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Abstract. Let d be a positive integer and α
a real algebraic number of degree d + 1. Set α :=
(α, α2, . . . , αd). It is well-known that the quantity

c(α) := lim inf
q→+∞

q1/d · ‖qα‖

is positive, where ‖·‖ denotes the distance to the nearest
integer. Furthermore, the inequalities

c(α)n−1/d ≤ c(nα) ≤ nc(α)

hold for any integer n ≥ 1. Our main result asserts that
there exists a real number C, depending only on α, such
that

c(nα) ≤ Cn−1/d,

for any integer n ≥ 1.

1. Introduction and results

Let ‖ · ‖ denote the distance to the nearest integer. The set Bad of
badly approximable real numbers, defined by

Bad = {α ∈ R : inf
q≥1

q · ‖qα‖ > 0},

is the set of real numbers whose sequence of partial quotients is infinite
and bounded. The Lagrange constant c(α) of an irrational real number α
is the quantity

c(α) := lim inf
q→+∞

q · ‖qα‖.

Clearly, a real number α lies in Bad if, and only if, its Lagrange constant
c(α) is positive. A classical theorem of Hurwitz (see e.g. [11, 2]) asserts
that c(α) ≤ 1/

√
5 for every real number α.
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For any positive integer n and any badly approximable real number
α, the equalities ∣∣∣nα− np

q

∣∣∣ = n
∣∣∣α− p

q

∣∣∣
and ∣∣∣α− p

nq

∣∣∣ =
1

n

∣∣∣nα− np

nq

∣∣∣
imply that the Lagrange constants of α and nα are related by the inequal-
ities

c(α)

n
≤ c(nα) ≤ nc(α). (1.1)

The first general result on the behaviour of the sequence (c(nα))n≥1 is
Theorem 1.11 of Einsiedler, Fishman, and Shapira [4], reproduced below.

Theorem EFS. Every badly approximable real number α satisfies

inf
n≥1

c(nα) = 0. (1.2)

At present, we still do not know whether, for every α in Bad , the
infimum over all positive integers n in (1.2) can be replaced by the limit as
n tends to infinity. In this direction, it has been proved in [1] that a much
stronger result than (1.2), namely that supn≥1 nc(nα) is finite, holds for
certain classes of badly approximable real numbers α, whose sequence of
partial quotients enjoys specific combinatorial properties. Among other
results, the following statement is established in [1].

Theorem BBEK. Let (ak)k≥1 be a sequence of positive integers. If there
exists an integer m ≥ 0 and an increasing sequence (nj)j≥1 of positive
integers such that nj+1 > nj and

am+1 . . . am+nj
= am+nj+1−nj+1 . . . am+nj+1

, for j ≥ 1,

then the real number α := [0; a1, a2, . . .] satisfies

sup
n≥1

nc(nα) < +∞. (1.3)

In view of the left-hand side inequality of (1.1), the conclusion of
Theorem BBEK is nearly best possible. Furthermore, Theorem BBEK
applies to every ultimately periodic sequence (ak)k≥1, hence it shows that
(1.3) holds for every real quadratic number α.

The aim of the present note is to investigate a multidimensional ex-
tension of the latter result.

Let d be a positive integer. By Dirichlet’s theorem, for any d-dimen-
sional real vector α = (α1, . . . , αd), there are arbitrarily large positive
integers q with

‖qα‖ ≤ q−1/d, (1.4)
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where we have set ‖qα‖ := max1≤i≤d ‖qαi‖. The set Badd of badly
approximable d-dimensional real vectors is the set

Badd = {α = (α1, . . . , αd) ∈ Rd : inf
q≥1

q1/d · max
1≤i≤d

‖qαi‖ > 0}

of real vectors such that (1.4) is best possible up to a numerical constant.
The set Badd has zero Lebesgue measure and full Hausdorff dimension
(that is, its Hausdorff dimension is equal to d). If α is a real algebraic
number of degree d + 1, then the vector α := (α, α2, . . . , αd) is in Badd;
see e.g. [10]. The definition of the Lagrange constant can be extended in
a natural way to real vectors.

Definition 1.1. Let d be a positive integer. The Lagrange constant c(α)
of a d-dimensional real vector α is the quantity

c(α) := lim inf
q→+∞

q1/d · ‖qα‖.

Again, noticing that

q1/d|q(nα)− np| = nq1/d|qα− p|

and
(nq)1/d|(nq)α− p| = n1/dq1/d|q(nα)− p|,

for all positive integers p, n, q and all real numbers α, we deduce that

c(α)

n1/d
≤ c(nα) ≤ nc(α) (1.5)

holds for any integer n ≥ 1 and any α in Badd.
Our main result asserts that, for every positive integer d, there are

elements of Badd for which the left-hand side inequality of (1.5) is sharp.

Theorem 1.2. Let d ≥ 2 be an integer. Let K be a real algebraic number
field of degree d + 1. Let α1, . . . , αd be in K such that 1, α1, . . . , αd are
linearly independent over the rationals. Then, there exists a real number
C such that

c(n(α1, . . . , αd)) ≤ C

n1/d
,

for any positive integer n.

The method of the proof of Theorem 1.2 works also for d = 1 and
allows us to give an alternative proof that

sup
n≥1

nc(nα) < +∞
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holds for every real quadratic number α. Unlike in [1], our argument is
not based on the continued fraction expansion of α. In addition, the proof
in [1] gives that

lim inf
q→+∞

q · (log q) · ‖qα‖ · |q|p < +∞ (1.6)

holds for every real quadratic number α and every prime number p, a result
first established by de Mathan and Teulié [9] using p-adic analysis (see also
[6] for a third proof). Here, | · |p is the p-adic absolute value normalized
in such a way that |p|p = p−1. Our method allows us to extend (1.6) as
follows.

Theorem 1.3. Let d ≥ 2 be an integer. Let K be a real algebraic number
field of degree d + 1. Let α1, . . . , αd be in K such that 1, α1, . . . , αd are
linearly independent over the rationals. Let p be a prime number. Then,

lim inf
q→+∞

q1/d · (log q) ·max{‖qα1‖, . . . , ‖qαd‖} · |q|p < +∞. (1.7)

A weaker result than Theorem 1.3, namely with the factor (log q) in
(1.7) replaced by (log q)1/d, is a particular case of Théorème 3.1 of [9].

The proof of Theorem 1.2 follows very closely a method developed by
Peck [10] to improve and extend a result of Cassels and Swinnerton-Dyer
[3] on the Littlewood conjecture in simultaneous Diophantine approxima-
tion.

Our paper is organized as follows. A special case of Theorem 1.2
is discussed in Section 2. Theorems 1.2 and 1.3 are then established in
Section 3, while some open questions are addressed in the last section.

2. A special case of Theorem 1.2

We start with an auxiliary lemma used in the last part of the proofs.

Lemma 2.1. Let (un)n≥1 be a recurrence sequence of order d of rational
integers. Then, for every prime number p and every positive integer k,
the period length of the sequence (un)n≥1 modulo pk is at most equal to
(pd − 1)pk−1. Furthermore, for any integer ` ≥ 2, the period length of
(un)n≥1 modulo ` is at most equal to `d.

Proof. For the first statement, see Everest et al. [5] on page 47. If ` =
pa1
1 · · · pam

m for distinct prime numbers p1, . . . , pm, then the period length
of (un)n≥1 modulo ` is at most equal to the product pd+a1−1

1 · · · pd+am−1
m ,

which is bounded from above by `d.

We display the following special case of Theorem 1.2.
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Theorem 2.2. LetK be a real cubic number field with two complex (non-
real) conjugate embeddings. Let α1, α2 be in K such that 1, α1, α2 are
linearly independent over the rationals. Then, there exists a real number
C such that

c(n(α1, α2)) ≤ C

n1/2
,

for any positive integer n.

The proof of Theorem 2.2 is much simpler than that of Theorem 1.2
since the unit rank of the number field K is equal to 1. Furthermore, it can
be adapted mutatis mutandis to the case where K is a real quadratic num-
ber field and α is an irrational number in K to show that supn≥1 nc(nα)
is finite, a result already proved in [1].

Proof. Set α0 = 1. Let M be the Z-module generated by 1, α1 and α2.
Let O denote the set of algebraic integers ρ in K such that ρα is in M
whenever α is in M. Clearly, the set O is a ring included in M. It is an
order in the field K. Let ε > 1 be a unit in O.

The elements δ of K such that the trace of αδ is a rational integer
for every α in M form a Z-module D. A basis δ0, δ1, δ2 of D is obtained
by solving the equations

Trace(αiδj) = 0 if i 6= j, and Trace(αiδj) = 1 if i = j.

Let t be a positive integer. By our choice of ε, if α is inM, then εtα
is also in M and the trace of αεtδ2 is a rational integer. Consequently,
εtδ2 lies in D. Write

εtδ2 = q0,tδ0 + q1,tδ1 + q2,tδ2, (2.1)

where q0,t, q1,t and q2,t are rational integers. Observe that

qk,t = Trace(εtδ2αk) = εtδ2αk + σ(εtδ2αk) + σ(εtδ2αk), for k = 0, 1, 2,

where σ denotes a complex non-real embedding of K and · denotes the
complex conjugation. Since ε is a unit, we have εt|σ(εt)|2 = 1, thus

|σ(εt)| = ε−t/2.

Consequently, there are positive constants C1, C2, depending only on α1

and α2, such that

|qk,t − q0,tαk| = |(σ(αk)− αk)σ(εtδ2) + (σ(αk)− αk)σ(εtδ2)|
≤ C1ε

−t/2,

for k = 1, 2, while

|q0,t − εtδ2| = |σ(εtδ2) + σ(εtδ2)| ≤ C2ε
−t/2. (2.2)
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These inequalities show that there exists a positive constant C3, depending
only on α1 and α2, such that

|q0,t|1/2 ·max{‖q0,tα1‖, ‖q0,tα2‖} ≤ C3, t ≥ 0. (2.3)

Let X3 + a2X
2 + a1X + a0 denote the minimal defining polynomial

of ε, where a0 = ±1. In view of (2.1) and setting q0,0 = 0, the sequence
(q0,t)t≥0 satisfies

q0,t+3 + a2q0,t+2 + a1q0,t+1 + a0q0,t = 0,

for every integer t ≥ 0. By Lemma 2.1, for every integer ` ≥ 2, the
sequence (q0,t)t≥0 is periodic modulo ` with period length at most equal
to `3. Since q0,0 = 0, this means that there exists h ≥ 1 such that `
divides q0,ht for every t ≥ 1. Consequently, we deduce from (2.3) that,
upon writing q′0,ht = q0,ht/`, we have

|q′0,ht|1/2 ·max{‖q′0,ht(`α1)‖, ‖q′0,ht(`α2)‖} ≤ C3

`1/2
,

for every positive integer t. Since, by (2.2), the integer q0,ht is nonzero for
t large enough, we conclude that c(`α1, `α2) ≤ C3`

−1/2 and the proof of
Theorem 2.2 is complete.

Let α1, α2 be real numbers in a same cubic field K, such that 1, α1, α2

are linearly independent over the rationals and K has two complex non-
real embeddings. The above proof shows how to associate with the pair
(α1, α2) a linearly recurrent sequence (qn)n≥0, an integer n0 and a positive
real number C such that q0 = 0 and

max{‖qnα1‖, ‖qnα2‖} ≤ Cq−1/2n , n ≥ n0.

For an explicit example, let us consider simultaneous rational approxima-
tion to 3

√
2 and 3

√
4. Then, the proof of Theorem 2.2 shows that there

exists C > 0 such that the sequence (qn)n≥0 starting with

0, 1, 4, 15, 58, 223, 858, 3301, 12700, . . .

and defined by the recurrent relation

qn+3 = 3qn+2 + 3qn+1 + qn, n ≥ 0,

satisfies
max{‖qn 3

√
2‖, ‖qn 3

√
4‖} ≤ Cq−1/2n , n ≥ 1.
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3. Proofs of Theorems 1.2 and 1.3

We proceed with the proof of Theorem 1.2. As already written, it
follows very closely the argument of Peck [10], with some suitable modifi-
cations near to the end.

Assume that K has r+1 real embeddings and 2s complex non-real em-
beddings numbered in such a way that K = K(0), K(1), . . . ,K(r) are real
and K(r+1), . . . ,K(r+2s) are complex non-real, with K(r+s+j) = K(r+j)

for j = 1, . . . , s. Note that d = r + 2s. In view of Theorem 2.2, which
adresses the case (r, s) = (0, 1), we assume that r + s ≥ 2.

LetM denote the Z-module generated by 1, α1, . . . , αd. Let O denote
the set of algebraic integers ρ in K such that ρα is in M whenever α is
in M . Clearly, the set O is a ring included in M. It is an order in the
field K. By Dirichlet’s Unit Theorem (see, e.g., Theorem 2.8.1 of [7]),
there exists an independent family ε1, . . . , εr+s of algebraic units in O. In
particular, εkαi is in M for k = 1, . . . , r + s and i = 1, . . . , d.

Write
C4 = max{2, max

1≤j,k≤r+s
| log |ε(j)k ||}.

The key ingredient of the proof consists in finding so-called dominant units,
that is, units ζ > 1, such that every conjugate of ζ, distinct from ζ, has
nearly the same modulus ζ−1/d. Note that, for any real number T ≥ dC4,
there exist rational integers g1, . . . , gr+s, not all 0, such that

−T
d
− C4

2
≤

r+s∑
k=1

gk| log ε
(j)
k | < −

T

d
+
C4

2
, j = 1, . . . , r + s,

which, by the fact that the norm of each unit εk is ±1, also gives that

T − dC4

2
≤

r+s∑
k=1

gk| log εk| < T +
dC4

2
.

Setting then
ζ := |εg11 · · · ε

gr+s

r+s |

and C5 = eC4 , we get

| log |ζ1/dζ(j)|| < C4 and |ζ(j)| < C5ζ
−1/d, j = 1, . . . , r + s. (3.1)

A unit ζ > 1 satisfying (3.1) is called a dominant unit. The above ar-
gument shows that every interval [T,Cd

5T ), with T ≥ dC4, contains (at
least) one dominant unit.

Our aim is to find a dominant unit satisfying a sharper estimate than
(3.1).
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Let M be a large positive integer. Since each interval of the form

[dC4C
2jd
5 , dC4C

(2j+1)d
5 ), where j is a non-negative integer, contains a dom-

inant unit, there exist M + 1 dominant units θ1 < θ2 < . . . < θM+1 in
the interval [dC4, dC4e(2M+1)dC4) which satisfy θj+1/θj ≥ Cd

5 , for j =
1, . . . ,M . Recalling that d = r + 2s, it follows from the Schubfachprinzip
of Dirichlet that there exist two dominant units θ and η such that

dC4 ≤ θ < η < dC4e(2M+1)dC4 ,

| log |η1/dη(j)| − log |θ1/dθ(j)|| < 2C4M
−1/(d−1), j = 2, . . . , r + s.

and

|arg η(j) − arg θ(j)| ≤ 2πM−1/(d−1), j = r + 1, . . . , r + s.

Setting N = e2MdC4 = C2Md
5 , we conclude that the unit ε := η/θ

satisfies Cd
5 ≤ ε < Cd

5N ,

| log |ε1/dε(j)|| < 2(2Cd
4d/ logN)1/(d−1), j = 2, . . . , r + s.

and

|arg ε(j)| ≤ 2π(2C4d/ logN)1/(d−1), j = r + 1, . . . , r + s.

Since
r∑

j=1

log |ε1/dε(j)|+ 2
r+s∑

j=r+1

log |ε1/dε(j)| = 0,

we deduce that

| log |ε1/dε(1)|| < 2(d− 1)(2Cd
4d/ logN)1/(d−1).

It follows that, for j = 1, . . . , r + s, we can write

ε(j) = |ε(j)|ei arg ε(j) = ±ε−1/d(1 + νj),

where the complex number νj satisfies

|νj | < 4(d− 1)(2Cd
4d/ logN)1/(d−1),

if N is large enough. In particular, for every positive integer t less than
(logN)1/(d−1) times a small positive constant depending only on d, we get

|(1 + νj)
t| ≤ 3, for j = 1, . . . , r + s.
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Let T be a positive integer. The above argument shows that for N
sufficiently large in terms of T one can construct a unit ε such that

|(ε(j))t| ≤ 3ε−t/d, for 0 ≤ t ≤ T and 1 ≤ j ≤ r + s. (3.2)

Set α0 = 1. Recall that M denotes the Z-module generated by
1, α1, . . . , αd. The elements δ of K such that the trace of αδ is a ra-
tional integer for every α inM form a Z-module D. A basis δ0, δ1, . . . , δd
of D is obtained by solving the equations

Trace(αiδj) = 0, if 0 ≤ i 6= j ≤ d,

Trace(αiδj) = 1, if i = j = 0, . . . , d.

Let t be an integer. Our choice of ε1, . . . , εr+s shows that εt lies in
the order O. Consequently, if α is in M, then εtα is also in M and the
trace of αεtδd is a rational integer. Consequently, εtδd lies in D. Write

εtδd = q0,tδ0 + q1,tδ1 + · · ·+ qd,tδd, (3.3)

where q0,t, . . . , qd,t are rational integers. Observe that

qk,t = Trace(εtδdαk) = εtδdαk +
d∑

j=1

α
(j)
k δ

(j)
d (ε(j))t, for k = 1, . . . , d,

(3.4)
and, recalling that α0 = 1,

q0,t = Trace(εtδd) = εtδd +
d∑

j=1

δ
(j)
d (ε(j))t. (3.5)

Consequently, by (3.2), (3.4), (3.5), for k = 1, . . . , d and 0 ≤ t ≤ T , we
have

|qk,t − q0,tαk| =
∣∣∣ d∑
j=1

(α
(j)
k − αk)δ

(j)
d (ε(j))t

∣∣∣
≤ 3
( d∑
j=1

|(α(j)
k − αk)δ

(j)
d |
)
ε−t/d.

(3.6)

Since, likewise, we have

|q0,t − εtδd| =
∣∣∣ d∑
j=1

δ
(j)
d (ε(j))t

∣∣∣ ≤ 3
( d∑
j=1

|δ(j)d |
)
ε−t/d, (3.7)

it follows from (3.6) and (3.7) that there exists a positive constant C6,
depending only on α1, . . . , αd, such that

|q0,t|1/d ·max{‖q0,tα1‖, . . . , ‖q0,tαd‖} ≤ C6, 0 ≤ t ≤ T. (3.8)
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Let f denote the degree of ε and

Xf+1 + afX
f + . . .+ a1X + a0

denote its minimal defining polynomial, where a0 = ±1. In view of (3.3),
the integers q0,0, . . . , q0,T satisfy

q0,t+f+1 + adq0,t+f + . . .+ a1q0,t+1 + a0q0,t = 0,

for t = 0, . . . , T − f − 1. Let ` ≥ 2 be an integer. By Lemma 2.1, the
sequence (q0,t)0≤t≤T is periodic modulo ` with period length at most equal
to `f+1. Since q0,0 = 0 and f ≤ d, it implies that there exists h ≥ 1 such
that 1 ≤ h ≤ `d+1 and ` divides q0,ht, for every t ≥ 1 with ht ≤ T − d− 1.

Consequently, by (3.8), the integer |q0,ht|/` satisfies the inequality

q1/d ·max{‖q(`α1)‖, . . . , ‖q(`αd)‖} ≤ C6

`1/d
,

for every integer t with 1 ≤ t ≤ (T − d− 1)/h. By (3.7) and the fact that
εt tends to infinity as t tends to infinity (recall that ε ≥ Cd

5 ), the integer
q0,ht is nonzero for every integer t greater than some integer t0, depending
only on α1, . . . , αd. Since N and T can be chosen arbitrarily large, this
shows that the Lagrange constant of the d-tuple (`α1, . . . , `αd) is at most
equal to C6`

−1/d. The proof of Theorem 1.2 is complete.
Let p be a prime number and m be a positive integer. For the proof of

Theorem 1.3, we follow exactly the same lines as for the proof of Theorem
1.2 and take for ` the integer pm. By Lemma 2.1 and the fact that q0,0 = 0,
there exists an integer h such that 1 ≤ h ≤ pm+d and pm divides q0,h. We
take for h the largest integer with these properties and we observe that
h ≥ pm+d/2. Since, by (3.7), the integer q0,t is nonzero for every integer
t greater than some integer t0, depending only on α1, . . . , αd, we deduce
that q0,h is nonzero if m is large enough.

Furthermore, we deduce from (3.7) that there exists a real number
C7 > 1 such that |q0,t| ≤ Ct

7 for t = 0, . . . , T . Combined with (3.8), this
gives

|q0,h|1/d · (log |q0,h|) ·max{‖q0,hα1‖, . . . , ‖q0,hαd‖} · |q0,h|p ≤ pdC6(logC7),

since log |q0,h| < pm+d logC7. The same argument can be applied with
the proof of Theorem 2.2. This completes the proof of Theorem 1.3.

4. Open questions

We formulate the open problem mentioned after the statement of
Theorem EFS.
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Problem 4.1. Prove or disprove that every badly approximable real num-
ber α satisfy

lim
n→+∞

c(nα) = 0. (4.1)

As noted in [1], a proof of (4.1) would imply the proof of the mixed
Littlewood conjecture [9].

Theorem EFS suggests the following problem.

Problem 4.2. To find suitable assumptions on the infinite set N of posi-
tive integers under which every badly approximable real number α satisfies

inf
n∈N

c(nα) = 0.

We may also consider the following extension of (4.1). Let Γ =(
a b
c d

)
be an integral matrix with non-zero discriminant det Γ = ad−bc

and put

Γα =
aα+ b

cα+ d
.

It is proved in [8] that

c(α)

|det Γ|
≤ c(Γα) ≤ |det Γ| c(α).

Problem 4.3. To find explicit examples of irrational real numbers α such
that the quantity

|det(Γ)| c(Γ · α)

is bounded independently of the regular 2× 2 integer matrix Γ.

In [1], we have considered the family of matrices

(
n 0
0 1

)
, n ≥ 1.

We end this section with a metrical question.

Problem 4.4. Let d be a positive integer. To determine the Hausdorff
dimension of the set of vectors α such that

sup
n≥1

n1/d c(nα) < +∞.

and the Hausdorff dimension of the set of vectors α such that

sup
n≥1

n1/d c(nα) = +∞.

Acknowledgements. I am thankful to the referee for a very careful
reading.
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