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Abstract. The irrationality exponent of an irrational p-adic number ξ, which measures

the approximation rate of ξ by rational numbers, is in general very difficult to compute

explicitly. In this work, we shall show that the irrationality exponents of large classes

of automatic p-adic numbers and Mahler p-adic numbers (which are transcendental)

are exactly equal to 2. Our classes contain the Thue–Morse–Mahler p-adic numbers,

the regular paperfolding p-adic numbers, the Stern p-adic numbers, among others.

1. Introduction and results

By Roth’s Theorem the irrationality exponent of any irrational alge-
braic real number is equal to 2. However, it is in general a very difficult
problem to determine the irrationality exponent of a given transcendental
real number, unless its continued fraction expansion is known. Recently,
a method based on Padé approximants was developed in [Bu11] and gen-
eralized in several subsequent works; see [BHWY15] and the references
given therein. In the present work we shall show that this method can
be also used to estimate the irrationality exponent of special classes of
transcendental p-adic numbers.

Fix p a prime number. We denote by Qp the field of p-adic numbers,
and by | · |p the p-adic absolute value normalized such that |p|p = 1/p
(for basic properties about p-adic numbers, see for example [Sc06]). The
irrationality exponent of a p-adic irrational number ξ, denoted by µ(ξ), is
the supremum of the real numbers µ such that the inequality∣∣∣∣ξ − r

s

∣∣∣∣
p

<
1

(H(r, s))µ

has infinitely many solutions in integers r, s with s > 0, where we have
set H(r, s) = max{|r|, |s|}. It follows from a p-adic version of Dirichlet’s
theorem that the irrationality exponent of any irrational element of Qp
is at least equal to 2. By the p-adic analogue of Roth’s theorem (see
for example [Ma61]), the irrationality exponent of any irrational algebraic
p-adic number is equal to 2.

Key words and phrases. Hankel determinant, automatic sequence, Thue-Morse se-
quence, periodicity, regular paperfolding sequence, Stern sequence, irrationality expo-
nent
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In the real case one can easily construct, by means of the theory of
continued fractions, explicit examples of real numbers with any given ir-
rationality exponent greater than or equal to 2. However, it seems that
such constructions cannot be transposed to the p-adic setting. So, we have
to use metric Diophantine approximation to prove that there exist p-adic
numbers with any prescribed irrationality exponent greater than or equal
to 2; see Section 9.3 of [Bu04]. When one looks for explicit examples, it
is tempting to consider, for any real number c ≥ 2, the p-adic number

ξc =
∑
k≥1

pbc
kc,

where b·c denotes the integer part function. By truncating the expansion
of ξc, one can easily get that µ(ξc) ≥ c. And triangle inequalities show
that this inequality is indeed an equality if c ≥ (3+

√
5)/2. In the real case,

a similar example has been considered in [Bu08] (see also Section 7.6 in
[Bu12]), where continued fractions are used to prove that the irrationality

exponent of
∑
k≥1 2−bc

kc (which can be viewed as the real analogue of ξc)
is equal to c for any c ≥ 2. As far as we are aware, the exact value of µ(ξc)
is not yet known when c satisfies 2 ≤ c < (3 +

√
5)/2.

Actually, there are very few concrete examples of transcendental p-adic
numbers whose irrationality exponent is known. One can mention Matala-
Aho’s paper [Mata93]: the numbers

RR(p) =
∞∏
k=0

(1− p5k+2)(1− p5k+3)

(1− p5k+1)(1− p5k+4)

he considers have irrationality exponent equal to 2, however, they are not
proved to be transcendental. For more examples on p-adic numbers with
irrationality exponent equal to 2, the reader can consult the work [MM09]
of Matala-Aho and Merila.

The goal of the present paper is to present explicit examples of tran-
scendental p-adic numbers whose irrationality exponent is equal to 2, with
a special attention to automatic p-adic numbers.

A p-adic number ξ is automatic if there exist two integers k, b ≥ 2
such that the b-adic expansion of ξ is k-automatic, where b = pw and w
is a positive integer. This means that, if we write ξ =

∑
n≥0

a(n)bn with

a(n) ∈ Z (n ≥ 0) and 0 ≤ a(n) < b (n ≥ 0), then the set of subsequences{(
a(krn+ s)

)
n≥0 | r ≥ 0, 0 ≤ s < kr

}
is finite (For more on automatic sequences, see for example Allouche [Al87]
and also the book of Allouche and Shallit [AS03]). By following the proof
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of Theorem 6 in [AB07], one can show that an automatic p-adic number
is either rational or transcendental. We have thus a large family of “sim-
ple” transcendental p-adic numbers, and one can then try to determine
their irrationality exponents. In the present paper we do not restrict our
attention to automatic numbers and take a more general point of view.

Mahler’s method [Ma29, Ma30a, Ma30b] is a method in transcendence
theory whereby one uses a function F (z) ∈ Z[[z]] that satisfies a functional
equation of the form

n∑
i=0

Pi(z)F (zd
i

) = 0,

for some integers n ≥ 1 and d ≥ 2, and polynomials P0(z), . . . , Pn(z)
in Z[x] with P0(z)Pn(z) 6= 0, to give results about the nature of the p-
adic numbers F (b), where, as above, b is an integer power of p. We refer
to such numbers F (b) as Mahler p-adic numbers. It is well known that
automatic p-adic numbers are special cases of Mahler p-adic numbers (see
for example [Be94, Theorem 1]).

From now on, we concentrate our attention on a special type of Mahler
equation. Let d ≥ 2 be an integer, (cm)m≥0 an integer sequence, and set

f(z) =
∑
m≥0

cmz
m.

Suppose that there exist A(z), B(z), C(z), D(z) ∈ Z[z] such that

(1.1) f(z) =
A(z)

B(z)
+
C(z)

D(z)
f(zd).

Under various assumptions on these polynomials, we shall show that, for
every integer w ≥ 1, the irrationality exponent of the p-adic number f(pw)
is equal to 2. A precise statement is given in Theorem 3.1. We display
several consequences of this result in Section 4. Among them is Theorem
1.1 below, which is the p-adic analogue of the main result of [Bu11].

Recall here that the Thue–Morse sequence (tn)n≥0 on {0, 1} is defined
recursively by t0 = 0, t2n = tn, and t2n+1 = 1−tn for all integers n ≥ 0. It
is 2-automatic but not ultimately periodic (see for example [AS03]), thus
all the p-adic numbers

∑
n≥0

tnp
wn are transcendental.

Theorem 1.1. Let (tn)n≥0 denote the Thue–Morse sequence over {0, 1}.
Let p be a prime number and w a positive integer. Then, the irrationality
exponent of the p-adic number

∑
n≥0

tnp
wn is equal to 2.

The proofs of our theorems essentially follow the same lines as the
proofs of the corresponding statements in the real case (see [BHWY15]).
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However, there is an extra difficulty to overcome, since we do not know
the exact degrees of the polynomials giving the Padé approximants to the
power series f which satisfies (1.1).

2. Auxiliary results

The following result is the p-adic analogue of Lemma 4.1 in [AR09].

Lemma 2.1. Let ξ be an element of Qp. Let λ, κ, and θ be real numbers
such that 0 < λ ≤ κ and θ ≥ 1. Suppose that there exist a sequence
(rn/sn)n≥1 of rational numbers and positive numerical constants c0, c1, c2
such that, for all integers n ≥ 1, we have

H(rn, sn) < H(rn+1, sn+1) ≤ c0(H(rn, sn))θ,
c1

(H(rn, sn))1+κ
≤
∣∣∣ξ − rn

sn

∣∣∣
p
≤ c2

(H(rn, sn))1+λ
.

Then we have µ(ξ) ≤ (1 + κ)θ/λ.

Proof. Let r/s be a rational number with H(r, s) large enough. Then
there exists a unique integer n = n(r, s) ≥ 2 such that

H(rn−1, sn−1) < (4c2H(r, s))1/λ ≤ H(rn, sn).

If r
s 6=

rn
sn

, then we obtain∣∣∣ξ − r

s

∣∣∣
p
≥
∣∣∣r
s
− rn
sn

∣∣∣
p
−
∣∣∣ξ − rn

sn

∣∣∣
p
≥ |rsn − srn|p

|ssn|p
− c2

(H(rn, sn))1+λ

≥ 1

|rsn − srn|
− c2

(H(rn, sn))1+λ

≥ 1

2H(r, s)H(rn, sn)
− 1

4H(r, s)H(rn, sn)

=
1

4H(r, s)H(rn, sn)
,

for we have H(rn, sn) ≥ (4c2H(r, s))1/λ. But

(2.1) H(rn, sn) ≤ c0(H(rn−1, sn−1))θ < c0(4c2)θ/λ(H(r, s))θ/λ,

thus, by using that 0 < λ ≤ κ and θ ≥ 1, we obtain∣∣∣ξ − r

s

∣∣∣
p
≥ 1

c3(H(r, s))1+θ/λ
≥ 1

c3(H(r, s))(1+κ)θ/λ
,

where we have put c3 = 4c0(4c2)θ/λ.
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If r
s = rn

sn
, then we deduce from (2.1) that∣∣∣ξ − r

s

∣∣∣
p

=
∣∣∣ξ − rn

sn

∣∣∣
p
≥ c1

(H(rn, sn))1+κ
≥ 1

c4(H(r, s))(1+κ)θ/λ
,

where we have set c4 = c−11 c1+κ0 (4c2)(1+κ)θ/λ.
By the definition of µ(ξ), we obtain finally µ(ξ) ≤ (1 + κ)θ/λ.

Below we summarize several basic facts on Padé approximation. For
more details, we refer the reader to [Br80, BG96].

Let F be a field and z be an indeterminate over F. For any sequence
c = (cm)m≥0 of elements in F, we put f = f(z) =

∑
m≥0

cmz
m, and call it

the generating function of c. For all integers n ≥ 1 and k ≥ 0, the Hankel
determinant of the power series f (or of the sequence c) is defined by

H(k)
n (f) :=

∣∣∣∣∣∣∣∣
ck ck+1 . . . ck+n−1
ck+1 ck+2 . . . ck+n
...

...
. . .

...
ck+n−1 ck+n . . . ck+2n−2

∣∣∣∣∣∣∣∣ ∈ F.

By convention, we put H(k)
0 (f) = 1, for all integers k ≥ 0. For all integers

n ≥ 0, write Hn(f) := H(0)
n (f). The sequence H(f) := (Hn(f))n≥0 is

called the sequence of the Hankel determinants of f .
Let r, s ≥ 0 be integers. By definition, the Padé approximant [r/s]f (z)

to f is the rational fraction P (z)/Q(z) in F[[z]] such that

deg(P ) ≤ r, deg(Q) ≤ s, and f(z)− P (z)

Q(z)
= O(zr+s+1).

The pair (P,Q) has no reason to be unique, but the fraction P (z)/Q(z)
is unique (see [Br80, p. 35]). Moreover, if we assume that P and Q are
coprime, then we have Q(0) 6= 0.

If there exists an integer k ≥ 1 such that Hk(f) is nonzero, then we
know that the Padé approximant [k − 1/k]f (z) exists and we have

f(z)− [k − 1/k]f (z) =
Hk+1(f)

Hk(f)
z2k +O(z2k+1).

This formula is of little help if Hk+1(f) = 0. But even in this case, we
still have the following fundamental result (for the proof, see [BHWY15]).

Theorem 2.2. With the same notation as above, suppose that there exist
two integers `, k such that ` > k ≥ 1 and H`(f)Hk(f) 6= 0. Then the Padé
approximant [k−1/k]f (z) exists, and there exist a nonzero element hk in F
and an integer k′ such that k ≤ k′ < ` and

f(z)− [k − 1/k]f (z) = hk z
k+k′ +O(zk+k

′+1).
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3. Irrationality exponent with Hankel determinants

In this section, we shall use Hankel determinants to bound from above
the irrationality exponent of p-adic transcendental numbers, which are
values at integer powers of p of power series satisfying a functional equation
of a special type.

Theorem 3.1. Let p be a prime number, w a positive integer, and b = pw.

Let (cm)m≥0 be an integer sequence and f(z) =
+∞∑
m=0

cmz
m. Suppose that

there exist an integer d ≥ 2 and A(z), B(z), C(z), D(z) ∈ Z[z] such that

(3.1) f(z) =
A(z)

B(z)
+
C(z)

D(z)
f(zd)

and B(bd
m

)C(bd
m

)D(bd
m

) 6= 0, for all integers m ≥ 0. If there exists an
increasing sequence of positive integers (ni)i≥0 such that Hni(f) 6= 0 for
all integers i ≥ 0, then, setting

ρ := lim sup
i→∞

ni+1

ni
,

the p-adic number f(b) is transcendental, and we have

µ
(
f(b)

)
≤ (1 + ρ)ρ3 min{ρ4, d}.

In particular, the irrationality exponent of f(b) is equal to 2 if ρ = 1.

Theorem 3.1 is the p-adic analogue of Theorem 4.1 in [BHWY15] and
their proofs essentially follow the same lines. Observe, however, that the
dependence on ρ in the upper bound for the irrationality exponent of f(b)
is much worse in Theorem 3.1 than in its real counterpart. This is due
to the fact that we have to control the degrees of the polynomials giving
the Padé approximants to f(z). Such a control was not needed in the real
case. Anyway, in both the real and the p-adic settings, we have established
that the irrationality exponent of f(b) is equal to 2 when ρ = 1.

Proof. Since there exists an increasing sequence of positive integers (ni)i≥0
such that Hni(f) 6= 0 for all integers i ≥ 0, we know by Kronecker’s
theorem (see [Sa63, p. 5]) that f(z) is not a rational function, thus it is
transcendental over Q(z) by Fatou’s theorem (see [Fa06]). But f(z) has
integer coefficients, so it is also transcendental over Cp(z) (see [SW88]),
where Cp is the topological completion of a fixed algebraic closure of Qp.
Then from the equation (3.1) and the fact that B(bd

m

)C(bd
m

)D(bd
m

) 6= 0
for all integers m ≥ 0, we deduce immediately that f(b) is transcendental
(see for example [WX06, p. 464]).
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In the following we shall only consider the case that ρ < +∞.
By iteration of the formula (3.1), we have, for all integers m ≥ 1,

(3.2) f(z) =
Am(z)

Bm(z)
+
Cm(z)

Dm(z)
f(zd

m

),

where we have set Cm(z) =
m−1∏
j=0

C(zd
j

), Dm(z) =
m−1∏
j=0

D(zd
j

), and

Bm(z) = Dm−1(z)

m−1∏
j=0

B(zd
j

), Am(z) =

m−1∑
j=0

Cj(z)A(zd
j

) · Bm(z)

Dj(z)B(zdj )
,

with C0(z) = D0(z) = 1. Since Bm, B; Cm, C; and Dm, D share the
same properties, we can always assume d > ρ (otherwise everything which
follows holds with d being replaced by dk, where k ≥ 1 is the smallest
integer such that dk > ρ).

Put α = deg(A(z)), β = deg(B(z)), γ = deg(C(z)), δ = deg(D(z)).
Then, as proved in [BHWY15], we have:

deg(Am(z)) ≤ (α+ β + γ + δ)dm,

deg(Bm(z)) ≤ (δ + β)dm,

deg(Cm(z)) ≤ γdm,
deg(Dm(z)) ≤ δdm.

Let i ≥ 0 be an integer. By virtue of Theorem 2.2, we can find an in-
teger n′i (ni ≤ n′i < ni+1), hi ∈ Q \ {0}, and Pi(z), Qi(z) ∈ Z[z] with
deg(Pi(z)) ≤ ni − 1, deg(Qi(z)) ≤ ni, and Qi(0) 6= 0 (see [BHWY15])
such that we have the following equality

(3.3) f(z)− Pi(z)

Qi(z)
= hiz

ni+n
′
iSi(z),

where Si(z) = 1 +
+∞∑
j=1

s
(i)
j zj , with s

(i)
j ∈ Q for all integers j ≥ 1. Thus for

all integers m ≥ 1, we have

f(zd
m

)− Pi(z
dm)

Qi(zd
m)

= hiz
(ni+n

′
i)d

m

Si(z
dm).

Combined with the formula (3.2), this gives

f(z)− Am(z)

Bm(z)
− Cm(z)

Dm(z)
· Pi(z

dm)

Qi(zd
m)

= hiz
(ni+n

′
i)d

m Cm(z)

Dm(z)
Si(z

dm).
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To simplify the notation, we define

Pi,m(z) = Am(z)Dm(z)Qi(z
dm) +Bm(z)Cm(z)Pi(z

dm),

Qi,m(z) = Bm(z)Dm(z)Qi(z
dm).

Since C(z)D(z) 6= 0, then we can write

C(z) = cηz
η(1 + zC̃(z)), D(z) = dιz

ι(1 + zD̃(z))

with η, ι ≥ 0 integers, cη, dι ∈ Z \ {0}, and C̃(z), D̃(z) ∈ Q[z]. Note that

C̃(z), D̃(z) are bounded on the closed unit disk Zp, thus there exists an

integer j0 > 0 such that for all integers j ≥ j0, we have |bdj C̃(bd
j

)|p < 1

and |bdj D̃(bd
j

)|p < 1, hence |1 + bd
j

C̃(bd
j

)|p = 1 and |1 + bd
j

D̃(bd
j

)|p = 1,
from which we obtain, for all integers m > j0,

σ :=

j0∏
j=0

∣∣1 + bd
j

C̃(bd
j

)
∣∣
p

=
∣∣∣ Cm(b)

cmη b
η(dm−1)
d−1

∣∣∣
p
,

τ :=

j0∏
j=0

∣∣1 + bd
j

D̃(bd
j

)
∣∣
p

=
∣∣∣ Dm(b)

dmι b
ι(dm−1)
d−1

∣∣∣
p
.

Note that Qi(0) 6= 0, so Qi(z) is different from zero in a neighborhood of
zero in Qp, on which Si(z) converges by virtue of (3.3). Hence we can find
an integer N0,i > j0 (which depends only on i) such that for all integers

j ≥ N0,i we have Qi(b
dj ) 6= 0 and |Si(bd

j

) − Si(0)|p < 1, for z 7→ Si(z)

is continuous at the point z = 0. Thus |Si(bd
j

)|p = |Si(0)|p = 1. Note

also that, by assumption, we have B(bd
j

)C(bd
j

)D(bd
j

) 6= 0 for all integers
j ≥ 0. Hence στ 6= 0, and for all integers m > N0,i, we have

(3.4)

∣∣∣f(b)− Pi,m(b)

Qi,m(b)

∣∣∣
p

=
∣∣∣hib(ni+n′i)dm Cm(b)

Dm(b)
Si(b

dm)
∣∣∣
p

=
σ

τ
|hi|p

∣∣∣cη
dι

∣∣∣m
p
|b|(ni+n

′
i)d

m+
(η−ι)(dm−1)

d−1
p .

Unlike in the real case, we need control the degrees of Pi(z) and Qi(z).
Note that, for all integers i ≥ 2, we have

f(z)− Pi−1(z)

Qi−1(z)
= hi−1z

ni−1+n
′
i−1
(
1 +O(z)

)
,

f(z)− Pi(z)

Qi(z)
= hiz

ni+n
′
i
(
1 +O(z)

)
= zni−1+n

′
i−1O(z),
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from which we deduce immediately that Pi−1(z)
Qi−1(z)

6= Pi(z)
Qi(z)

. However, Pi−1(z)
Qi−1(z)

is the Padé approximant [ni−1 − 1/ni−1]f (z) to f . Then, by the unicity

of Padé approximant (see [Br80, p. 35]), we deduce that Pi(z)
Qi(z)

is not the

Padé approximant [ni−1 − 1/ni−1]f (z) to f , thus we have

(3.5) deg(Pi(z)) ≥ ni−1 or deg(Qi(z)) > ni−1.

This simple observation is crucial in the remaining part of the proof.
Recall that Qi(b

dj ) 6= 0 for all integers j ≥ N0,i. Recall also that, by
assumption, we have B(bd

m

)C(bd
m

)D(bd
m

) 6= 0 for all integers m ≥ 0.
Thus we can find two constants α1,i, α2,i > 0 (which depend only on i)
such that for all integers m ≥ 0, we have

(3.6)



|A(bd
m

)| ≤ α2,ib
dmdeg(A),

|Pi(bd
m

)| ≤ α2,ib
dmdeg(Pi),

α1,ib
dmdeg(B) ≤ |B(bd

m

)| ≤ α2,ib
dmdeg(B),

α1,ib
dmdeg(C) ≤ |C(bd

m

)| ≤ α2,ib
dmdeg(C),

α1,ib
dmdeg(D) ≤ |D(bd

m

)| ≤ α2,ib
dmdeg(D),

α1,ib
dmdeg(Qi) ≤ |Qi(bd

m

)| ≤ α2,ib
dmdeg(Qi),

where the last one only holds for m ≥ N0,i. For all integers i,m ≥ 1, put

qi,m = |Qi,m(b)|, pi,m = Pi,m(b)sgn(Qi,m(b)),

Ti,m = max(deg(Qi,m),deg(Pi,m)) and ti,m = max(|pi,m|, |qi,m|, 1).

We note that qi,m and pi,m are integers. Fix ε ∈ (0, 1
10 ) small enough such

that d
ρ >

1+ε
1−2ε . Since lim

i→+∞
ni = +∞, there exists an integer N1 ≥ 1 such

that for all integers i ≥ N1, we have

(3.7) α+ β + γ + δ + η + ι <
εni
4
.

From the definition of Pi,m, Qi,m and the formula (3.7), we obtain that
for all integers i > N1 and m ≥ 1, we have

Ti,m ≤ (1 +
ε

2
)nid

m.

It then follows from the definition of ti,m and the formula (3.6), that there
exists an integer N1,i ≥ N0,i such that for all integers m ≥ N1,i, we have

ti,m ≤ b(1+ε)nid
m

.

9



To get a lower bound for ti,m with i > N1, we distinguish two cases:

Case I: deg(Qi(z)) ≥ (1 − ε
2 )ni−1. Then, for all integers m ≥ 1, we

have
Ti,m ≥ deg(Qi,m) ≥ deg(Qi(z

dm)) ≥ (1− ε

2
)ni−1d

m.

It then follows from the definition of ti,m and the formula (3.6) that there
exists an integer N2,i ≥ N1,i such that, for all integers m > N2,i, we have

ti,m ≥ qi,m ≥ b(1−ε)ni−1d
m

.

Case II: deg(Qi(z)) ≤ (1 − ε
2 )ni−1. Then it follows from the formula

(3.5) that deg(Pi(z)) ≥ ni−1, and for all integers m ≥ 1, we have

Ti,m ≥ deg(Pi,m) = deg(Bm(z)Cm(z)Pi(z
dm)) ≥ ni−1dm.

At the same time, from the definition of ti,m and the formula (3.6), we can
find an integer N3,i ≥ N1,i such that for all integers m > N3,i, we have

ti,m ≥ |pi,m| ≥ b(1−ε)ni−1d
m

.

Hence for all integers i > N1 and m > max(N2,i, N3,i), we always have

(3.8) b(1−ε)ni−1d
m

≤ ti,m ≤ b(1+ε)nid
m

.

Similarly by (3.4) and (3.7), there exists an integer N4,i > max(N2,i, N3,i)
such that for all integers i > N1 and m ≥ N4,i, we have

(3.9)
1

b(ni+n
′
i
)(1+ε)dm

≤
∣∣∣f(b)− pi,m

qi,m

∣∣∣
p
≤ 1

b(ni+n
′
i
)(1−ε)dm ,

and by the formula (3.8), we obtain also

(3.10) t
−

(ni+n
′
i
)(1+ε)

ni−1(1−ε)

i,m ≤
∣∣∣f(b)− pi,m

qi,m

∣∣∣
p
≤ t
−

(ni+n
′
i
)(1−ε)

ni(1+ε)

i,m .

By the definition of ρ, there exists an integer i0 > N1 such that for all
integers i ≥ i0, we have ni+1

ni
< ρ+ ε ≤ ρ(1 + ε), and

(3.11)


(ni + n′i)(1 + ε)

ni−1(1− ε)
≤ (1 + ρ)ρ(1 + 3ε),

(ni + n′i)(1− ε)
ni(1 + ε)

≥ 2(1− 3ε).
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In particular, for all integers i > i0 and for all integers m ≥ N4,i, we have

(3.12) bnid
m(1−2ε)/ρ ≤ ti,m ≤ bnid

m(1+ε),

(3.13) ti,m < t
d(1−2ε)
ρ(1+ε)

i,m ≤ ti,m+1 ≤ t
ρd(1+ε)
1−2ε

i,m ,

(3.14) t
−(1+ρ)ρ(1+3ε)
i,m ≤

∣∣∣f(b)− pi,m
qi,m

∣∣∣
p
≤ t−2(1−3ε)i,m .

Applying Lemma 2.1 with (3.13) and (3.14), we obtain

µ(f(b)) ≤ (1 + ρ)ρ(1 + 3ε)

2(1− 3ε)− 1
· ρd(1 + ε)

1− 2ε
.

Since ε is positive and can be chosen arbitrarily small, we get

(3.15) µ(f(b)) ≤ d(1 + ρ)ρ2.

In the following, we assume ρ < 3
√
d and choose ε > 0 small enough

such that ρ < 3
√
d − ε. Fix ` > 1 an integer such that d`−1 > ni0+1.

Let i1 > i0 be the smallest integer such that ni1 ∈ [d`−1, d` − 1] (such an
integer exists maybe not for all `, but at least for infinitely many `). Then
ni1−1 ≤ d`−1 − 1, and thus we have

d`−1 ≤ ni1 < (ρ+ ε)ni1−1 ≤ (ρ+ ε)(d`−1 − 1).

Since ni1+1 < (ρ+ ε)ni1 , we can find an integer i2 > i1 such that

ni2 < (ρ+ ε)ni1 ≤ ni2+1.

So ni2+1 < (ρ+ ε)ni2 < (ρ+ ε)3(d`−1 − 1) ≤ d` − 1. Set i3 = i2 + 1,

A` = {ni1 , ni2 , ni3} ∪ {nj ∈ [d`−1, d` − 1] | j > i3},

and denote the elements of A` as ni1 < ni2 < · · · < niω . Then ω ≥ 3 and
we have d` ≤ niω+1 < (ρ+ ε)niω . Set

M` = max
1≤i≤iω

N4,i.

We arrange the integers til,m (1 ≤ l ≤ ω and m ≥ M`) as an increasing
sequence, denoted by (r`,j)j≥0.

Fix j ≥ 0, and write r`,j = til,m with 1 ≤ l ≤ ω. By (3.12), we have

bnild
m(1−2ε)/ρ ≤ til,m ≤ bnild

m(1+ε).

11



We distinguish below two cases:

Case I: niω > ρnil(1 + ε)/(1 − 2ε). Since ρ ≥ 1, we have iω > il and
thus there exists a smallest integer v such that l < v ≤ ω such that

niv > ρnil
1 + ε

1− 2ε
.

Consequently we have tiv,m ≥ bnivd
m(1−2ε)/ρ > bnild

m(1+ε) ≥ til,m and

log tiv,m
log til,m

≤ ρniv (1 + ε)

nil(1− 2ε)
.

By the minimality of of v, we obtain

niv < (ρ+ ε)niv−1
≤ (ρ+ ε)ρnil

1 + ε

1− 2ε
,

from which we deduce directly

1 <
log r`,j+1

log r`,j
≤ log tiv,m

log til,m
<
ρ2(ρ+ ε)(1 + ε)2

(1− 2ε)2
.

Case II: niω ≤ ρnil(1 + ε)/(1 − 2ε). Since niω < d` ≤ dni1 , we get
dni1/niω > 1 and we obtain, for all ε > 0 small enough and by our choice
of i3, that

ρniω
1 + ε

1− 2ε
< (ρ+ ε)dni1 ≤ dni3 ,

as ρ(1+ε)
(1−2ε)(ρ+ε) converges to 1 when ε tends to 0. Then we get

log ti3,m+1

log til,m
≥ ni3d(1− 2ε)

ρnil(1 + ε)
>
niω
nil
≥ 1.

Moreover, from niω ≤ ρnil(1 + ε)/(1− 2ε), we obtain also

log ti3,m+1

log til,m
≤ ρdni3(1 + ε)

nil(1− 2ε)
≤ ρ2dni3(1 + ε)2

niω (1− 2ε)2
.

Note that niω >
d`

ρ+ε and ni3 = ni2+1 < (ρ+ ε)3(d`−1 − 1), hence

dni3
niω

< (ρ+ ε)4
d(d`−1 − 1)

d`
< (ρ+ ε)4,

12



and then we deduce

1 <
log r`,j+1

log r`,j
≤ log ti3,m+1

log til,m
<
ρ2(ρ+ ε)4(1 + ε)2

(1− 2ε)2
.

Since ρ ≥ 1, thus for all integers j ≥ 0, we have in both cases

(3.16) 1 <
log r`,j+1

log r`,j
<
ρ2(ρ+ ε)4(1 + ε)2

(1− 2ε)2
.

Once again applying Lemma 2.1 with (3.14) and (3.16), we get

µ(f(b)) ≤ (1 + ρ)ρ(1 + 3ε)

2(1− 3ε)− 1
· ρ

2(ρ+ ε)4(1 + ε)2

(1− 2ε)2
.

Since ε is positive and can be chosen arbitrarily small, hence we have

(3.17) µ(f(b)) ≤ (1 + ρ)ρ7.

The bounds (3.15) and (3.17) are obtained under the assumption that
d > ρ. As noticed previously, we can remove this assumption by replacing
d with dk, where k is the smallest integer such that dk > ρ. In particular,
we have dk ≤ dρ. Consequently, we have shown that

µ(f(b)) ≤ (1 + ρ)ρ3d

and, under the assumption ρ < dk/3,

µ(f(b)) ≤ (1 + ρ)ρ7,

from which we deduce the desired result by noting that min{d, ρ4} = d
when ρ ≥ dk/3. In particular, if ρ = 1, then f(b) ≤ 2. But f(b) is
transcendental, thus its irrationality exponent is equal to 2.

Remark. In the statement of Theorem 3.1, if we replace b = pw by
b = rpw/s, where r, s are coprime integers such that r 6= 0, s > 0 and
p does not divide rs, then the same reason (see [WX06, p. 464]) yields
that the p-adic number f(rpw/s) is transcendental. Moreover, with slight
modifications, we can also show that

µ
(
f
(rpw
s

))
≤ w

2w − logp max{rpw, s}
(1 + ρ)ρ3 min{ρ4, d},

if max{rpw, s} < p2w. The verification is slightly technical, but direct and
routine. In the real case, an analogous result was given in [BHWY15]. See
also Dubickas [Dub14] for the irrationality exponent of the Thue–Morse
power series evaluated at the rational number a/b with a2 < b.

If the sequence (cj)j≥0 takes only finitely many integer values, then the
conditions in Theorem 3.1 can be simplified as follows.
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Theorem 3.2. Let p be a prime number, w a positive integer, and b = pw.
Let (cm)m≥0 be an integer sequence taking only finitely many values,

and set f(z) =
+∞∑
j=0

cjz
j . Suppose that there exist an integer d ≥ 2 and

A(z), B(z), C(z), D(z) ∈ Z[z] such that C(bd
m

) 6= 0 for all m ≥ 0, and

f(z) =
A(z)

B(z)
+
C(z)

D(z)
f(zd).

If there exists an increasing sequence of positive integers (ni)i≥0 such that
Hni(f) 6= 0 for all integers i ≥ 0 and lim sup

i→∞

ni+1

ni
= 1, then the p-adic

number f(b) is transcendental and its irrationality exponent is equal to 2.

Proof. Since the sequence (cj)j≥0 is bounded, we can find an integer

` > 2 such that |cj | < bd
`−1, for all integers j ≥ 0. As in the proof of

Theorem 3.1, we know also that f(z) is not rational, and there exist A`(z),
B`(z), C`(z), and D`(z) in Z[z] such that

(3.18) f(z) =
A`(z)

B`(z)
+
C`(z)

D`(z)
f(zd

`

).

Moreover C`(b
dm) 6= 0 for all integers m ≥ 0, since C(bd

m

) 6= 0 for all
integers m ≥ 0. Without loss of generality, we can also suppose that

gcd(A`(z), B`(z)) = 1 and gcd(C`(z), D`(z)) = 1.

We argue by contradiction. Suppose that there is an integer m ≥ 0 such
that B`(b

dm)D`(b
dm) = 0. Then we can write

B`(z) = (z − bd
m

)sE(z), D`(z) = (z − bd
m

)tF (z),

where E(z), F (z) ∈ Q[z] are not equal to zero at z = bd
m

, and s, t ≥ 0 are
integers such that max{s, t} ≥ 1.

If s > t, then from the formula (3.18), we obtain

(z − bd
m

)tf(z)− C`(z)

F (z)
f(zd

`

) =
A`(z)

(z − bdm)s−tE(z)
.

The left hand side is regular at z = bd
m

, while the right side is not, giving
us the required contradiction.

If s ≤ t, then from the formula (3.18), we have

(z − bd
m

)tf(z)− (z − bdm)t−sA`(z)

E(z)
=
C`(z)

F (z)
f(zd

`

).
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Hence f(bd
m+`

) is a rational number. But (cj)j≥0 is the sequence of coeffi-

cients of this rational number in its base-bd
m+`

expansion and it is bounded

by bd
`−1. Thus, the sequence (cj)j≥0 is ultimately periodic. This gives

again a contradiction since f(z) is not rational.
To conclude, it suffices to apply Theorem 3.1 to the formula (3.18).

4. Some applications

All the results in the real case presented in [BHWY15] have corre-
sponding p-adic versions. In this section we only summarize the main
applications of Theorem 3.1.

We begin with the p-adic analogue of Theorem 6.1 from [BHWY15].

Theorem 4.1. Let f(z) ∈ Z[[z]] be a power series such that

(4.1) A(z) +B(z)f(z) + C(z)f(z2) = 0,

where A(z), B(z), and C(z) are integer polynomials satisfying one of the
following conditions:

(i) B(0) ≡ 1, C(0) ≡ 0 (mod 2),

(ii) A(0) ≡ 0, B(0) ≡ 1, C(0) ≡ 1 (mod 2).

Let p be a prime number, w a positive integer, and b = pw such that
B(b2

m

)C(b2
m

) 6= 0 for all integers m ≥ 0. If f(z) (mod 2) is not a rational
function, then the p-adic number f(b) is transcendental and its irrational-
ity exponent is equal to 2.

Proof. Put F (z) = f(z) (mod 2) ∈ F2[[z]]. By the formula (4.1), we obtain

A(z) +B(z)F (z) + C(z)F (z)2 = 0.

By Theorem 5.2 in [BHWY15] (with conditions (i) and (iii), respectively)
the sequence H(F ) of Hankel determinants of F is ultimately periodic
over F2. Since F (z) is not a rational function in F2[[z]], there exists an
increasing sequence of positive integers (ni)i≥0 such that Hni(F ) 6= 0 for
all i ≥ 0 and lim

i→∞
ni+1

ni
= 1. The conclusion comes from Theorem 3.1.

Theorem 1.1 can be deduced immediately from Theorem 4.1.

Proof of Theorem 1.1. Put f(z) =
∑
n≥0

tnz
n. Then

z − (1− z2)f(z) + (1− z2)(1− z)f(z2) = 0.

But the Thue-Morse sequence (tn (mod 2))n≥0 is not ultimately periodic,
thus by Theorem 4.1 (ii), we obtain the desired result.
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For all integers n ≥ 0 with binary expansion n =
∑k
j=0 nj2

j where

nj = 0, 1 (0 ≤ j ≤ k), put s2(n) =
∑k
j=0 nj , called the sum of the binary

digits of n. One checks that s2(n) ≡ tn (mod 2), for all integers n ≥ 0.

Inspired by the above proof and also by the recent work [Co15] of Coons,
we obtain the following result.

Theorem 4.2. Let p be a prime number and w a positive integer. Then,
the p-adic number

∑
n≥0

s2(n)pwn is transcendental, and its irrationality

exponent is equal to 2.

Proof. Indeed if we put f(z) =
∑
n≥0

s2(n)zn, then

z − (1− z2)f(z) + (1− z2)(1 + z)f(z2) = 0.

To conclue, it suffices to proceed as for the proof of Theorem 1.1.

Theorem 4.3. Let f(z) ∈ Z[[z]] be the power series defined by

(4.2) f(z) =
∏
n≥0

(
1 + uz2

n

+ 2z2
n+1 C(z2

n

)

D(z2n)

)
,

with u ∈ Z, C(z), D(z) ∈ Z[z] and D(0) = 1. Let p be a prime number, w
a positive integer, and b = pw such that D(b2

m

)f(b2
m

) 6= 0 for all integers
m ≥ 0. If f(z) (mod 4) is not a rational function, then the p-adic number
f(b) is transcendental and its irrationality exponent is equal to 2.

Proof. We proceed exactly as in the proof of Theorem 2.2 of [BHWY15] to
show that there exists an increasing sequence of positive integers (ni)i≥0
such that Hni(f) 6= 0 for all integers i ≥ 0 and lim

i→∞
ni+1

ni
= 1. We conclude

by applying Theorem 3.1.

Remark. Note that Theorem 4.3 can not be deduced from Theorem 4.1,
for f(z) (mod 2) is a rational function.

Theorem 1.1 is also a direct consequence of Theorem 4.3.

Another proof of Theorem 1.1. Put f(z) =
∑
n≥0

(1− 2tn)zn. Then we have

f(z) =
∏
n≥0

(1− z2
n

).

Applying Theorem 4.3 with C(z) = 0, D(z) = 1, and u = −1, we obtain
that µ(f(b)) = 2. But f(b) = 1

1−b − 2
∑
n≥0

tnb
n, hence

µ
(∑
n≥0

tnb
n
)

= µ(f(b)) = 2.
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For all integers α, β ≥ 0, define the functions

Fα,β(z) =
1

z2α

∞∑
n=0

z2
n+α

1 + z2n+β =
∞∑

n,j≥0

(−1)jz(j2
β−α+1)2n+α−2α ,

Gα,β(z) =
1

z2α

∞∑
n=0

z2
n+α

1− z2n+β =
∞∑

n,j≥0

z(j2
β−α+1)2n+α−2α .

It is shown in [BHWY15] that Gα,β(z) is rational if β = α + 1, and
Gα,β(z) (mod 2) is not a rational function if β 6= α + 1. The sequence of
coefficients of G0,0(z) is usually called the Gros sequence [Gr72, HKMP13].

For β 6= α+ 1, we have the following result.

Theorem 4.4. Let α, β ≥ 0 be integers such that β 6= α + 1. Let p be
a prime number, w a positive integer, and set b = pw. Then, the p-adic
numbers Fα,β(b) and Gα,β(b) are transcendental and their irrationality
exponents are equal to 2.

Proof. From the definition, we know directly that Fα,β(z) and Gα,β(z)
have integer coefficients in power series expansion. Moreover we have also

(4.5) − 1 + (1 + z2
β

)Fα,β(z)− z2
α

(1 + z2
β

)Fα,β(z2) = 0,

(4.6) − 1 + (1− z2
β

)Gα,β(z)− z2
α

(1− z2
β

)Gα,β(z2) = 0.

Note that Fα,β(z) (mod 2) = Gα,β(z) (mod 2) is not rational over F2. To
conclude, it suffices to apply Theorem 4.1 (i).

Recall here that the regular paperfolding sequence (un)n≥0 on {0, 1} is
defined recursively by u4n = 1, u4n+2 = 0, and u2n+1 = un, for all integers
n ≥ 0. The p-adic regular paperfolding numbers are defined by

fRPF (b) :=
∑
n≥0

unb
n,

where p is a prime number, w a positive integer, and b = pw. Recall also
that the regular paperfolding sequence is 4-automatic but not ultimately
periodic (see for example [AS03]), thus all the regular paperfolding p-adic
numbers fRPF (b) are transcendental.

Theorem 4.5. Let p be a prime number, w a positive integer, and b = pw.
Then, the irrationality exponent of the regular paperfolding p-adic number
fRPF (b) is equal to 2

Proof. It suffices to apply Theorem 4.4 to G0,2(z).
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Stern’s sequence (an)n≥0 and its twisted version (bn)n≥0 (see [BV13,
Ba10, St58]) are defined respectively by{

a0 = 0, a1 = 1,
a2n = an, a2n+1 = an + an+1 (n ≥ 1),

and {
b0 = 0, b1 = 1,
b2n = −bn, b2n+1 = −(bn + bn+1) (n ≥ 1).

Put S(z) =
∞∑
n=0

an+1z
n and T (z) =

∞∑
n=0

bn+1z
n. Our next result gives the

exact irrationality exponent of the p-adic (twisted) Stern numbers.

Theorem 4.6. Let p be a prime number, w a positive integer, and b = pw.
Then, the p-adic numbers S(b) and T (b) are transcendental and their
irrationality exponents are equal to 2.

Proof. From the above definitions, we obtain (see also [BV13])

S(z) = (1 + z + z2)S(z2), T (z) = 2− (1 + z + z2)T (z2).

Han has recently shown in [H15b] that for all integers n ≥ 2, we have

Hn(S)

2n−2
≡ Hn(T )

2n−2
≡
{

0, if n ≡ 0, 1 (mod 4),
1, if n ≡ 2, 3 (mod 4).

Hence there exists an increasing sequence of positive integers (ni)i≥0 such
that Hni(S)Hni(T ) 6= 0 for all integers i ≥ 0, and lim

i→∞
ni+1

ni
= 1. The rest

follows from Theorem 3.1.

Theorem 4.7. Let f(z) ∈ Z[[z]] be a power series defined by

(4.7) f(z) =

∞∏
n=0

C(z3
n

)

D(z3n)
,

with D(z), C(z) ∈ Z[z] such that C(0) = D(0) = 1. Let p be a prime
number, w a positive integer, and b = pw such that C(b3

m

)D(b3
m

) 6= 0 for
all integers m ≥ 0. If f(z) (mod 3) is not a rational function, then f(b) is
transcendental and its irrationality exponent is equal to 2.

Proof. Over the finite field F3, the power series F (z) = f(z) (mod 3)
satisfies the quadratic equation −D(z)+C(z)F (z)2 = 0. Consequently by
Theorem 5.2 (iv) in [BHWY15], the sequence H(F ) is ultimately periodic.
Since F (z) is not a rational function in F3[[z]], there exists an increasing
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sequence of positive integers (ni)i≥0 such that Hni(F ) 6= 0 for all integers
i ≥ 0 and lim

i→∞
ni+1

ni
= 1. The conclusion follows from Theorem 3.1.

Letting C(z) = 1 − z (resp. C(z) = 1 ± z − z2) and D(z) = 1 in
Theorem 4.7, we obtain at once the following corollary. The underlying
Hankel determinants are evaluated in [H15a].

Corollary 4.8. Let p be a prime number, w a positive integer, and b =
pw. Then, the p-adic numbers∏

k≥0

(1− b3
k

) and
∏
k≥0

(1± b3
k

− b2·3
k

)

are transcendental and their irrationality exponents are equal to 2.

The Cantor sequence (vn)n≥0 on {0, 1} is defined as follows: for all
integers n ≥ 0, we have vn = 1 if and only if the ternary expansion of n
does not contain the digit 1. The Cantor p-adic numbers take the form

fC(b) :=
∑
n≥0

vnb
n,

where p is a prime number, w a positive integer, and b = pw. Recall
also that the Cantor sequence is 3-automatic but not ultimately periodic
(see for example [AS03]), thus all the p-adic Cantor numbers fC(b) are
transcendental. Note finally that fC(z) = (1 + z2)fC(z3).

Theorem 4.9. Let p be a prime number, w a positive integer, and b = pw.
Then, the irrationality exponent of the Cantor p-adic number fC(b) is
equal to 2.

Proof. Apply Theorem 4.7 with C(z) = 1 + z2 and D(z) = 1.

We give below further concrete examples of transcendental numbers
with irrationality exponent equal to 2.

In [Va15], Väänänen studied the following two power series

L(z) =
∞∑
j=0

z2
j∏j−1

i=0 (1− z2i)
, M(z) =

∞∑
j=0

(−1)jz2
j∏j−1

i=0 (1− z2i)
,

which satisfy, respectively, the functional equations

z(z − 1) + (1− z)L(z)− L(z2) = 0,

z(z − 1) + (1− z)M(z) +M(z2) = 0.

One can check directly that neither L(z) nor M(z) is rational modulo 2.
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Theorem 4.10. Let p be a prime number, w a positive integer, and
b = pw. Then, the p-adic numbers L(b) and M(b) are transcendental and
their irrationality exponents are equal to 2.

Proof. It suffices to apply Theorem 4.1 (ii).

Fu and Han [FH16] studied the Hankel determinants of the following
power series F5, F11, F13, F17A, and F17B , satisfying the equations

F5(z) = (1− z − z2 − z3 + z4)F5(z5),

F11(z) = (1− z − z2 + z3 − z4 + z5 + z6 + z7 + z8 − z9 − z10)F11(z11),

F13(z) = (1− z − z2 + z3 − z4 − z5 − z6 − z7 − z8

+ z9 − z10 − z11 + z12)F13(z13)

F17A(z) = (1− z − z2 + z3 − z4 + z5 + z6 + z7 + z8 + z9

+ z10 + z11 − z12 + z13 − z14 − z15 + z16)F17A(z17),

F17B(z) = (1− z − z2 − z3 + z4 + z5 − z6 + z7 + z8 + z9

− z10 + z11 + z12 − z13 − z14 − z15 + z16)F17B(z17)

and established that they verify the following relations

Hn(F5)/2n−1 ≡ Hn(F11)/2n−1 ≡ Hn(F13)/2n−1 ≡ 1 (mod 2),

Hn(F17A)/2n−1 ≡ Hn(F17B)/2n−1 ≡ 1 (mod 2).

All these power series satisfy the conditions of Theorem 3.1, thus we obtain
the following result.

Theorem 4.11. Let p be a prime number, w a positive integer, and
b = pw. Then, all the p-adic numbers F5(b), F11(b), F13(b), F17A(b),
F17B(b) are transcendental and their irrationality exponents are equal to 2.
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