-to-one (not injective).
(b) There exists some positive integer m such that

™2 = M0 s,
(¢) The number A belongs to the set inQ.
Proof. Clearly, without loss of generality, we may assume that ged(by, b2, b3) = 1. Then we put
di = ged(br,b2), by = dibl, by = dibl, ds = ged(bs,ba), by = dsby, by = d3by.
Since by, ba, bs are coprime, we have ged(dy, ds) = 1, thus
by = didsbs (say), by =dsbs, by =dibo.

After these preliminaries, we prove the implication (a) = (b). Suppose that the map v is not
injective. Then there exist rational integers r, s, t, not all zero, such that

Y(r,s,t) = (0,0,1).

That is,

r+s61 =0, t+s83=0, a{agag =1.
The first relation implies 7 = —kb} and s = kb, = kdgba, for some rational integer k. The second
relation implies ¢t = —Ib] and s = b = ld1ba, for some rational integer I. In particular, kds = lds,

hence there exists m € Z such that k = md; and [ = mds. Thus
r=—mby, Ss=mby, t=—mbs.

Clearly m # 0, and the third relation gives

mby _ almbl mbg

Q2 as )

as wanted.
Clearly, (b) implies (c).

To show that (¢) implies (a), we suppose that (c¢) holds, i.e. that mA belongs to 2inZ for some
positive rational integer m. Then it is clear that ¢ (—mby, mba, —mbs) = (0,0, 1), proving that the
map 1 is not injective. (I

Corollary 3.10. If a1, as and az are non-zero complex numbers such that (for example) oy and ao
are multiplicatively independent and oz # 1 is a root of unity, and let loga; be any determination
of the logarithm of o for j = 1, 2, 3, then the numbers log oy, logoas and logas are linearly
independent over the rationals. Indeed, if by, by and bs are non-zero rational integers then the
number by logay + by logas + bylogas does not belong to the set iwQ.

Proof. Suppose that
A =bylogas —byloga; —bslogas =0

where b1, by and bs are rational integers not all equal to zero. Then ag2 = a?lagﬁ. Assume

that ag = 1 with d > 0, then ax™> = a9, which implies b; = by = 0 since o; and ao are
multiplicatively independent. Thus b3 # 0 and A = bz log as # 0, contradiction. This proves the
first claim. The second claim is an obvious consequence of the first one. O
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We also assume that

(Il) Card{(xl,xg) : (.Il,{EQ,y) S 21} = (Rl + 1)(S1 + 1)(T1 + 1),
and
(I2) Card{(z1,22) : (z1,22,y) € L2} = (R2 + 1)(S2 + 1)(T> + 1).

Concerning the conditions (I) and (I), the following very elementary lemma is useful.

Lemma 3.11. Suppose that a1, as and as are non-zero complex numbers and that by, ba and b3
are positive rational integers which are coprime. Let R, S and T be positive integers and consider
the set

S = {(r+sbi /byt +sby/bs) : 0<r <R 0<5<S,0<t<T}

Then 3
CardX = (R+1)(S+1)(T+1)
unless
bi <R and by <S and b3 <T.
Proof. Let

p1 = b1/ba, B3 = b3/ba.
As above, we put

dy = ged(by, b2), by = dibl, be =diby, ds = ged(bs, ba), by = dsby, ba = dsbf.
Since by, ba, b3 are coprime, we have ged(dy,ds) = 1, thus
by = didsby (say), by =dsby, bl = dyibs.
After these preliminaries, we prove the result. Suppose that the map
V72— C?, (r,s,t) — (r+ Bis,t + Bs3s)

is not injective. Then there exist two different triples of rational integers (r,s,t) and (r/,s',t'),
with0<7, 7 <R,0<s,¢ <Sand0<t t <T such that

w(Ta S’ t) = w(’r’/’ S/7t/)'

That is,
(r—r)+(s=8)=0 and (t—t)+(s—s)p;5=0.
The first relation implies r — 7/ = —kb) and s — s’ = kb, = kdsby, for some rational integer k.
The second relation implies ¢t — ¢’ = —{b{ and s — s’ = [b] = ld, b, for some rational integer {. In
particular, kds = ldy, hence there exists m € Z such that k = md; and | = mds. Thus
r—r'=—mb, s—s =mby, t—t =-—mbs
and the conclusion follows since clearly m is non-zero. ([

Because of the Lemma 3.9, we see that

AginQ = CardX; = (Rj +1)(S; + 1)(T; +1), j=1,2,3.

The conditions of the zero-lemma, Proposition 3.8, are the following:
(i) The first condition is divided into two subconditions, the first subcondition is
(i.1) Card{Azy + pxs : (z1,72,y) € S1} > K, V(A p) # (0,0).

This is the most technical of the above conditions, we study it in detail later.
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The second subcondition is

(i.2) Card{y : (z1,22,y) € L1} > L.

(ii) The second condition of the zero-lemma is also divided into two subconditions, the first being
(ii.1) Card{(Aw1 + pza,y) : (z1,32,y) € B2} >2KL, V(A p) # (0,0).
We replace it by the stronger condition

Card{y : (z1,22,y) € 2} > 2KL.

The second subcondition of condition (ii) of the zero-lemma is
(ii.2) Card{(z1,22) : (21,22,9) € 8o} > 2K>.
By (I2) this condition is equivalent to
(C.ii.2) (Ry +1)(S2 +1)(To + 1) > 2K2.
(iii) There is just one condition, namely

Card X5 > 6K L.
When A does not belong to the set imQ, this is equivalent to
(C.iii) (R3+1)(S3 +1)(T3 +1) > 6K2L.

Now we have ‘translated’ all the conditions of Proposition 3.8, except the subcondition (i.1).
We come back to this situation in the following Lemma which brings some extra information to
Proposition 3.1.1 of [1], or also [12] Ex 6.4, p. 184.

Lemma 3.12. Let A, B and C be non-zero rational integers with gcd(A, B,C) =1 and let D be
an integer. Define

II={(z,y,2) €C* : Az + By+ Cz =D}
and consider the set
E:{(x,y,z)eZ?’ 0<z<X,0<y<Y, nggZ},
where X, Y and Z are positive integers. Let

M = Card {(z,y,2) € ¥ : Az + By+ Cz = D}.

we (B el e 0= (+[3) 0+

a = ged(B,C).

Then

where

If we suppose that
M>max{X+Y+1,Y+Z+1,Z+X+1}
then
Y +1)(Z+1)
M —max{Y, 7}’

(X+1)(Z+1)
M —max{X,Z}’

(X+1)(Y +1)
M — max{X,Y}’

|A] < |B| < IC] <
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Proof. If the image (by the map (z,y, z) — Az + By + Cz) of a point (z,y, z) € Z3 belongs to the
plane II then

Ar =D (mod «a),

where A and « are coprime since ged(A, B,C) = 1. This shows that the number of such x which

satisfy 0 < x < X is
X
<14|—].
«

To simplify the notation we suppose for a while that A, B and C are positive. Let now x be fixed,
with 0 < 2 < X, and such that the images of two points (z,y, z) and (z,’, z’) belong to II. Then

B(yl - y) = O(Z - Zl)a
where we suppose (as we may) that y is minimal (then 3’ > y). Hence there exists k£ € N such that
v —y=k(C/a) and z-—2 =k(B/a).

It follows that, for x fixed, the number of (z,y, 2z) € X whose image belong to II is

ool

e [2]) (4 )

which proves the first inequality of the Lemma. The proof of the second one is the same (looking

at the coordinate z).
(X 134
f(&) = (14'?) (14‘?),

M < f(a).

Hence

For £ > 1 put

then

Suppose now
M>max{X+1,Y+1, Z+1}.
Put
a; =max{1,C/Y}, a2 =min{C, X}.
e If C>Y and 1 < a < C/Y then we get M < X + 1, contradiction, thus
XY
C>Y — a>a; and f(al)—2(1+7)
e If C' > X and a > X then we get M <Y + 1, contradiction, thus
XY
C>X = a<a and f(a2)=2(1+7).

o If C <min{X,Y} then o; =1 and ap = C and

flaa) = (X +1) (1 + %) . flae) = (1 + %) (Y +1).
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It is easy to check that f” is positive and, from the previous study, it follows that

M < max{ f(o), f(az2)}.
Considering the different cases C' > max{X, Y}, X <C<Y,Y <(C < X and C < min{X,Y} we
get always
(X+1)(1+%), ifX>Y,
M<max{(X+1)(1+%),(1+Z) YV +1)} =
(1+2) (Y +1), otherwise.
If X >Y then
Y
M<(X+1) (1+—>,
C
which implies
Y(X +1)
C )
and the hypothesis M > X +Y + 1 leads to

X+ +1)
M-X ’

Y(X +1)

M-(X+1)< M- (X+1)’

hence C <

C<

otherwise (i.e., if X <Y') we get
o< (X—l—l)(Y—i—l)'
- M-Y

Finally, we always have

(X+1)(Y+1)
M —max{X,Y}"
In the same way, considering now the z—coordinate, we get
(X+1)(Z+1)
M —max{X, 7}
Then, considering y fixed, a similar argument gives
Y+1)(Z+1)
M — max{Y,Z}"

ICl <

|B| <

|A| <

O

Corollary 3.13. Let B and C be non-zero rational integers with ged(B,C) =1 and let D be an
integer. Define the plane IT (with A =0), i.e.

Hz{(x,y,z) eC?: By—i—Cz:D},

and X and M as in the above Lemma. Then

Mg(X+1)<1+{%D and Mg(X+1)(1+{%D.

Moreover, if we suppose that
M>max{X+Y+1,X+2Z+1}

then (X +1)(Z+1) (XD +1)

M-X ’ M-X
Proof. The proof is similar to that of the Lemma, but simpler. We omit the details. O

|B| < IC] <
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Lemma 3.14. Let Ry, S1 and T} be positive integers and consider the set
S ={(z1,22) =(r+sPi,t+sB3) : 0<r<R;, 0<s<8, 0<t<Ti},

where 1 = by /by and B3 = b3 /by with by, ba and bs coprime non-zero rational integers, and assume

that
Card 3, = (Ry + 1)(S1 + 1)(Ty + 1).

Put o
V= ((Ry+1)(S + 1)(Ty + 1))

Let (A, 1) € C*\ {(0,0)} and let ¢ be a complex number. Let x be a positive real number. Then,

for any ¢, the number M of elements (x1,x2) € X1 such that

ATy + pxe =c
satisfies
(1) Mgmax{RlJrSlJrl, S +T +1, Ry +T) +1, XV} — M,
— except if, either there exist two non-zero rational integers ro and sg such that
robe = sob1
with
Iro| < (R +1)(Th +1) and 15| < (S1+1)(Ty+1)

M =T - M =T ’
or there exist rational integers r1, s1, t1 and ta, with r1s1 # 0, such that
(t1b1 + r1b3)s1 = r1baty, ged(r, t1) = ged(s1,t2) =1,

which also satisfy

(Rl + 1)(51 + 1)
M — max{Rl, Sl}7
(Ry +1)(T1 + 1)
M — max{Rl, Tl} ’

(S1+1)(Ty + 1)
M — max{Sl, T1}7

0<|risi] <6- [s1t1] <6 -

and |rite] <6 -

where
§ = ged(ry, s1).

Moreover when t1 = 0 we can take r1 = 1, and when to = 0 we can take s1 = 1.

If the previous upper bound (1) for M holds then, for all (A, u) € C?\ {(0,0)}, we have
(Ri+1)(S1+1)(T1+1)
max{Rl + S5+, 5+T1+1, Ry +T1+1, XV}

Card{)\xl + pxe ;o (z1,22) € il} >

Proof. Let
Ey={(rst)€Z’ : 0<r<Ry, 0<s<8,0<t<T}.
Recall the notation
b b
vi=r+p0s, m=t+Fs, =, f3=.
ba ba

For (A, ) € C%\ {(0,0)}, we consider the cardinality
N = Card{)\:cl + puxe : (x1,29) € 21}
We put

M = Card ¥ A =
rgg@( ar {(.Il,.IQ)G 1 1 + pre c}
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and
II. = {(21,22) €C? : A2y 4 pze = c}.
We clearly have }
N > Card X1 /M,
so that the last claim of the Lemma is proved and we may also suppose that (1) does not hold.

Consider a complex number ¢ such that the number of points (1, z2) € ¥ for which Az + pas
belongs to II. is maximal (and so equal to M). We distinguish the following cases.

e If 4 = 0: Apply the previous Corollary with (x,y,2) — (r,s,t), (X,Y,Z) — (Ry,51,T1),
(Aa Ba O) = (bQ/dla bl/d17 O)a where

dl = ng(bl, b2),
and (b2/dy,b1/dy) — (ro,s0). Then we get the wanted assertion (the ‘either’ case).

Now we assume p # 0 and, to simplify the notation we take p = 1.
e If A = 0: Now, we apply the previous Corollary with (A, B,C) — (0,bs/ds, ba/d3), where

d3 = ng(b27 b3)7
and (be/ds,bs/d3) — (s1,t2). Then we get the asserted relation
(tlbl + T‘1b3)81 = legtg

with r1 = 1 and ¢; = 0, and the asserted bounds on 71, s1, t; and ts.
e If by + b3 = 0: In this case (4, B,C) — (—b3/d,0,b1/d), where

d= ng(bl, bg),
and (b1/d, —bs/d) — (r1,t1). Then we get the asserted relation
(t1b1 + 7r1b3)s1 = T1bat2

with s; = 1 and t; = 0, and the asserted bounds on r1, s1, t1 and t».
o If Apu(Aby + b3) # 0: Since M > Sy + 1, there exist two distinct triples (7, so,t) and
(7', s0,t") € E such that

A(r + B1so) + (t+ B3s0) = A1 + Biso) + (' + B3s0),

which gives A(r' —r) = t—¢', where we suppose (as we may) that r is minimal (then r' > r)
and also that v —r > 0 is minimal. Put 71 =’ —r and t; =t — ¢/, then

A=t1/r.
Since M > Ry + 1, there exist two distinct triples (ro, s,t) and (rg, s’,t') € F such that
t1barg + (t1b1 + r1bs)s + ribat = tiboro + (t1b1 + 11b3)s’ + r1bat’,
which gives now a relation of the form
(t1b1 + 7r1b3)s1 = ribate, with t1to # 0,
for which we may suppose that
ged(ry, t1) = ged(sy, t2) = 1.
Now we are ready to apply the above Lemma 3.12 with
(A, B,C) — (t181/8,r1t2/0,1151/9),

where
§ = ged(t1s1, r1te, r181),
and we get the conclusion, except that we have to prove that § = ged(ry, s1).
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Suppose that p is a prime divisor of ¢, then p | r1s1. If p{ 7y then p | s; and p 1 ¢q, thus
p{riti: contradiction. If p{ s; then p | r1 and p 1 ¢y, thus p 1 sita: contradiction. Hence,
p|r and p | sy and p1tite. And now it is easy to conclude that

§ = ged(rq, s1).
This ends the proof of the Lemma. O

Remark. Before leaving this Subsection, it is important to notice that the conclusion of the zero-
lemma, namely ‘... the only polynomial P € C[X1, X»,Y] with degx, P < K for i = 1, 2, and
degy P < L which is zero on the set ¥14+¥24X3, is the zero polynomial’ applied to the interpolation
matrix considered above implies that this interpolation matrix is of maximal rank, which means
that there exists a determinant A as above which is nonzero.

3.6. Statement of the main result: a lower bound for the linear form. If we gather the
results obtained in the previous subsections, we get the following theorem.

Theorem 2. We consider three non-zero algebraic numbers ai, as and as, which are either all
real and > 1 or all complex of modulus one and all # 1 . We also consider three positive rational
integers by, ba, bz with ged(by,be,b3) = 1, and the linear form

A= bQ 10ga2 — b1 10g0&l — b3 logag,

where the logarithms of the a; are arbitrary determinations of the logarithm, but which are all real
or all purely imaginary. We assume that

0 <|A] < 27/w,
where w is the maximal order of a root of unity belonging to the number field Q(ay, az, a3) 2. And
we assume also that
ba|log aa| = by [log o | + bs [log as| £ [A].
We put
dl = ng(bl, b2), dg = ng(bg, bg), bQ = dlblz = dgbg

Let K, L, R, Ry, Ra, Rs, S, 51, S2, S3, T, Th, 15, T3 be positive rational integers, with

K>3, L>5 R>R +Rys+R3, S>S5+52+83, T>T1+Ts+Ts.
Let p > 2 be a real number. Assume first that

KL L 2K
— F+—=—=—1-—1 >(D+1)log N L(a1 R S T
o (5F+5-1-20 Jlogp = (D4 DIogN 4+ gL(@R + xS+ aaT)

+D(K —1) logb — 2log(e/2),
where N = K?L, D = [Q(ou, az,a3) : Q] / [R(oq, a2, a3) : R], e = exp(1),

4
K—-1 TK(K-1)
o 1 N Y " |
with R—1 (S—1)b T—1 (S—1)b
o - - 1 o - - 3
M=ty 0T T T
and

a; > pllog o;| — log|a;| + 2D h(«y;), i=1, 2, 3.

21If D is the degree of this number field then ¢(w) < D, where ¢ is the Euler totient function. It is easy to prove
that p(w) > (w/2)°-%3, which implies w < 2D1-6. Hence the previous condition on A is satisfied if 0 < |A| < 7D~ 16
and then A € iwQ. Trivially, this last condition is also satisfied when A is real and non-zero.
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Put

V=V(Ry +1)(S; +1)(T1 +1).
If, for some positive real number x,
i) (Ri+D(S+1)(T+1)>K- rnax{Rl + S 41, Si4+Ti+1, Ry +Ti+1, XV},
(i) Card{afaja : 0<r<R;,0<s<8,0<t<T\}>L,
(ili)  (Re+1)(S2+ 1)(Te +1) > 2K?,
(iv) Card {o/{a;ag t0<r<Ry,0<s<85,0<t< T2} >2KL, and
(v) (R34 1)(S3+1)(T5+1) > 6K>L,
then either

A/ > prL
where Sl (20a)
LSet 262
N = A T
2[b |
or at least one of the following conditions (C1), (C2), (C3) hold:
(Cl) |bl| < Rl and |b2| < Sl and |bg| < Tl,
(02) |bl| < R2 and |b2| < Sg and |bg| < TQ,
(C83) either there exist two non-zero rational integers ro and sg such that
roba = sob1
" (B2 + (T +1) (514 (T +1)
Ri+1)(T1+1 1+ 1)1 +1
< d S A S
ro| < M—T; and |so| < M_Th )
where

M :maX{Rl F S 4L, S T +1, Ry + Ty +1, XV},
or there exist rational integers r1, s1, t1 and to, with r1s1 # 0, such that
(t1b1 +71b3)s1 = 71bata, ged(r,t1) = ged(s1,t2) =1,

which also satisfy

(Ri +1)(S1+1)
M — Inax{Rl, S1} ’

(S1+1)(Ty + 1)
M — IIlELX{Sl,T'l}7

(R +1)(T1 +1)

<9J-
Ir1s1] < M —max{Ry, Ty}’

|81t1| S 0-

|7‘1t2| S (5

where
§ = ged(rq, s1).

Moreover, when t1 = 0 we can take r1 = 1, and when to = 0 we can take s;1 = 1.

Proof. The assumption 0 < |A| < 27/w implies that A ¢ iwQ, by Lemma 3.9, the hypothesis (v)
of the Theorem implies condition (iii) of the zero-lemma. By Lemma 3.11, we get the conditions
(C1) and (C2) if, respectively, the condition (i.1) or (i.2) of the zero-lemma are not satisifed. This
finishes the proof. O

Warning . — In the above theorem, the roles of (a1, b1) and (a3, b3) are not completely symmetric.
Even if we do not make the hypothesis a; > a3 (and, of course, do not use it), in practice it is
sometimes better to choose the numerotation such that a; > agz, but one has also to deal with
(C3) which is also non-symmetrical. ..
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4. AN ESTIMATE FOR LINEAR FORMS IN TWO LOGARITHMS

We need to use linear forms in two logarithms in a very special situation (related to condition
(C3) above) and it is difficult to find an easy-to-use result for such a case. This is the reason why
we write a suitable application of [9] in this Section.

Let a1, aig be two non-zero algebraic numbers, and let log a; and log ae be any determinations
of their logarithms. We consider here the linear form

A= leOgOéQ —b1 logal,

where by and by are positive integers. Without loss of generality, we suppose that the absolute
values || and |z are > 1. Put

D = [Q(al,ag) : Q] / [R(al,ag) : R]

4.1. Statement of the main result of [9]. The main result of [9], which we recall for the
convenience of the reader, is:

Theorem 3. Let K be an integer > 3, L an integer > 2, Ry, Ra, S1, So positive integers. Let p
be a real number > 1. Put R=R{+Rx—1,5=5,+5,—1, N=KL,

N (R—1)b 1)by) S
1 — 2 + — 1

= - - — = |

9=7 Tomrs: 2 <H k)

Let a1, as be positive real numbers such that

27K)

a; > plloga;| —log|a;| + 2D h(wy),

fori=1, 2. Suppose that:

(I Card{a{a5;0§r<R1,O§s<Sl}2L,
and
(II) Card{rbg—l—sbl;O§T<R2,O§s<5’2}>(K—1)L

and also that
(II1) K(L—-1)logp— (D+1)logN —D(K —1)logb — gL (Raj + Saz) > 0

Then,
INEY

where

A — A - max { LSeLSIAl/(2b2) [ ReLRIAI/(2b1) } |

2ba ’ 2by
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4.2. A special estimate for linear forms in two logarithms. In the case when the number
a1 is not a root of unity we shall deduce the following result from Theorem 3, which is a variant
of Théoreéme 2 of [9], close to Theorem 1.5 of [11].
Proposition 4.1. Consider the linear form
A= bQ 10g042 — b1 logal,
where by and ba are positive integers. Suppose that o is not a root of unity. Put
D =[Q(a1,a2) : Q] / [R(a1,a2) : R].

Let ay, as, h, k be real positive numbers, and p a real number > 1. Put A = log p and suppose that

b b
(4) h > max {1, 1.5\, D <log(—l + —2) +log A+ f(K)) + a} ., £=0.0262,
ag a1
(5) a; > max{4, 2.7\, p|loga;| —log|a;| + 2Dh(e;)}, (i =1,2),
(6) aras > 20\%
where |
1++vz—1)Jr 1 3 3 log %
Fla) = log o, logr 3, 3 lery
x—1 6x(z—1) 2 4 x-1

and
L=2+[2h/\ >5, K =1+ |kLaias].
Then we have the lower bound
log |A] > ~MeL2aras — max{A(L — 0.5) + log (L(1 + Vk)az ), Dlog 2},
provided that k satisfies k < 2.2A72 and
kU —VVE—W >0,
with
U=(L-1A—h, V=LJ3, W:£(£+i>,

a2 ai

4.3. Estimates for the parameter k. Before proceeding to the proof of the above Proposition,
we need to compute upper and lower bounds for the parameter k.

Put A = V2 4+ 4UW, the condition on k implies k > ko, where
V—|— V24 A4+2VVA V2 W vV V2 4w V2 W
Vo = \/_ ko = 2 \/_:—2+_+_\/—2+—2—2+—,
4U 2U U 20VU U U U

with
§>l A7LH2h + ) K 1 1 2
INT3R2h+N)—(h+X) U 3A—(h+X) ~320h+N)—(h+)) 3\

since O(V/U)/OL <0 and 1+ 2h/\ < L <2(1+ h/)\), where h > 1.5A. Moreover W satisfies

1 L 1 A '2(h+)) 2

\

Y

w1 L+ 1 1 S 1 n 1
U 4\a a AL—=X—h ~ 4a1(AL—X—h)  2a)\’
and also

W _1(1+2m/A 1
U =4

_ 2 —+a—2< >+ 5 if A <1,
ag a1

1
R oaxh | 4h 52 + gt HA>1,
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because of our hypotheses on a1, az and h. Thus we always have

w 7
<
U ~ 8.1\
It is easy to check that the previous inequalities imply
1.48
ko S T
Hence ko < 2.2172 and we can always choose k satisfying
4 2.2
— < k< —
9XZ — " T A2
and then
L 1
kL > 22 4 L
@102 (9/\2 TIOL - h)) @102
so that A I I
a1ag al ag
kL > —_—+ — L
@102 o2 + 3\ +2)\ Y(L),
say.

Clearly ¢ increases with L and it is easy to check that 1(5) > 54 (use the fact that ajas > 20\?).

4.4. Proof of the Proposition. Now we are ready to prove Proposition 4.1.

We suppose that «; is not a root of unity, and we apply Theorem 3 with a suitable choice of the
parameters. The proof follows the proof of Théoreme 2 of [9]. For the convenience of the reader
we keep the numerotation of the formulas of [9], except that formula (5.7) in [9] is here formula
(4.i), moreover when there is some change the new formula is denoted by (4.7)’.

Put
L=2+|2n/\|], K =1+ |kLajaz],
thus L > 5 and K > 55,
(4.1) Ri=L, Si=1, Ry=1+|VkLas|, So=1+ |VkLay|.
By Liouville inequality,
log|A| > —Dlog2 — Dbih(ay) — Dboh(az) > —Dlog2 — %(blal + baaz) = —Dlog2 — %b’alag,
where
b = b + b—Q.
a2 a
We consider two cases:
b < 2MkL?, or b >2\kL2.
In the first case, Liouville inequality implies
log |A| > —Dlog2 — A\kL?ayas
and Prop. 4.1 holds.
Suppose now that b > 2A\kL?. Then max{b;/az,ba/a1} > A\kL?, hence
by > WkL x VkLay or by > MWkEL x VkLaj.
Since k > (4/9)A"2 and L > 2, we have \VkL > 1, which implies
by > Ry or by >S5y,

hence
Card{rbg +5b1;0<r< Ry, 0<s< SQ} = RySy > (K — 1)L,
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by the choice of Rs and S5. Moreover, since a; is not a root of unity, we have
Card{afa5;0<r < R;,0<s<S5}=R =L
This ends the verification of conditions (I) and (IT) of Theorem 3.

Remark. The condition b’ > 2kAL? implies

AL _ 2h 3 3
5252 2(log(2kA’L?) + f(K)) > 2 (10g(8L2/9) + 5 +log Z) > 8.626,

using the above estimates on k£ and L > 5.

Suppose that (III) holds, then Theorem 3 implies
log|A'| > —KL\+ )\/2,

where

A = A - max { LSeLSIAl/(2b2) [ ReLRIAI/(2b1) } |

2bs ’ 2b1
Notice that

R=R +Ry—1<L+VkLay and S=8;+ 8 —1<1+VkLa;.
This shows that

2 2 —1 2 1 1.5 a1a2L2
max{LR, LS} < L*(1 + Vkay) < L*(1 + 1.56A tag) = L — e < =
2
As we may, suppose that log |A| < —\kL2ajaz, then

JLRIALSIAN _ (L4 VEa) L2 [A] _ L2102 41240, /(93)

2by 7 2by - 2 = 4 ’
since (4/9)A"2 <k <2.2X72 and L%ajaz/)\ > 100 (indeed, we have L > 5, a; > 4 and ag > 2.7,

hence L%ajaz/\ > 270), we get

LR|A| LS|A] _10
—_ 1077,
ax{ s ' 2b J
Thus,
A < [A] % L*(1+ Vkap),
which implies
log |A| > —AkL2aias — A(L — 0.5) — log(L*(1 + Vkaz))
and Prop. 4.1 follows.
Now we have to verify that condition (III) is satisfied: we have to prove that
Oy =K(L—-1)logp— (D+1)logN — D(K —1)logb — gL (Ray + Sas) > 0,

when b’ > 2)\kL?. Notice that the condition b’ > 2AkL? implies

L2
h > D(log(2\’kL?) + f(K)) > D (log(%) + g + log %) > 4.313D.

We replace this condition by the two conditions ® > 0, © > 0, where &g > ® + ©. The term
® is the main one, © is a sum of residual terms. As indicated in [9], the condition ® > 0 leads to
the choice of the parameters (4.1)', whereas © > 0 is a secondary condition, which leads to assume
some technical hypotheses on h and a;, as.
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As in [9] (Lemme 8) we get

log (2K /+/e) h e log(2rK/+/e)
Tk WSy T

b1 b
. < — =
(4.17) logb_10g< —l—al)—i—log)\ —

a2
which follows from the condition
h > D(logh' +1log A+ f(K)) +e.

Here we have

1 KL
Pl
gL(Ray + Sas) < (4 13RS

L(Ra; + Say) KL? (al a2) 7

) L(Ray + Saq) = 1 o (gt ®

S R

which implies

L KL L kL?

(418) gL(Ra1 + Sag) S Z(alL +as + 2L\/Ea1a2) — ﬁ S Z(alL “+ a2) —+ %

Put

kL? L(a1 L
(4.21) ®=K(L—1)A—Kh— vk 3“1a2 _ e 4+ az)
and
(4.22) © =¢(K — 1)+ h—Dlog(veL/(2m)) — log(KL).
By (4.17) and (4.18) we see that &g > ® 4+ O, where kLajas < K <1+ kLajas, hence
® - VVE-W,
LachQ

where

L 1 /L 1
U=(L-1DA=h, V==, W==[(=Z+—).
L-vr-n v=g weg (L)
This proves that ® > 0 provided that kU — Vvk — W > 0.

We have
© > h —log(kLayas) — Dlog(v/eL/(2m)) + e(kLajaz — 1).
To prove that © > 0, rewrite (4.22) as © = O¢(D — 1) + ©1, where

0o = log(\V) + F(K) — log I + log (%) ,

and
2
O; =¢eK —log K —2log L + log (771) +log(\V') + f(K).
e
We conclude by proving that ©¢ and ©; are both positive.
Since b’ > 2kAL? and k > 4/(9)?), we have

log(Ab') > log(2kA*L?) > log(8/9) + 2log L,
and this implies that

8L 3 3 2
©p > log(8L/9) + f(K) + log(2m/v/e) > log — + = + log ~ + log nlll
9 2 4 Ve
is positive. This implies also that

8 2
@1ZsK—logK+log§+log—7;+f(K)-

7
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Thus,
167

O; > 0.0262K — log K + 1 —_— K
1> og +0g<9\/g>+f( )

and an elementary numerical verification shows that ©; is positive for K > 55, which holds as we
saw in the previous Subsection.

Remark. We have proved that, under the hypotheses of our result, we can choose € = 0.0262, more
generally the condition on ¢ is
167
K —logK +1 — K)>0
€ og +og<9\/é)+f( ) >
for all K > Ko, where K() = |—k0La1a2].

5. How TO USE THEOREM 2

5.1. About the multiplicative group G. In practical examples, generally the following condi-

tion holds:
(M) {either a1, ag and ag are multiplicatively independent, or

two multiplicatively independent, the third a root of unity # 1.

We use now hypothesis (M), which is clearly stronger than the standard hypothesis ‘the multi-
plicative group G is of rank at least two’, and we also notice that the order in C* of a root of unity
# 1 is at least equal to 2, thus the condition (i.2) of Section 3 is satisfied if

2(Ry 4+ 1)(S1 + 1)(Ty + 1)

(C.i.2) Wit 1

> L,

where W1 is defined by

Ry, if aq is a root of unity,

W, — S1, if ag is a root of unity,
Ty, if a3 is a root of unity,
1,  otherwise.

But see also the remark after (C.ii.1) below.

Then, by the study of the case (i.2), we see that, to satisfy the condition (ii.12) of Section 3 it
is enough to suppose that (when condition (M) holds)
(2 + 1)(S2 +1)(T> +1) S KL
Wy +1

(C.ii.1)

where W5 is defined by

Ry, if a is a root of unity,

S, if ag is a root of unity,

Wy = . . .
Ty, if ag is a root of unity,

1, otherwise.

Remark. When (for example) ag is a root of unity of order v, condition (C.ii.1) above can be
replaced by

(C'.ii.1) v(Ry+1)(Sy + 1) > 2KL,
(provided T > v — 1) and condition (C.i.2) can be replaced by
(C'i.2) v(Ri+1)(S1+1)>L
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(provided Ty > v —1).

Remark. Under a weaker condition one can obtain similar (but slightly weaker) conclusions, see [12],
Ex. 7.5, p. 229.

5.2. The choice of parameters. Here we assume that condition (M) holds, then by the above
Corollary 3.10 we know that A € inQ.

To apply Theorem 2, we consider an integer L > 5 and real parameters m > 0, p > 2 (then one
can define the a;’s) and we put
K = |mLajasas].
To simplify the presentation, even if we do not really need these conditions, we also assume
m>1 and Q= ajasas > 2.
We define
Ry = |c1azas|, S1=|ciaras|, Ti=|cra1a2],
Ry = |c2a2a3], S = |coaras], Tz = |c2a1a2],
Rz = |c3azaz], S3=|czaraz], T3 =|c3aiaz2],

where the parameters c;, ¢a and c¢3 will be chosen so that the conditions (i) up to (v) of the
Theorem are satisfied.

Clearly, condition (i) is satisfied if
(C?(a1a2a3)2)1/2 > xymaiazsazl and C% -Qa > 2mL, where a =min{a,as,as}.

Condition (ii) is true when 2c?ajasas - min{a1,az,asz} > L. Thus, since we suppose m > 1 and

also 2 > 2, we can take
mI\ /2
€1 = max {(XmL)2/3, (—) } .
a

To satisfy (iii) and (iv) we can take

¢y = max {21/3(mL)2/3, \/m/aL} .

Finally, since A ¢ inQ, by Lemma 3.9 condition (v) holds for
cs = (6m?)Y/3 L.

Remark. When a1, as, as are multiplicatively independent then it is enough to take ¢; and cs3 as
above and
cy = 21/3(mL)2/3.

Then we have to verify the condition (2) of Theorem 2. When this inequality holds, one obtains
[N > pmE,
and we get
log |A| > =K Llogp —log (SL),
except maybe if at least one of the conditions (C1), (C2) or (C3) holds.

It may be useful to notice that, because of the choice of these parameters, the previous lower
bound is essentially of the form
10g |A| Z —OL2CL10,2£L3,
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where C' is some (rather large) constant. One may verify that condition (2) forces to choose L of
the order of magnitude of Dlogb, so that we have (to simplify)

log |A| > —CD?ayaza3 log? B, where B = max{by, ba, b3},

in the non degenerate case. We give a more detailed study below.

Remark. In many concrete applications (this is the case for the examples at the end of the paper)
one knows only some lower bound, say hg, for the height h; of «;, one of the algebraic numbers a;,
ag or asz. To apply Theorem 2 we have to verify that condition (2) holds, and there is a difficulty.
But first notice that this condition is ® = ®(K) > 0 where

logKk F
O(K)=AK -B—-ClogK — FE - —
(K) og © &
with positive constants A, B, ..., F', when the factor of g is expessed in terms of K using the

definitions of these parameters and of R, S, T (i.e., Rai+Saz+Tas ~ 3cm?/3QL and K = [mQL]).
Thus the derivative ®'(K) satisfies

E logK F

K (K)=AK-C—-—+E —.
(K) K + K + K
This short computation shows that if ®(Kj) is positive for some integer Ky > 3 then it is positive
for any integer K > Ky, when A, B, ..., F and F are fixed (this means in particular that m and

L are fixed). Notice also that the term b appearing in Theorem 2 is a decreasing function of a;.>

The conjonction of these two remarks shows that we can study condition (2) with the value
a; = ag (corresponding to hg) and with L fixed and the other parameters m, c1, ca, c3, R, ...,
T3, K = K{ chosen as above with a; = ag. When ®(K)) is positive, we also have ®(K) > 0 for
the preceding values of L, m, c1, ¢ca, c3 and any a; > ag.

Now consider the conditions (C1), (C2) and (C3). For conditions (C1) and (C2) we have in
particular

(C1) or (C2) = by < max{51, S2}.

Condition (C3) will be studied in detail in the next subsection. Put
ry = ory, 51 = s,
where
§ = ged(ry, s1).
We just notice, for the second alternative, namely
(t1b1 + m1b3)s1 = r1bata, with  ged(rq, t1) = ged(s1,t2) = 1,

that 7} | by, say by = r{b}, hence

(t1b) + 8b3)s) = bata, with by = rb].
If to # 0 this shows that s} | b, say by = s)b), so that

t1b] + bz = byta, with by = (b}, and by = s)b5.

3 More precisely, we never use the exact value of this term b but consider its upper bound implied by Lemma 3.4,
and the resulting quantity is a decreasing function of a;.
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5.3. The degenerate case. We have already seen the (easy) consequences of conditions (C1)
or (C2). We focus our attention on the third condition (C3). In this subsection we choose x = 1.

The first subcase is
robz = sgb1,
with the above bounds for r¢y and sg. This implies
b1 =dirg, be=diso
and one verifies that essentially (see below)
Iro| < eraa,  |so| < Verar,  where ¢ < L3
We consider the linear form A as a linear form in two logarithms:
A =dyi(splogas — rglogay) — bslog ag
and using Theorem 3 we get
log |A| > —(soaa + roa; )aszD? log® B > —\/craiazazD? log® B > —ajazaz(Dlog B)7/3.
The second subcase is
(tlbl + T1b3)81 = ’f‘1t2b2.
If
to =0
then we easily get
bl = d?‘l, b3 = —dlfl, where d = ng(bl, b3)
One verifies that essentially
Ir1] < V/eras, [t1] < /eraa, where ¢; < L?/3.
We consider the linear form in two logarithms
A= bQ log Qo — d(’l”l 10g a1 — tl 10g 043)
and using Theorem 3 we get now
log |A| > —(\/aﬁgal)ﬁ2p2 10g2 B> —alagﬂLg(D 10g B)7/3,
just as before.
Similarly, if
t1 =0
then we get
b3 = d3t2, b2 = d381, where d3 = ng(bg, b3)
And we get once more
log |A| > —(\/aagal)agDQ log? B > —alagag(DlogB)7/3.
(In this third case, essentially, s; < \/c; - min{a;,a3} and to < \/ciaz, and then we write A as
A =ds(s11logas — talogas) — by logag.)
Thus we may now restrict our attention to the more serious case t1to # 0. Then we have
(tlbl + T‘1b3)81 = ritabo, with by = T’lbll and by = Sllbé,
where
ry =0ry, s =40s, 0:=ged(ry,s1).
And we have
ng(Tl,tl) = ng(Sl,tQ) = ng(Tll, 5/1) = 1, tlbll + 51)3 = th/Q
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[We have used new notation. The reader should not confuse these new definitions for b} and b}
with the previous ones.] To simplify a little the notation, we put

VR =V—max{Sl,T1}, VS :V—max{Rl,Tl}, VT =V—max{R1,Sl},
where
1/2
V= (B + 1)(S1+1)(Ty +1))
satisfies
VZmax{Rl-i-Sl +1, 59+ +1, Ry +T1-‘r1}.
Now the previous bounds read
0<|risi] <d(Ri+1)(S1+1)/Vr, |[sit1] <(S1+1)(Ty+1)/Vr, [rita] < (Ri+1)(Ty+1)/Vs.

Which essentially implies (notice that Ry = ciasas, S1 = cia1as, T1 &~ c1a1az and V ~ c?/z

Iris1| < 6y/cras, |siti] < Verar, |rite] < Veras.

a1a2a3)

We distinguish three cases according to the size of the terms a;’s.
Case 1: a; = min{ay, a2, a3}

In this case, we write

t1A =t b)) + t180500 + t1b3ls = by (s t1la + Titaly) + bs(t1ls — drily),
where ¢; =loga; for j =1, 2, 3. And applying [9] to this linear form in two logs we get
—log |A| < (|sht1]as + [rita]as)(|t1|as + [r1]as)D? log” B,
where (being somewhat pessimistic)
B = max{|[b1], [b2, [bs|},

and where the implied constant is an absolute constant. And using the upper bounds for the
integers |r1], ..., we get

—log|A| < (Veraias)(veraras)D? log® B < alasasLY3D? log? B.

Since we have indeed

671 81| < /eras, |shti]| < /erar, |rita| < \/eraz, where ¢ < L¥3,
we get

—log|A| < a2agas(Dlog B)®/?,
where the implied constant is absolute.
Case 2: a; = min{ay,az, a3}
In this second case, we write

toA = tor| b\ ly + tosibhls + tabsls = b (ritaly + sit1la) + bs(tals + 5s|la).

Applying [9] to this linear form in two logs we get
—log|A| < (|¥ita]ar + |s\t1]az)(|ta]as + |s1|a2)D? log® B,

which, in this case, implies
—log |A| < ayadas(Dlog B)*/,

where the implied constant is absolute.
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Case 3: a3 = min{ay,az, a3}

In this last case, we write
oA = 6?’1b/1€1 + 68155[2 + 6bsgls = bll (rily —t1€3) + bé(slfz + fzfg).
In this case, [9] gives
—log|A| < (|r1]ay + [t1|as)(|t1|as + |s1|az)D? log® B,
which implies
—log|A| < araza2(Dlog B)®/?,

where the implied constant is again absolute.

In is important to notice that, in any case, we have obtained

—log|A| < ajasas x min{ay,as,as} x (Dlog B)%/?,
where the implied constant is absolute. In particular, when min{a;, as, a3} is bounded above then
we have essentially

—log|A| < aragas (Dlog B)®/3,

with an implied constant depending only on min{ay, as,as}.

Remark. From the theoretical point of view, the above result is very poor. But, in practice, the
problem is with constants and — hopefully — our estimate will lead to good results when compared
to the other ones published previously.

5.4. Some special cases. We have just seen that the arithmetical nature of the coefficients by,
be and b3 is very important for the study of the degenerate case. Here we consider some special
situations which, indeed, occur frequently in concrete applications to Diophantine problems. In all
these special cases we also assume that we have the relation (ii) with ¢1t2 # 0.

S1 : b is prime or equal to one
We have seen that by = r{b}. Here there are at most two possibilities:
e b} =1, then |by| = |}| < min{ag, az}L'/?, where the implied constant is absolute.
e 7} =1, then

t1by + Sbg = tobl.

S2 : by is prime or equal to one
We have seen that by = s1b). Here there are at most two possibilities:
e by, =1, then |by| = |}| < min{a;, a3z} L'/, where the implied constant is absolute.
e s/ =1and

t1b] + 8bg = tabs.

S3 : bs is prime or equal to one

Since the roles of b; and bs are more or less symmetrical, in this case it may be useful to
exchange these two coefficients and, simultaneously, a; and a3 (the exchange has to be done from
the beginning of the study).
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5.5. A corollary of the main result. In this Subsection we give a corollary of our main result,
which is much easier to use that this general result and we restrict ourselves to light hypotheses.

Proposition 5.1. We consider three non-zero algebraic numbers oy, as and as, which are either
all real and > 1 or all complex of modulus one and all # 1. Moreover, we assume that either
the three numbers aq, as and agz are multiplicatively independent, or two of these numbers are
multiplicatively independent and the third one is a root of unity. Put

D = [Q(a1,a9,as) : Q] / [R(az, ag, a3) : R].
We also consider three positive coprime rational integers by, ba, b3, and the linear form
A =bslogas — by logay — bylogas,

where the logarithms of the a; are arbitrary determinations of the logarithm, but which are all real
or all purely imaginary.
And we assume also that

ba|log ca| = by |log avi| + b3 |log as| £ |A].
We put
di1 = ged(by, be), ds = ged(bs,bg), by = dibly = d3b.
Let p > e :=exp(l) be a real number. Put A\ =logp. Let a1, as and as be real numbers such that
a; > pllog a;| — log |e;| + 2D h(ay), i=1,2,3,
and assume further that
Q:=ajaza3 > 2.5 and a:=min{a,as,as} > 0.62.
Let K and L be positive integers with
L>4+4D, K=|mQL|, where m>3.
Ler x > 0 be fized and < 2. Define

€1 = max {(xmL)2/3, \/2mL/a}, cy = max{2l/3(mL)2/3, \/m/aL}, cs = (6m?)Y/3 L,

and then put

Ry = |a1a2a3], S1 = |ciaaz], Th = [craiaz2], Ro = |cea2as3], So = |c2a1a3], To = |c2a1a2],

and
R3 = |czaza3], S3 = [czaraz], T3 = [c3aiaz)].
Let also
R=Ri+Ry+R3+1, S=51+5+S53+1, T=T1+To+T3+1.
Define

{ R S T }
¢ = max .

La2a3’ La1a3’ La1a2
Finally assume that
KL L 2K ~
(3) <T + 1= 1- E) A—(D+1)log L—3gL*cQ—D(K —1)logh—2log K +2Dlog 1.36 > 0,

where

1 N b/ b/ b// b// ~ 6302QQL2
—Z _ = (2L 422 84 2 b= —"—"" V.
9= 17 12RST <a2 T l\e ) 1Kz~

Then either
log |A| > — (KL +log (3K L))\,
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or the condition (C3) of Theorem 2 holds.

Proof. Our first step in this proof is the study of the relationship between A and A’.
Recall that

L§eLSIAl/(2b2)
N=|A|x —
A} %y
so that LSIAl/2
L
A < |A| % Sef

First notice that

2
¢1 < (mL)?3 x max {22/3, 1/ 062 = (mL)l/ﬁ} = (2mL)?/?

and that
9\ /3 -1/6 -1/6
02_m2/3L><max{(E> , m\/a < ?/m x m?/*L < 1.058 m?/?L.
Hence,
Q 2300 [ (4\'?
§< ((2mL)2/3 +1.058m2/3L + (6m2)1/3L> y1< 2 <(Z) £1.058 463 ) + 1,
a a
thus

S < 6.135m?/3LQ < 4.26 m LAY,
since L > 5, m >3, > 2.5 and a > 0.62. This proves that

S<44K.

Then, under our present hypotheses, we have

N <3KL|A| if |A| <exp(—KL).
This shows that the lower bound on A’ given in Theorem 2 implies

log|A| > — KLX —log (3K L).

Remark. Under the stronger hypotheses m > 20, L > 30 and a > 4, one easily sees that

N <KL|A| if |A] <exp(—KL).

We have already seen that in the present case A ¢ iwQ, thus we can ‘forget’ the condition

|A] < 27/w in the statement. (See the footnote of Theorem 2.)

Now we study the present consequences of the conditions (C1) and (C2). With our choices of
Ry, S1, ..., S3 and T3, we see that if (C1) or (C2) holds then, using our previous upper bounds
for ¢; and co we get

b1 S (2m2)1/3La2a3, b2 S (2m2)1/3La1a3, bg S (2m2)1/3La1a2.

But a Liouville estimate (see Lemma 3.3) applied to a}*a%*a; % — 1 implies that

log |A| > —(bihy + baha + b3h3)D — D log2 > —g(2m2)1/3QL —-D>-05mL*Q,

(where h; = h(a;) for i =1, 2, 3), since a; > 2Dh; fori=1,2,3,and L >4+ D, m >3, Q > 1.
This short study proves that, presently, either (C1) or (C2) implies

log [A| > —KLA.
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It follows that we can also ‘forget’ these conditions in the statement.

Notice that, by definition,

cL\? cLO\?
7o - (o < (7> (a2a3b’2 + alagb’l) (alagbg + a1a3b’1') = (T) X b/,

so that
log (27TK673/2) n 2+ 6m 2+ log K

K-1 3K(K—-1)
by Lemma 3.4. This implies (since here K > |3 x 5 x 2.5| > 37)

e3c2 202 5 log (1.36 K)
4K? K-1

and we see now that condition (2) of Theorem (2) holds when the inequality (3) is satisfied. This
ends the proof of the Proposition. O

L
logb < logh' + 2log (CT) —2log K +3—2

logb < logb’' + log <

5.6. Some explicit estimate. In this Subsection we give explicit lower bounds for |A| under
some natural hypotheses, but somewhat stronger than just above.

Here, we work under the following hypotheses:
a ;= min{ay,as,a3} >4, L>30D, Q> 100.
Recall that we choose
Ry = |ciaza3], S1 = |ciaras], Th = [cra1a2], Rz = [c2aza3] Sz = |c2a1a3], To = |c2a1a2],
and
Rs; = |czazas|, Ss3 = |csaras], T3 =|csaraz], K =|mQL|,
where now the parameters ¢1, co and c3 satisfy (we take x = 1 to simplify the study):
c1 = (mL)*?, ¢y = max{21/3(mL)2/3, \/W%L} and c3 = (6m?)Y/3 L,
and we assume a priori that the parameter m satisfies
49 <m < 60.

Notice that this implies
K >mLQ—1 > 146,999

and

3/2¢ L) log (6K)
< ! ¢ -
logb < logb +210g( Ve ) 1"

where
_2+61 % +logK
6K

log 6 := log (27TK€_3/2) > log 1.4019.
We take again

R=Ri+Ry+Rs+1, S=54+5+S3+1, T=Ty+T,+T5+1,

{ R S T }
¢ = max .

La2a3’ La1a3’ La1a2

and
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Condition (3) (with 6 instead of 1.36) holds when
KL L 2K
o= (GFeg-1-57

2+4 3L

is non-negative. We choose

>/\— (D+1)logL — 3cgL*>Q — D(K — 1) logh — 2log K + 2D log

_ |3 _H
L= L\’DlogB-‘ = /\DlogB

(which defines p), where
log B = max {10, logb}.

Thus
S5 << =5+ < oL
SHS IO BB =L -1
Then
L 2 L—-4 L
® > (mLQ-1) <§ - E) )\—i-T /\—3ch2Q—/\—(mLQ—2)—2logK—(D+1) log L+2Dlog6
W
1 2 1 L+4 2 2L
120 (am (= — =2 —2) “3eg) - (24 2= 22 ) A 2log K — (D+1)log L+ 2Dlog
<m<2 3Lz M> cg) <4 +37 M> og (D+1)log L+ 2D]log

1 1 2
> 120 <)\m <o.499259 - —) - 309) ~L (Z I 0.0326> A—2log K — (D +1)log L 4 2Dlog §
u [

1 L
> L*Q <)\m <0.499259 — —> — 309) +0.1044 L — 3log L — 2log (m Q) — D log 2
L

1 L
> L*Q <)\m <0.499259 - —) - 309) —02358 L — 2log (m ) — D log 5.
n

Hence,

o 1 0.2358 _ log (609) 1 L
> m (0499259 — = ) — 3¢g — —9 2 log .
0 = m< u) “YTTI0 120 3000 292

And finally

o 1 —4
20 > Am <O.499259 - ;) —3gc—3-107".
By definition,
c1+c2+c3 1
< ——FF .
e L
Recall that (here)

c1 = (mL)*?, ¢y = max {21/3(mL)2/3, m/aL}7 c3 = 6Y/3m?3L.
Notice that

2M3(mL)*? < \/mfaL <= 2Vma3 < L,
and that this last inequality implies L > 2 x 7 x 8 = 112 since m > 49 and a > 4. It is easy to
check that

30713 4+ (2/30)Y2 > 11273 4+ m~V/6 )\ /a,
hence c satisfies

1
¢ < (30—1/3 +(2/30)1/3 4 61/3 +

_— 2/3 2/3
16 x 302 X 492/3) m < 254444m ,

and

2.2
_ D99999%m” 4 514042,

1
< Z
9=7 1263
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And we get
¢ 1 4 2/3 1 2/3

—— >A10.499259 — — | m —3 x 107" — 1.86972m=/° > A | 0.499259 — — | m — 1.86975m~/".

QL2 ju ju
We take

3
1.8699
m=|———— - A3,
0.499259 — m

thus

3 3

1.86975 1.86975

mpi=|——"—0 | ATP<m<(———) AP <2440
0.499259 — ;- 0.499259 — &

It is easy to see that the worst case for the term mu? (occuring in the final estimate) is reached
when p is maximal, i.e. when p = pq, and then m = m;.

‘We have
- ed3c? b b b b
b< —— U h V=(2+2)(2+2
=30999m2 0 e <a1 + a9 as + as )’
and
6302
— < 325175m %3,
3.999 m? mn

Then — in the non-degenerate case —
log |[A| > —KLX —log(KL) > —(KL+log (KL))\.
since p > e, which gives

log |A] > —1.000004 K L) > —6109.598 A~ x Q x D? log? B.

For example, if we choose p = 5.296, then log p = 1.6669518 ... and

Lz[ﬁw—%ﬂ 59@%, 49.39124 < m < 53,

as wanted, and then
log |A| > —790.9478 Q - D? log® B,
where
log B = max {10/D, logh} and b < 2.41561'.
With this choice we take
a; = max {4, p¢; — log|a;| + 2Dh;}, for 1 =1, 2, 3,

(with the obvious notation ¢; = |log«;|), and then

3 3
log|A| > —6327.59D? log’ B | [ max{2, Dh; +2.648(;} > —307,187D° log? B | [ max{0.55, hs, £;/ D},

i=1 i=1
where
log B = max {0.882 + log b’, 10/D}.

We are now ready to state our explicit estimate.
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Proposition 5.2. We consider three non-zero algebraic numbers oy, g and as, which are either
all real and > 1 or all complex of modulus one and all # 1. Moreover, we assume that either
the three numbers aq, as and ag are multiplicatively independent, or two of these numbers are
multiplicatively independent and the third one is a root of unity. Put

D = [Q(a1,a9,as3) : Q] / [R(az, ag, as3) : R].
We also consider three coprime positive rational integers by, b, bs, and the linear form
A =bslogas — by loga; — bylogas,

where the logarithms of the a; are arbitrary determinations of the logarithm, but which are all real
or all purely imaginary.

And we assume also that

b2| 10g042| = b1 |10ga1| + b3 |10g043| + |A| .
We put
dl = ng(bl, b2), dg = ng(bg, bg), bQ = dlbé = dgbg

Let aq, ay and as be real numbers such that

a; > max {4, 5.296 ¢; — log |oi;| + 2D h(ey;)}, where ¢; = |logay|, i=1,2,3,

and
Q) := ajasaz > 100.
Put
() (A
a9 aq a9 as
and

log B = max {0.882 + log?’, 10/D},  Q = ajazas.
Then either
log |A| > —790.95 - Q - D?*log® B > — 307,187 x D°log® B x ﬁmax{0.55, hi, £;/D},
i=1
or the following condition holds:
— either there exist two non-zero rational integers ro and sg such that
Tob2 = sob1
with
Iro| < 5.61(D logB)Y%ay and |so| < 5.61 (D logB)3ay,
— or there exist rational integers r1, s1, t1 and to, with r1s1 # 0, such that
(t101 + r1b3)s1 = r1bato, ged(ry, t1) = ged(s1, ta) =1,
which also satisfy
Iris1| < 6-5.61(D logB)Y3as, |sit1] <6-5.61(DlogB)Y a1, |rita] <3-5.61(D logB)/3as,
where
§ = ged(ry, s1).

Moreover, when t; = 0 we can take r1 = 1, and when t3 = 0 we can take s; = 1.
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Proof. The only remaining point is concerned with condition (C3) of Theorem 2. First, notice
that, for y =1,

1/2
V= ((Ry+1)(S + (T3 +1)) > 20 = mLQ,
Moreover,
max{Rl, Sl, Tl} S clﬂ/a.
Thus,
S S > ay/c1 = a(mL)/?
max{Rl,Sl,Tl} - ’
and we have
V> max{Rl, Sl, Tl}
(Remark: it would certainly be more clever to choose some x < 1, but this does not improve a
lot the result. Nevertheless, the freedom given by this parameter may be useful in concrete cases:
see the two examples given below where we choose x in order that the estimate obtained in the
non-degenerate case for three logarithms is essentially the same than the estimate obtained in the
degenerate case with lower bounds of linear forms in two logarithms. Notice that the first estimate
is better when x is small, whereas the second one increases when when y decreases.)
We have chosen
Ry = [c1az2a3],
hence

Rl + 1 S Cci1aza3 <1 + > < 10005 ci1azas,

1
16(mL)2/3
since our choices give m > 49 and L > 30. For the same reasons,

S1+ 1 < 1.0005 cia1as,
which implies*

(Rl + 1)(51 +1) < 1.00052

Br:= < 3.843 L'/3a3 < 5.61 (D log B)'/?as.
r VYV —max{R1,S51,Th} 11— (4\/5)_1 veres e (Plog B) s
Similarly,
(S1+1)(Th +1) 1/3 1/3
Bp = <3843 L < 5.61 (D logB)Y
R V — max{Rl, Sl, Tl} 3 ( & ) “
and
(T +1
Bg = B+ )T+ 3.843 L'3a3 < 5.61 (D log B)/3as.

= V- max{Rl, Sl,Tl}

This proves that our last claims are consequences of condition (C3) and this ends the verification
of the result. g

It may be interesting to compare the above result with the main theorem of [1], which is the
following.

4Since the function z — z is increasing for z > 1, for the term in the middles the worst case is

I S
1—(4vz) !
obtained when c¢; is maximum, i.e. for m maximum, and we get an upper bound repleacing m by 53, which implies
the second inequality. The last one comes from the definition of L, namely L = [(5/\) D log B].
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Proposition 5.3. We consider three non-zero rational numbers ay, as and az, which are all > 1
and multiplicatively independent.

We also consider three positive rational integers by, ba, by with ged(by, ba, bs) = 1, and the linear
form

A =bslogas — by loga; — bylogas,

where the logarithms of the «; are the ordinary determinations of the logarithm. We assume that
A is non-zero and that

bao|log az| = by |log | + b3 [log as| £ [A].

Let af, ab, and a be real numbers such that

a; >max{1,h(ey)}, i=1,2,3.

b b b b
o= (G 3) (G 3)
2 1 2 3

B’ = max {logd”, 10}, Q' = a}aha}.

Put

and

Then either
log|A| > —4.5 x 10° x Q' log® B/,
or there exists a non trivial relation
u1b1 + ugbs + uzbs = 0
over the rational integers with

lui|, |uz| < 10* x log B’ x ajah, and |ug| < 10* x log B’ x a} x min {a},a}}.

With the same hypotheses, our result gives
— either
log|A| > —1.974 x 10° x hihyhs x log? B > —1.974 x 10° x Q' log® B/,
where
log B = max {10,0.882 + log b’} < max {10,logd” — 0.59},

[take a; = 6.296 h; for ¢ = 1, 2, 3 and notice that a; > 6.296 log2 > 4.364 for i = 1, 2, 3 and also
that ajasaz > 6.2963 log2 - log 3 - log 5 > 300]

— or there exists a non trivial relation
u1b1 + uzby + u3bs

over the rational integers with

Jus| < 36 (max{10, 0.882 + log'})hi, i =1,2, 3.

This result may also be compared to the estimate implied by Matveev’s theorem., which gives
unconditionally

log |A| > —1.7 x 10'° x hyhohs x log (4.08 B),
where
B =max {1, max{bjh;/h;; 1 < j < 3}}.
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6. A FIRST EXAMPLE

Using the previous estimates, we can prove:

Theorem 6.1. All the solutions of equation
" — 2950y = 41
in integers x, y > 1, n > 3 prime and 0 < B < n, with a =1, 2, 3 satisfy
n < 3.88-10".
Proof. 1t is clear that = > y. First, we give an upper bound for the exponent n using Matveev’s

estimate.

Let
2a5ﬁyn

xn

Ai=1-

so that |Aq] = 1/2™. Set
A =nlogx/y — alog2 — Blogh,
then
[A] <2277,
Matveev’s theorem gives (for > 5)
log|A| > —5-16° - 1.5% - ¢* - (20.2 4+ 5.510g 3) - log z - log 2 - log 5 - (logn + 1.41)
and we obtain n < 5.36 - 10'".

We suppose
n>2x107,
and it is possible to restrict our study to the case (see...)
log x > 5000.

For this linear form A in three logarithms, we keep the notation of the previous parts. Set
=2, as=uzx/ly, az=>.
We take x = 0.5 and
L =100, m=41.28955, p1=p=T1,
a1 = (p+1)log2, az=06(og2+logh)+2logz, az=(p+1)logh,
by=a=1,2,3 by=n, bz=/}0,
and finally
c1 =162.133741 ..., o =324.267482..., 3 =2170.753371...
Using these values we get
Ry = |c1aza3]| = |4176.8434 log x|, Rs = |caaza3] = |8353.6867 log x|,
and
R3 = |c3aza3| = [55922.3320 log x|,
further
S1 = |araras] = 11575, Sy = |caaras] = 23151, S3 = |czaras] = 154985
and finally
Ty = |c1a1a2] = [1798.8684 log x|, T = |c2a1a2] = |3597.7370 log x|,

and
T3 = LCgCLlCLQJ = L240844374 10g IJ
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Put
V= ((Ry + 1)(S1 + 1)(Ty + 1)) 2,
then
XVZmax{Rl-i-Sl-i-l, S1+Th+1, Ry +T1+1},
and

By — (S1+D)(Ti +1)
R XV — maX{Sl, Tl}
5000)'

(Rl + 1)(51 + 1)
<143, Bp:= < 338
- ’ r xV—max{Rl,Sl} - ’

independently of x (for x > e
We have
K = |Lmajazas] = |589834.7288logz .

As seen above, these choices imply that the conditions (i)—(iv) of Theorem 2 hold. Moreover the
above choices have been made so that condition (2) holds.

Thus we have
log|A| > —KLlogp —log(KL) > —114.777 - 10° log =,
and we get
n < 115-10°.
In the cases (C1) and (C2) we obtain

n < max{S, Sa} < 30000,

which is excluded since we assume n > 107. Moreover, the first case case of condition (C3), i.e.
the case roby = spby cannot hold because of the bound on sy (namely |so| < Bg) and the fact that
by = n is prime. On supposing that (C3) holds then we have necessarily

sta+r't'n+1's'8 =0,
where o = 1, 2, 3 and the factors of 3, n, b3 are bounded as in the main theorem. We have
ged(r’,s') =6, ged(r',t') = ged(s',t") =1
and we put
v =or], § =4s].
With this notation
sit'a+rit'"n+ orisi3=0.
Then s} | t"n and using that n is prime, |s}| < n and ged(s’,t”) =1 we get s§ = 1, and thus
t'a+rit"'n+or B8 =0,
where ged(r],t") = 1. Since « € {1, 2,3}, we have |rj| =1 or |r}| = a. In the first case,
+ta+t'n+68=0,
and, in the second case,
+t' +t'n+68=0.
Clearly, t” and ¢ are not of the same sign and we may assume that 6 > 0 and ¢’ < 0.
This implies
3|t

[t <o+ —<d+1,
n

where
0 < |r 8| < 143.
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We rewrite A as a linear form in two logarithms:

A =nlog ((g)t,Tit”) — Blog (5tl2’ri‘5) )

Proposition 4.1 (applied four consecutive times with the interpolation radius ps = 18) yields the
estimate
n < 39 x 10°,

Thus we have proved that n < 1.15- 108.

From this upper bound for n we iterate four times this process, but with the choices L = 90,
x = 0.29, p; = 7.1 and po = 20. We get a better bound for n, namely, n < 3.88 x 107. (]

7. A SECOND EXAMPLE

Using the previous estimates, we can also prove:

Theorem 7.1. All the solutions of equation
20" — 5Py = +1
in integers x, y > 1, where n > 3 is prime and 0 < a, B < n, satisfy
n < 4.96-10".
50, Whereas the weaker assumption max{x,y} > 3 leads to

n<3.3-108.

if we suppose max{x,y} > e

Proof. In a first time, we consider more generally the Diophantine equation
pa™ — Py = 1.
We consider the linear form
+A = alogp + nlog(z/y) — Blogg.
If x > y we write
A = pBlogq—nlog(z/y) — alogp
and define
o =1/y, az =q, az=p, by =mn, bo =0, by =q,
according to the conventions of our main theorem.
Whereas, if x < y then we write
A = alogp — nlog(y/x) — Blogq
and define
o =y/z, az =p, az =g, bi=mn, by=a, b3 =0,
again according to the conventions of our main theorem. Except for notation, this is similar to the
first case. In both cases we have
A = ealogp — n |log(z/y)| — eflogyq,
where ¢ = +1. Changing notation if necessary, we limit our study to the case ¢ = 1.

We put
z = max{x,y}.
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It is easy to see that
|A] <227

First, we give an upper bound for the exponent n using Matveev’s theorem, which gives (for
z > max{p, q})
log|A] > —5-16° - 1.5% - ¢* - (20.2 + 5.51l0g 3) - log z - log p - log ¢ - (logn + 1.41)
and — for example — we obtain n < 5.36 - 10! when {p, ¢} = {2,5} and z > 5.

We suppose
n>2x107,

and we first restrict our study to the case
log z > 50.
Now we apply our result on linear forms for p = 5 and ¢ = 2, taking x = 1 and
L =100, m =47.6623398, p1=p=171,
a1 = (p—1)logp+2logz, az=(p+1)logp, az=(p+1)logg,
by=n, by=a, bs=27,
and finally
c1 = 283.2154268 ..., co =2 =356.82907799..., 3= 2388.73142356...

Using these constants we get

R1 = L61£L2(13J = 20220, R2 = LCQCLQGBJ = 25476, Rg = LCgCLQOJgJ = 170548,

further,
S1 = |c1ara3] < [3444.261 logz|, Sa = |cearas] < [4339.501 log z |

and

S3 = |ezaras] < [29050.101 log 2|,
and finally

Ty = |craraz] < |7997.341 logz|, Ta = |caaraz] < [100726.021 log =],

and

T3 = |csaraz] < [67452.241 log z|.
Put

V= ((Ri+ 1)(S1 + 1)(Ty + 1))/,
then

XVZmax{Rl-i-Sl + 1,59+ +1, Ry +T1+1},

and

_ R+ DT+ 1)
N XV — max{Rl, Tl}
independently of z (for z > €%).

1 1
<220, Bp:= (B + DS +1) <94,

Bg : =
s xV — max{Rl, Sl} -

As seen above, these choices imply that the conditions (i)—(iv) hold. Moreover, these choices
have been made (with the help of a computer) so that inequality (2) holds.

Thus we have
log|A| > =K Llogp —log(KL) > —145.25-10% log z,
and
n < 145.3 - 10°.
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In the cases (C1) or (C2) we have
n < max{R1, Rz} < 30000,
which is excluded since we assume n > 107. Moreover, the first case of condition (C3), i.e.
roba = spby cannot hold because of the bound on ry (namely |rg| < Bg) and the fact that by =n
is prime. On supposing that (C3) holds then we necessarily have
stn+r't"a+1r's'8=0,
where the factors of o, n and 3 are bounded as in the main theorem. We have
ged(r',s') =46, ged(r',t') = ged(s', ") =1
and we put
r=or], § =4s).
With this notation
sit'n +rit"a+ o113 =0.
Then 7} | 'n and using that n is prime, |r}| < n and ged(r],t") = 1 we get r} = 1, and thus
sitn +t"a+ 6818 =0,
where ged(s],t”) = 1.
This implies
|s1t'] < [t7] + [9s1 ],
where
[t"| < Bs and |ds}| < Br.
Thus
|sit'] < Bs + Br < 314,
whenever is z > 0.
We rewrite t”A as a linear form in two logarithms:

t"A = Blog (5’5” X 255,1) —nlog ((x/y)it” X 2_5;{) :
Proposition 4.1 (applied twice with the choice py = 20) yields
n < 58 x 10°.

Thus we have proved that n < 1.46 - 108.

From this upper bound for n we iterate four times this process, choosing now L = 90 and
x = 0.65, but keeping p; = 7 and po = 20. We get a better bound for n, namely n < 4.96 x 107 in
the first case.

In the second case, the conclusion is obtained with the choices L = 90, p; = 7, x = 0.91 and
P2 = 6. O
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