Power series of non linear operators, effective actions and some combinatorial illustrations

Krajewski Thomas
Centre de Physique Théorique, Marseille
krajew@cpt.univ-mrs.fr
Conférence Algèbre combinatoire et Arbres
Lyon, May 2008

Power series of non linear operators, effective actions and some combinatorial illustrations

Krajewski Thomas
Centre de Physique Théorique, Marseille krajew@cpt.univ-mrs.fr
Conférence Algèbre combinatoire et Arbres
Lyon, May 2008

Rooted trees and power series of non linear operators

Power series of non linear operators, effective actions and some combinatorial illustrations

Krajewski Thomas
Centre de Physique Théorique, Marseille krajew@cpt.univ-mrs.fr
Conférence Algèbre combinatoire et Arbres
Lyon, May 2008

Rooted trees and power series of non linear operators

- Geometric and binomial series

Power series of non linear operators, effective actions and some combinatorial illustrations

Krajewski Thomas
Centre de Physique Théorique, Marseille krajew@cpt.univ-mrs.fr
Conférence Algèbre combinatoire et Arbres
Lyon, May 2008

Rooted trees and power series of non linear operators

- Geometric and binomial series
- Postnikov's hook length formula

Power series of non linear operators, effective actions and some combinatorial illustrations

Krajewski Thomas
Centre de Physique Théorique, Marseille
krajew@cpt.univ-mrs.fr

Conférence Algèbre combinatoire et Arbres
Lyon, May 2008

Rooted trees and power series of non linear operators

- Geometric and binomial series
- Postnikov's hook length formula

Feynman diagrams and iterations of effective actions

Power series of non linear operators, effective actions and some combinatorial illustrations

Krajewski Thomas
Centre de Physique Théorique, Marseille krajew@cpt.univ-mrs.fr

Conférence Algèbre combinatoire et Arbres
Lyon, May 2008

Rooted trees and power series of non linear operators

- Geometric and binomial series
- Postnikov's hook length formula

Feynman diagrams and iterations of effective actions

- Some properties of the Tutte polynomial

Power series of non linear operators, effective actions and some combinatorial illustrations

Krajewski Thomas
Centre de Physique Théorique, Marseille
krajew@cpt.univ-mrs.fr

Conférence Algèbre combinatoire et Arbres
Lyon, May 2008

Rooted trees and power series of non linear operators

- Geometric and binomial series
- Postnikov's hook length formula

Feynman diagrams and iterations of effective actions

- Some properties of the Tutte polynomial
- Loop decomposition of the Symanzik polynomial

Perturbative solution of a differential equation

Perturbative solution of a differential equation

Expand the solution of differential equation

$$
\frac{d x}{d s}=X(x), \quad x\left(s_{0}\right)=x_{0},
$$

in powers of $\left(s-s_{0}\right)$

Perturbative solution of a differential equation

Expand the solution of differential equation

$$
\frac{d x}{d s}=X(x), \quad x\left(s_{0}\right)=x_{0}
$$

in powers of $\left(s-s_{0}\right)$ with

$$
\begin{aligned}
\frac{d x^{i}}{d s}= & X^{i} \\
\frac{d^{2} x^{i}}{d s^{2}}= & \sum_{j} \frac{\partial X^{i}}{\partial x^{j}} X^{j} \\
\frac{d^{3} x^{i}}{d s^{3}}= & \sum_{j, k} \frac{\partial x^{i}}{\partial x^{j}} \frac{\partial x^{j}}{\partial x^{k}} X^{k}+\frac{\partial^{2} x^{i}}{\partial x^{j} \partial x^{k}} X^{j} X^{k} \\
\frac{d^{4} x^{i}}{d s^{4}}= & \sum_{j, k, l} \frac{\partial x^{i}}{\partial x^{j}} \frac{\partial x^{j}}{\partial x^{k}} \frac{\partial X^{k}}{\partial x^{\prime}} X^{\prime}+3 \frac{\partial^{2} x^{i}}{\partial x^{j} \partial x^{k}} \frac{\partial X^{k}}{\partial x^{\prime}} X^{j} X^{\prime} \\
& \quad+\frac{\partial^{3} X^{i}}{\partial x^{j} \partial x^{k} \partial x^{\prime}} X^{j} X^{k} X^{I}+\frac{\partial X^{i} \frac{\partial^{2} x^{j}}{\partial x^{j}} \frac{x^{k} \partial x^{\prime}}{} X^{k} X^{\prime}}{}
\end{aligned}
$$

Perturbative solution of a differential equation

Expand the solution of differential equation

$$
\frac{d x}{d s}=X(x), \quad x\left(s_{0}\right)=x_{0}
$$

in powers of $\left(s-s_{0}\right)$ with

$$
\begin{aligned}
\frac{d x^{i}}{d s}= & X^{i} \\
\frac{d^{2} x^{i}}{d s^{2}}= & \sum_{j} \frac{\partial X^{i}}{\partial x^{j}} X^{j} \\
\frac{d^{3} x^{i}}{d s^{3}}= & \sum_{j, k} \frac{\partial X^{i}}{\partial x^{j}} \frac{\partial x^{j}}{\partial x^{k}} X^{k}+\frac{\partial^{2} x^{i}}{\partial x^{j} \partial x^{k}} X^{j} X^{k} \\
\frac{d^{4} x^{i}}{d s^{4}}= & \sum_{j, k, I} \frac{\partial X^{i}}{\partial x^{j}} \frac{\partial X^{j}}{\partial x^{k}} \frac{\partial X^{k}}{\partial x^{\prime}} X^{I}+3 \frac{\partial^{2} X^{i}}{\partial x^{j} \partial x^{k}} \frac{\partial X^{k}}{\partial x^{\prime}} X^{j} X^{I} \\
& \quad+\frac{\partial^{3} X^{i}}{\partial x^{j} \partial x^{k} \partial x^{\prime}} X^{j} X^{k} X^{I}+\frac{\partial X^{i}}{\partial x^{j}} \frac{\partial^{2} x^{j}}{\partial x^{k} \partial x^{\prime}} X^{k} X^{I}
\end{aligned}
$$

Each of these terms correspond to rooted trees with various weights.

Runge-Kutta methods

Runge-Kutta methods

Numerical algorithm based on the Runge-Kutta method, given by a square matrix $\left(a_{i j}\right)_{1 \leq i, j \leq n}$ and a vector $\left(b_{i}\right)_{1 \leq i \leq n}$ of real numbers,

$$
x\left(s_{1}\right)=x\left(s_{0}\right)+h \sum_{i=1}^{n} b_{i} X\left(y_{i}\right),
$$

where y_{i} is determined by $y_{i}=x_{0}+h \sum_{j=1}^{n} a_{i j} X\left(y_{j}\right)$ and $h=s_{1}-s_{0}$.

Runge-Kutta methods

Numerical algorithm based on the Runge-Kutta method, given by a square matrix $\left(a_{i j}\right)_{1 \leq i, j \leq n}$ and a vector $\left(b_{i}\right)_{1 \leq i \leq n}$ of real numbers,

$$
x\left(s_{1}\right)=x\left(s_{0}\right)+h \sum_{i=1}^{n} b_{i} X\left(y_{i}\right),
$$

where y_{i} is determined by $y_{i}=x_{0}+h \sum_{j=1}^{n} a_{i j} X\left(y_{j}\right)$ and $h=s_{1}-s_{0}$.
The method is of order n if it agrees with the exact expansion up to terms of order h^{n}.

Runge-Kutta methods

Numerical algorithm based on the Runge-Kutta method, given by a square matrix $\left(a_{i j}\right)_{1 \leq i, j \leq n}$ and a vector $\left(b_{i}\right)_{1 \leq i \leq n}$ of real numbers,

$$
x\left(s_{1}\right)=x\left(s_{0}\right)+h \sum_{i=1}^{n} b_{i} X\left(y_{i}\right),
$$

where y_{i} is determined by $y_{i}=x_{0}+h \sum_{j=1}^{n} a_{i j} X\left(y_{j}\right)$ and $h=s_{1}-s_{0}$.
The method is of order n if it agrees with the exact expansion up to terms of order h^{n}.

Runge-Kutta methods can be composed (Butcher's B-series):

Runge-Kutta methods

Numerical algorithm based on the Runge-Kutta method, given by a square matrix $\left(a_{i j}\right)_{1 \leq i, j \leq n}$ and a vector $\left(b_{i}\right)_{1 \leq i \leq n}$ of real numbers,

$$
x\left(s_{1}\right)=x\left(s_{0}\right)+h \sum_{i=1}^{n} b_{i} X\left(y_{i}\right),
$$

where y_{i} is determined by $y_{i}=x_{0}+h \sum_{j=1}^{n} a_{i j} X\left(y_{j}\right)$ and $h=s_{1}-s_{0}$.
The method is of order n if it agrees with the exact expansion up to terms of order h^{n}.

Runge-Kutta methods can be composed (Butcher's B-series):

- compute $x\left(s_{1}\right)$ starting at $x\left(s_{0}\right)$ by a first method

Runge-Kutta methods

Numerical algorithm based on the Runge-Kutta method, given by a square matrix $\left(a_{i j}\right)_{1 \leq i, j \leq n}$ and a vector $\left(b_{i}\right)_{1 \leq i \leq n}$ of real numbers,

$$
x\left(s_{1}\right)=x\left(s_{0}\right)+h \sum_{i=1}^{n} b_{i} X\left(y_{i}\right),
$$

where y_{i} is determined by $y_{i}=x_{0}+h \sum_{j=1}^{n} a_{i j} X\left(y_{j}\right)$ and $h=s_{1}-s_{0}$.
The method is of order n if it agrees with the exact expansion up to terms of order h^{n}.

Runge-Kutta methods can be composed (Butcher's B-series):

- compute $x\left(s_{1}\right)$ starting at $x\left(s_{0}\right)$ by a first method
- compute $x\left(s_{s}\right)$ starting at $x_{\left(s_{1}\right)}$ by a second method

Runge-Kutta methods

Numerical algorithm based on the Runge-Kutta method, given by a square matrix $\left(a_{i j}\right)_{1 \leq i, j \leq n}$ and a vector $\left(b_{i}\right)_{1 \leq i \leq n}$ of real numbers,

$$
x\left(s_{1}\right)=x\left(s_{0}\right)+h \sum_{i=1}^{n} b_{i} X\left(y_{i}\right),
$$

where y_{i} is determined by $y_{i}=x_{0}+h \sum_{j=1}^{n} a_{i j} X\left(y_{j}\right)$ and $h=s_{1}-s_{0}$.
The method is of order n if it agrees with the exact expansion up to terms of order h^{n}.

Runge-Kutta methods can be composed (Butcher's B-series):

- compute $x\left(s_{1}\right)$ starting at $x\left(s_{0}\right)$ by a first method
- compute $x\left(s_{s}\right)$ starting at $\left.x_{(} s_{1}\right)$ by a second method amounts to compute $x\left(s_{2}\right)$ starting at $x\left(s_{0}\right)$ by a third method.

Runge-Kutta methods

Numerical algorithm based on the Runge-Kutta method, given by a square matrix $\left(a_{i j}\right)_{1 \leq i, j \leq n}$ and a vector $\left(b_{i}\right)_{1 \leq i \leq n}$ of real numbers,

$$
x\left(s_{1}\right)=x\left(s_{0}\right)+h \sum_{i=1}^{n} b_{i} X\left(y_{i}\right),
$$

where y_{i} is determined by $y_{i}=x_{0}+h \sum_{j=1}^{n} a_{i j} X\left(y_{j}\right)$ and $h=s_{1}-s_{0}$.
The method is of order n if it agrees with the exact expansion up to terms of order h^{n}.

Runge-Kutta methods can be composed (Butcher's B-series):

- compute $x\left(s_{1}\right)$ starting at $x\left(s_{0}\right)$ by a first method
- compute $x\left(s_{s}\right)$ starting at $x_{\left(s_{1}\right)}$ by a second method amounts to compute $x\left(s_{2}\right)$ starting at $x\left(s_{0}\right)$ by a third method.

This can be formalized using the Hopf algebra of rooted trees.

Hopf algebra of rooted trees

Hopf algebra of rooted trees

Hopf algebra of rooted trees

$\mathcal{H}_{T}=$ commutative algebra generated by all (isomorphism classes) of rooted trees.

Hopf algebra of rooted trees

$\mathcal{H}_{T}=$ commutative algebra generated by all (isomorphism classes) of rooted trees. Hopf algebra structure:

Hopf algebra of rooted trees

$\mathcal{H}_{T}=$ commutative algebra generated by all (isomorphism classes) of rooted trees. Hopf algebra structure:

- coproduct

$$
\begin{equation*}
\Delta(t)=t \otimes 1+1 \otimes t+\sum_{c \text { admissible cut }} P_{c}(t) \otimes R_{c}(t) \tag{1}
\end{equation*}
$$

admissible cut : any path from any leaf to the root is cut at most once
$R_{c}(t)=$ connected component of the root
$P_{c}(t)=$ product of remaining trees.

Hopf algebra of rooted trees

$\mathcal{H}_{T}=$ commutative algebra generated by all (isomorphism classes) of rooted trees. Hopf algebra structure:

- coproduct

$$
\begin{equation*}
\Delta(t)=t \otimes 1+1 \otimes t+\sum_{c \text { admissible cut }} P_{c}(t) \otimes R_{c}(t) \tag{1}
\end{equation*}
$$

admissible cut : any path from any leaf to the root is cut at most once
$R_{c}(t)=$ connected component of the root
$P_{c}(t)=$ product of remaining trees.

- counit: $\epsilon(t)=0$ unless $t=1$

Hopf algebra of rooted trees

$\mathcal{H}_{T}=$ commutative algebra generated by all (isomorphism classes) of rooted trees. Hopf algebra structure:

- coproduct

$$
\begin{equation*}
\Delta(t)=t \otimes 1+1 \otimes t+\sum_{c \text { admissible cut }} P_{c}(t) \otimes R_{c}(t) \tag{1}
\end{equation*}
$$

admissible cut : any path from any leaf to the root is cut at most once
$R_{c}(t)=$ connected component of the root
$P_{c}(t)=$ product of remaining trees.

- counit: $\epsilon(t)=0$ unless $t=1$
- antipode:

$$
\begin{equation*}
S(t)=-\sum_{c \mathrm{cut}}(-1)^{n_{c}(t)} \Pi_{c}(t), \tag{2}
\end{equation*}
$$

$n_{c}(t)=$ number of cuts.

Hopf algebra of rooted trees

$\mathcal{H}_{T}=$ commutative algebra generated by all (isomorphism classes) of rooted trees. Hopf algebra structure:

- coproduct

$$
\begin{equation*}
\Delta(t)=t \otimes 1+1 \otimes t+\sum_{c \text { admissible cut }} P_{c}(t) \otimes R_{c}(t) \tag{1}
\end{equation*}
$$

admissible cut : any path from any leaf to the root is cut at most once
$R_{c}(t)=$ connected component of the root
$P_{c}(t)=$ product of remaining trees.

- counit: $\epsilon(t)=0$ unless $t=1$
- antipode:

$$
\begin{equation*}
S(t)=-\sum_{c \mathrm{cut}}(-1)^{n_{c}(t)} \Pi_{c}(t), \tag{2}
\end{equation*}
$$

$n_{c}(t)=$ number of cuts.
\mathcal{H}_{T} is graded by the number of vertices $|t|$.

Lie groups and Lie algebras associated to \mathcal{H}_{T}

Lie groups and Lie algebras associated to \mathcal{H}_{T}

Lie groups and Lie algebras associated to \mathcal{H}_{T}

Characters of \mathcal{H}_{T} form a group G_{T} for the convolution product

$$
\begin{equation*}
\alpha * \beta=(\alpha \otimes \beta) \circ \Delta \tag{3}
\end{equation*}
$$

with unit ϵ and inverse $\alpha^{-1}=\alpha \circ S$.

Lie groups and Lie algebras associated to \mathcal{H}_{T}

Characters of \mathcal{H}_{T} form a group G_{T} for the convolution product

$$
\begin{equation*}
\alpha * \beta=(\alpha \otimes \beta) \circ \Delta \tag{3}
\end{equation*}
$$

with unit ϵ and inverse $\alpha^{-1}=\alpha \circ S$.
Infinitesimal characters (derivations with values in the trivial bimodule provided by ϵ) define its Lie algebra \mathcal{G}_{T}.

Lie groups and Lie algebras associated to \mathcal{H}_{T}

Characters of \mathcal{H}_{T} form a group G_{T} for the convolution product

$$
\begin{equation*}
\alpha * \beta=(\alpha \otimes \beta) \circ \Delta \tag{3}
\end{equation*}
$$

with unit ϵ and inverse $\alpha^{-1}=\alpha \circ S$.
Infinitesimal characters (derivations with values in the trivial bimodule provided by ϵ) define its Lie algebra \mathcal{G}_{T}.

- Lie bracket only involves single cuts ($n_{c}=1$)

Lie groups and Lie algebras associated to \mathcal{H}_{T}

Characters of \mathcal{H}_{T} form a group G_{T} for the convolution product

$$
\begin{equation*}
\alpha * \beta=(\alpha \otimes \beta) \circ \Delta \tag{3}
\end{equation*}
$$

with unit ϵ and inverse $\alpha^{-1}=\alpha \circ S$.
Infinitesimal characters (derivations with values in the trivial bimodule provided by ϵ) define its Lie algebra \mathcal{G}_{T}.

- Lie bracket only involves single cuts ($n_{c}=1$)
- $\exp _{*}(\delta)=\sum_{n} \frac{\delta^{* n}}{n!}$ is a bijection between \mathcal{G}_{T} and G_{T}

Lie groups and Lie algebras associated to \mathcal{H}_{T}

Characters of \mathcal{H}_{T} form a group G_{T} for the convolution product

$$
\begin{equation*}
\alpha * \beta=(\alpha \otimes \beta) \circ \Delta \tag{3}
\end{equation*}
$$

with unit ϵ and inverse $\alpha^{-1}=\alpha \circ S$.
Infinitesimal characters (derivations with values in the trivial bimodule provided by ϵ) define its Lie algebra \mathcal{G}_{T}.

- Lie bracket only involves single cuts ($n_{c}=1$)
- $\exp _{*}(\delta)=\sum_{n} \frac{\delta^{* n}}{n!}$ is a bijection between \mathcal{G}_{T} and G_{T}

Powerful technique for proving general results.

Lie groups and Lie algebras associated to \mathcal{H}_{T}

Characters of \mathcal{H}_{T} form a group G_{T} for the convolution product

$$
\begin{equation*}
\alpha * \beta=(\alpha \otimes \beta) \circ \Delta \tag{3}
\end{equation*}
$$

with unit ϵ and inverse $\alpha^{-1}=\alpha \circ S$.
Infinitesimal characters (derivations with values in the trivial bimodule provided by ϵ) define its Lie algebra \mathcal{G}_{T}.

- Lie bracket only involves single cuts ($n_{c}=1$)
- $\exp _{*}(\delta)=\sum_{n} \frac{\delta^{* n}}{n!}$ is a bijection between \mathcal{G}_{T} and G_{T}

Powerful technique for proving general results.
G_{T} is a projective limit of finite dimensional nilpotent Lie group G_{T}^{n} with Lie algebra \mathcal{G}_{T}^{n} both obtained by truncation at order n.

Lie groups and Lie algebras associated to \mathcal{H}_{T}

Characters of \mathcal{H}_{T} form a group G_{T} for the convolution product

$$
\begin{equation*}
\alpha * \beta=(\alpha \otimes \beta) \circ \Delta \tag{3}
\end{equation*}
$$

with unit ϵ and inverse $\alpha^{-1}=\alpha \circ S$.
Infinitesimal characters (derivations with values in the trivial bimodule provided by ϵ) define its Lie algebra \mathcal{G}_{T}.

- Lie bracket only involves single cuts ($n_{c}=1$)
- $\exp _{*}(\delta)=\sum_{n} \frac{\delta^{* *}}{n!}$ is a bijection between \mathcal{G}_{T} and G_{T}

Powerful technique for proving general results.
G_{T} is a projective limit of finite dimensional nilpotent Lie group G_{T}^{n} with Lie algebra \mathcal{G}_{T}^{n} both obtained by truncation at order n.

Results also valid for the more general graded and commutative Hopf algebras based on Feynman diagrams.

Power series of non-linear operators

Power series of non-linear operators

Smooth map X raised to the power of the tree t :

$$
X^{t}=\prod_{v \in t} X^{\left(n_{v}\right)}
$$

$X^{(n)}: n^{\text {th }}$ order differential of X with n_{v} the number of edges leaving v

Power series of non-linear operators

Smooth map X raised to the power of the tree t :

$$
X^{t}=\overrightarrow{\prod_{v \in t}} X^{\left(n_{v}\right)}
$$

$X^{(n)}: n^{\text {th }}$ order differential of X with n_{v} the number of edges leaving v
Examples: $\quad X^{\dot{~}}=X^{\prime}\left[X^{\prime}[X]\right], \quad X^{\circ} \circ=X^{\prime \prime}[X, X]$.

Power series of non-linear operators

Smooth map X raised to the power of the tree t :

$$
X^{t}=\overrightarrow{\prod_{v \in t}} x^{\left(n_{v}\right)}
$$

$X^{(n)}: n^{\text {th }}$ order differential of X with n_{v} the number of edges leaving v
Examples: $\quad X^{\dot{~}}=X^{\prime}\left[X^{\prime}[X]\right], \quad X^{\circ} \circ=X^{\prime \prime}[X, X]$.
Formal power series of non-linear operators:

$$
\Psi_{\alpha}(X)=\sum_{t} \alpha(t) \frac{X^{t}}{\mathrm{~S}_{t}}, \quad \alpha \in G_{T}
$$

with S_{t} the symmetry factor of t (cardinal of the automorphism group).

Power series of non-linear operators

Smooth map X raised to the power of the tree t :

$$
X^{t}=\overrightarrow{\prod_{v \in t}} x^{\left(n_{v}\right)}
$$

$X^{(n)}: n^{\text {th }}$ order differential of X with n_{v} the number of edges leaving v
Examples: $\quad X^{\dot{~}}=X^{\prime}\left[X^{\prime}[X]\right], \quad X^{\circ} \circ=X^{\prime \prime}[X, X]$.
Formal power series of non-linear operators:

$$
\Psi_{\alpha}(X)=\sum_{t} \alpha(t) \frac{X^{t}}{\mathrm{~S}_{t}}, \quad \alpha \in G_{T}
$$

with S_{t} the symmetry factor of t (cardinal of the automorphism group).
Composition law (B-series):

$$
\Psi_{\alpha}(X) \circ \Psi_{\beta}(X)=\Psi_{\beta * \alpha}(X), \quad \alpha, \beta \in G_{T}
$$

Geometric series

Geometric series

If α is the character that takes the value -1 on the tree with one vertex and 0 otherwise, $\alpha^{-1}=\alpha \circ S$ takes the value 1 on all trees and defines the geometric series

$$
(\mathrm{id}-X)^{-1}=\sum_{t} \frac{X^{t}}{S_{t}}
$$

Geometric series

If α is the character that takes the value -1 on the tree with one vertex and 0 otherwise, $\alpha^{-1}=\alpha \circ S$ takes the value 1 on all trees and defines the geometric series

$$
(\mathrm{id}-X)^{-1}=\sum_{t} \frac{X^{t}}{S_{t}}
$$

Perturbative solution of the fixed point equation

$$
x=x_{0}+X(x) \quad \rightarrow \quad x=(\mathrm{id}-X)^{-1}\left(x_{0}\right)
$$

Geometric series

If α is the character that takes the value -1 on the tree with one vertex and 0 otherwise, $\alpha^{-1}=\alpha \circ S$ takes the value 1 on all trees and defines the geometric series

$$
(\mathrm{id}-X)^{-1}=\sum_{t} \frac{X^{t}}{S_{t}}
$$

Perturbative solution of the fixed point equation

$$
x=x_{0}+X(x) \quad \rightarrow \quad x=(\mathrm{id}-X)^{-1}\left(x_{0}\right)
$$

Applications:

Geometric series

If α is the character that takes the value -1 on the tree with one vertex and 0 otherwise, $\alpha^{-1}=\alpha \circ S$ takes the value 1 on all trees and defines the geometric series

$$
(\mathrm{id}-X)^{-1}=\sum_{t} \frac{X^{t}}{S_{t}}
$$

Perturbative solution of the fixed point equation

$$
x=x_{0}+X(x) \quad \rightarrow \quad x=(\mathrm{id}-X)^{-1}\left(x_{0}\right)
$$

Applications:

- solution of differential equations written in integral form,

Geometric series

If α is the character that takes the value -1 on the tree with one vertex and 0 otherwise, $\alpha^{-1}=\alpha \circ S$ takes the value 1 on all trees and defines the geometric series

$$
(\mathrm{id}-X)^{-1}=\sum_{t} \frac{X^{t}}{S_{t}}
$$

Perturbative solution of the fixed point equation

$$
x=x_{0}+X(x) \quad \rightarrow \quad x=(\mathrm{id}-X)^{-1}\left(x_{0}\right)
$$

Applications:

- solution of differential equations written in integral form,
- counting trees $\left(X(x)=x^{2}\right.$ and $x_{0}=1 \rightarrow$ Catalan numbers),

Geometric series

If α is the character that takes the value -1 on the tree with one vertex and 0 otherwise, $\alpha^{-1}=\alpha \circ S$ takes the value 1 on all trees and defines the geometric series

$$
(\mathrm{id}-X)^{-1}=\sum_{t} \frac{X^{t}}{S_{t}}
$$

Perturbative solution of the fixed point equation

$$
x=x_{0}+X(x) \quad \rightarrow \quad x=(\mathrm{id}-X)^{-1}\left(x_{0}\right)
$$

Applications:

- solution of differential equations written in integral form,
- counting trees $\left(X(x)=x^{2}\right.$ and $x_{0}=1 \rightarrow$ Catalan numbers),
- resummation of tree-like structures (example: planar diagrams)

Tree ordered products

Tree ordered products

Pertubative solution of a non-linear time dependent differential equation

$$
\frac{d x}{d s}=X_{s}(x), \quad x\left(s_{0}\right)=x_{0}
$$

Tree ordered products

Pertubative solution of a non-linear time dependent differential equation

$$
\frac{d x}{d s}=X_{s}(x), \quad x\left(s_{0}\right)=x_{0}
$$

as $R_{s, s_{0}}\left(x_{0}\right)$ with

$$
R_{s, s_{0}}=\sum_{t} \frac{1}{s_{t}} \int_{l_{s, s_{0}}} d^{|t|} s \prod_{v \in t} X_{s^{v}}^{\left(n_{v}\right)}
$$

$I_{s, s_{0}}^{t} \subset \mathbb{R}^{|t|}$ is a treeplex (generalization of a simplex) obtained by assigning real numbers s^{v} to the vertices in decreasing order from the root to the leaves, with $s^{\text {root }} \leq s$ and $s^{\text {leaf }} \geq s_{0}$.

Tree ordered products

Pertubative solution of a non-linear time dependent differential equation

$$
\frac{d x}{d s}=X_{s}(x), \quad x\left(s_{0}\right)=x_{0}
$$

as $R_{s, s_{0}}\left(x_{0}\right)$ with

$$
R_{s, s_{0}}=\sum_{t} \frac{1}{s_{t}} \int_{l_{s, s_{0}}} d^{|t|} s \prod_{v \in t} X_{s^{v}}^{\left(n_{v}\right)}
$$

$I_{s, s_{0}}^{t} \subset \mathbb{R}^{|t|}$ is a treeplex (generalization of a simplex) obtained by assigning real numbers s^{v} to the vertices in decreasing order from the root to the leaves, with $s^{\text {root }} \leq s$ and $s^{\text {leaf }} \geq s_{0}$.
For a time independent equation we the tree factorial t !

$$
\int_{l_{s, s_{0}}^{t}} d^{|t|} s=\frac{1}{t!}
$$

Geometric interpretation of the coproduct

Comparing both sides of $R_{s_{2}, s_{1}} \circ R_{s_{1}, s_{0}}=R_{s_{2}, s_{0}}$ yields a disjoint union

$$
\begin{equation*}
I_{s_{2}, s_{0}}^{t}=\bigcup_{c \text { admisisile cut }} \mathfrak{S}_{c}\left(I_{s_{1}, s_{0}}^{t_{1}^{\prime}} \times \cdots \times I_{s_{1}, s_{0}}^{t_{n}} \times I_{s_{2}, s_{1}}^{t_{1}^{\prime \prime}}\right) \tag{4}
\end{equation*}
$$

with $P_{c}(t)=t_{1}^{\prime} \ldots t_{n}^{\prime}$ and $R_{c}(t)=t^{\prime \prime}$ and \mathfrak{S}_{c} a permutation of the labels preserving the ordering of the tree.

Geometric interpretation of the coproduct

Comparing both sides of $R_{s_{2}, s_{1}} \circ R_{s_{1}, s_{0}}=R_{s_{2}, s_{0}}$ yields a disjoint union

$$
\begin{equation*}
I_{s_{2}, s_{0}}^{t}=\bigcup_{c \text { admisisible cut }} \mathfrak{S}_{c}\left(l_{s_{1}, s_{0}}^{t_{1}^{\prime}} \times \cdots \times I_{s_{1}, s_{0}}^{t_{n}} \times l_{s_{2}, s_{1}}^{t_{1}^{\prime \prime}}\right) \tag{4}
\end{equation*}
$$

with $P_{c}(t)=t_{1}^{\prime} \ldots t_{n}^{\prime}$ and $R_{c}(t)=t^{\prime \prime}$ and \mathfrak{S}_{c} a permutation of the labels preserving the ordering of the tree.
Example:

The binomial series

The binomial series

Expanding $(\alpha)^{a}=(\epsilon+\alpha-\epsilon)^{a}$ for α the character that takes the value 1 on the tree with one vertex and vanishes otherwise, we obtain the binomial series for a non linear operator

$$
(\mathrm{id}+X)^{a}=\sum_{t}\left(\sum_{n=d_{t}}^{|t|} N(n, t) \frac{a(a-1) \cdots(a-n+1)}{n!}\right) \frac{X^{t}}{\mathrm{~S}_{t}}
$$

where $N(n, t)$ is the number of surjective maps from the vertices of t to $\{1, \cdots, n\}$, strictly increasing from the root to the leaves (heaps) and d_{t} is the height of the tree, i.e. the length of the longest path from the root to the leaves.

The binomial series

Expanding $(\alpha)^{a}=(\epsilon+\alpha-\epsilon)^{a}$ for α the character that takes the value 1 on the tree with one vertex and vanishes otherwise, we obtain the binomial series for a non linear operator

$$
(\mathrm{id}+X)^{a}=\sum_{t}\left(\sum_{n=d_{t}}^{|t|} N(n, t) \frac{a(a-1) \cdots(a-n+1)}{n!}\right) \frac{X^{t}}{\mathrm{~S}_{t}}
$$

where $N(n, t)$ is the number of surjective maps from the vertices of t to $\{1, \cdots, n\}$, strictly increasing from the root to the leaves (heaps) and d_{t} is the height of the tree, i.e. the length of the longest path from the root to the leaves.

Square root of a diffeomorphism close to the identity

$$
\begin{aligned}
& \sqrt{\mathrm{id}+X}=\operatorname{id} \frac{1}{2} X-\frac{1}{8} X^{\prime}[X]+\frac{1}{16} X^{\prime}\left[X^{\prime}[X]\right]-\frac{5}{128} X^{\prime}\left[X^{\prime}\left[X^{\prime}[X]\right]\right] \\
& +\frac{1}{128} X^{\prime \prime}\left[X, X^{\prime}[X]\right]-\frac{1}{2 \cdot 64} X^{\prime}\left[X^{\prime \prime}[X, X]\right]+\frac{1}{6 \cdot 64} X^{\prime \prime \prime}[X, X, X]+\cdots
\end{aligned}
$$

which fulfills $\sqrt{\mathrm{id}+X} \circ \sqrt{\mathrm{id}+X}=\mathrm{id}+X$ up to terms of fifth order.

Combinatorial applications of the binomial series

Combinatorial applications of the binomial series

If β takes the value 1 on all trees, expanding $(\beta)^{-a}=(\epsilon-\alpha)^{a}$ yields

$$
(\mathrm{id}-X)^{-a}=\sum_{t}\left(\sum_{n=d_{t}}^{|t|} \widetilde{N}(n, t) \frac{a(a-1) \cdots(a-n+1)}{n!}\right) \frac{X^{t}}{\mathrm{~S}_{t}}
$$

with $\widetilde{N}(n, t)$ the number of surjective maps from the vertices of t to $\{1, \cdots, n\}$, non decreasing from the root to the leaves.

Combinatorial applications of the binomial series

If β takes the value 1 on all trees, expanding $(\beta)^{-a}=(\epsilon-\alpha)^{a}$ yields

$$
(\mathrm{id}-X)^{-a}=\sum_{t}\left(\sum_{n=d_{t}}^{|t|} \widetilde{N}(n, t) \frac{a(a-1) \cdots(a-n+1)}{n!}\right) \frac{X^{t}}{\mathrm{~S}_{t}}
$$

with $\widetilde{N}(n, t)$ the number of surjective maps from the vertices of t to $\{1, \cdots, n\}$, non decreasing from the root to the leaves.

Equating $(\mathrm{id}-X)^{a}$ with a binomial series we get identities between $N(n, t)$ and $\widetilde{N}(n, t)$. For instance, for $a=1,2$

$$
\begin{aligned}
1 & =\sum_{n=d_{t}}^{|t|}(-1)^{n+|t|} N(n, t) \\
\widetilde{N}(2, t) & =\sum_{n=d_{t}}^{|t|}(-1)^{n+|t|}(n-1) N(t, n)
\end{aligned}
$$

Combinatorial applications of the binomial series

If β takes the value 1 on all trees, expanding $(\beta)^{-a}=(\epsilon-\alpha)^{a}$ yields

$$
(\mathrm{id}-X)^{-a}=\sum_{t}\left(\sum_{n=d_{t}}^{|t|} \widetilde{N}(n, t) \frac{a(a-1) \cdots(a-n+1)}{n!}\right) \frac{X^{t}}{\mathrm{~S}_{t}}
$$

with $\widetilde{N}(n, t)$ the number of surjective maps from the vertices of t to $\{1, \cdots, n\}$, non decreasing from the root to the leaves.

Equating (id $-X)^{a}$ with a binomial series we get identities between $N(n, t)$ and $\widetilde{N}(n, t)$. For instance, for $a=1,2$

$$
\begin{aligned}
1 & =\sum_{n=d_{t}}^{|t|}(-1)^{n+|t|} N(n, t) \\
\widetilde{N}(2, t) & =\sum_{n=d_{t}}^{|t|}(-1)^{n+|t|}(n-1) N(t, n)
\end{aligned}
$$

Computing the exponential as $\mathrm{e}^{X}=\lim _{n \rightarrow \infty}\left(\mathrm{id}+\frac{X}{n}\right)^{n}$ we obtain a combinatorial formula for the tree factorial

$$
\frac{|t|!}{t!}=N(|t|, t) .
$$

Postnikov's hook length formula

Postnikov's hook length formula

In his study of the permutohedron, Postnikov's introduced the following formula

$$
\sum_{\substack{\text { Plane binary trees } \\ \text { of order }}} \prod_{v}\left(1+\frac{1}{h_{v}}\right)=(n+1)^{n-1} \frac{2^{n}}{n!}
$$

where the hook length h_{v} is the number of vertices below v (v included).

Postnikov's hook length formula

In his study of the permutohedron, Postnikov's introduced the following formula

$$
\sum_{\substack{\text { plane binary trees } \\ \text { of order } n}} \prod_{v}\left(1+\frac{1}{h_{v}}\right)=(n+1)^{n-1} \frac{2^{n}}{n!}
$$

where the hook length h_{v} is the number of vertices below v (v included). Since $\prod_{v} \frac{1}{h_{v}}=\frac{1}{t!}$, this correspond to a geometric series evaluated at 1 for the functional operator

$$
X[f](s)=s f^{2}(s)+\int_{0}^{s} d s^{\prime} f^{2}\left(s^{\prime}\right)
$$

The associated differential equation is solved by $f(s)$ satisfying $f(s)=\mathrm{e}^{2 s f(s)}$ whose power expansion is computed using the Lagrange inversion formula.

Postnikov's hook length formula

In his study of the permutohedron, Postnikov's introduced the following formula

$$
\sum_{\substack{\text { plane binary trees } \\ \text { of order } n}} \prod_{v}\left(1+\frac{1}{h_{v}}\right)=(n+1)^{n-1} \frac{2^{n}}{n!}
$$

where the hook length h_{v} is the number of vertices below v (v included). Since $\prod_{v} \frac{1}{h_{v}}=\frac{1}{t!}$, this correspond to a geometric series evaluated at 1 for the functional operator

$$
X[f](s)=s f^{2}(s)+\int_{0}^{s} d s^{\prime} f^{2}\left(s^{\prime}\right)
$$

The associated differential equation is solved by $f(s)$ satisfying $f(s)=\mathrm{e}^{2 s f(s)}$ whose power expansion is computed using the Lagrange inversion formula.

Combinatorial intepretation:

$$
\frac{1}{|t|!} \prod_{v}\left(1+\frac{1}{h_{v}}\right)=N(t,|t|) \prod_{v}\left(1+h_{v}\right)
$$

$=\#\{$ tree ordered lists of paths from vertices to leaves $\}$

Wilsonian effective action

Wilsonian effective action

Path integral in quantum field theory:

$$
\mathcal{Z}=\int[D \phi] \mathrm{e}^{-\frac{1}{2} \chi \cdot A_{\Lambda_{0}}^{-1} \cdot \chi+S_{0}[\phi]}
$$

$A_{\Lambda_{0}}^{-1}$ implements the integration over field whose Fourier transform vanish for momenta above the cut-off Λ_{0} and S_{0} is the bare action.

Wilsonian effective action

Path integral in quantum field theory:

$$
\mathcal{Z}=\int[D \phi] \mathrm{e}^{-\frac{1}{2} \chi \cdot A_{\Lambda_{0}}^{-1} \cdot \chi+S_{0}[\phi]}
$$

$A_{\Lambda_{0}}^{-1}$ implements the integration over field whose Fourier transform vanish for momenta above the cut-off Λ_{0} and S_{0} is the bare action.

Wilsonian renormalization:
Introduce a lower cut-off Λ and first integrate over fields with momenta between Λ and Λ_{0} to obtain an effective action S_{Λ}

$$
\mathcal{Z}=\int[D \phi] \mathrm{e}^{-\frac{1}{2} \phi \cdot A_{\Lambda}^{-1} \cdot \phi+S_{\Lambda}[\phi]} \quad \text { with } \quad S_{\Lambda}[\phi]=\log \int[D \chi] \mathrm{e}^{-\frac{1}{2} \chi \cdot A_{\Lambda, \Lambda_{0}}^{-1} \cdot \chi+S_{\Lambda}[\phi+\chi]}
$$

Wilsonian effective action

Path integral in quantum field theory:

$$
\mathcal{Z}=\int[D \phi] \mathrm{e}^{-\frac{1}{2} \chi \cdot A_{\Lambda_{0}}^{-1} \cdot \chi+S_{0}[\phi]}
$$

$A_{\Lambda_{0}}^{-1}$ implements the integration over field whose Fourier transform vanish for momenta above the cut-off Λ_{0} and S_{0} is the bare action.

Wilsonian renormalization:
Introduce a lower cut-off Λ and first integrate over fields with momenta between Λ and Λ_{0} to obtain an effective action S_{Λ}
$\mathcal{Z}=\int[D \phi] \mathrm{e}^{-\frac{1}{2} \phi \cdot A_{\Lambda}^{-1} \cdot \phi+S_{\Lambda}[\phi]} \quad$ with $\quad S_{\Lambda}[\phi]=\log \int[D \chi] \mathrm{e}^{-\frac{1}{2} \chi \cdot A_{\Lambda, \Lambda_{0}}^{-1} \cdot \chi+S_{\Lambda}[\phi+\chi]}$
Polchinski's equation:
Differential equation for S_{\wedge} that generate Feynman diagrams

Feynman diagram expansion

Feynman diagram expansion

Feynman rules for the perturbed Gaußian integral

$$
S^{\prime}[\phi]=\log \left\{\int[D \chi] \mathrm{e}^{-\frac{1}{2} \chi \cdot A^{-1} \cdot \chi} \mathrm{e}^{S[\phi+\chi]}\right\}=\sum_{\gamma \text { connected diagram }} \frac{A^{\gamma}(S)}{\mathrm{S}_{\gamma}}[\phi]
$$

Feynman diagram expansion

Feynman rules for the perturbed Gaußian integral

$$
S^{\prime}[\phi]=\log \left\{\int[D \chi] \mathrm{e}^{-\frac{1}{2} \chi \cdot A^{-1} \cdot \chi} \mathrm{e}^{S[\phi+\chi]}\right\}=\sum_{\gamma \text { comnected diagram }} \frac{A^{\gamma}(S)}{\mathrm{S}_{\gamma}}[\phi]
$$

- associate a matrix element $A_{i j}$ to edges

Feynman diagram expansion

Feynman rules for the perturbed Gaußian integral

$$
S^{\prime}[\phi]=\log \left\{\int[D \chi] \mathrm{e}^{-\frac{1}{2} \chi \cdot A^{-1} \cdot \chi} \mathrm{e}^{S[\phi+\chi]}\right\}=\sum_{\gamma \text { comnected diagram }} \frac{A^{\gamma}(S)}{\mathrm{S}_{\gamma}}[\phi]
$$

- associate a matrix element $A_{i j}$ to edges
- associate $\frac{\partial^{n} S}{\partial \phi_{j_{1}} \cdots \partial \phi_{j_{n}}}(\phi)$ to vertices of valence n

Feynman diagram expansion

Feynman rules for the perturbed Gaußian integral

$$
S^{\prime}[\phi]=\log \left\{\int[D \chi] \mathrm{e}^{-\frac{1}{2} \chi \cdot A^{-1} \cdot \chi} \mathrm{e}^{S[\phi+\chi]}\right\}=\sum_{\gamma \text { comnected diagram }} \frac{A^{\gamma}(S)}{\mathrm{S}_{\gamma}}[\phi]
$$

- associate a matrix element $A_{i j}$ to edges
- associate $\frac{\partial^{n} S}{\partial \phi_{j_{1}} \cdots \partial \phi_{j_{n}}}(\phi)$ to vertices of valence n
- sum over all free indices

Feynman diagram expansion

Feynman rules for the perturbed Gaußian integral

$$
S^{\prime}[\phi]=\log \left\{\int[D \chi] \mathrm{e}^{-\frac{1}{2} \chi \cdot A^{-1} \cdot \chi} \mathrm{e}^{S[\phi+\chi]}\right\}=\sum_{\gamma \text { comnected diagram }} \frac{A^{\gamma}(S)}{\mathrm{S}_{\gamma}}[\phi]
$$

- associate a matrix element $A_{i j}$ to edges
- associate $\frac{\partial^{n} S}{\partial \phi_{j_{1}} \cdots \partial \phi_{j_{n}}}(\phi)$ to vertices of valence n
- sum over all free indices
- divide by the symmetry factor S_{γ}

Feynman diagram expansion

Feynman rules for the perturbed Gaußian integral

$$
S^{\prime}[\phi]=\log \left\{\int[D \chi] \mathrm{e}^{-\frac{1}{2} \chi \cdot A^{-1} \cdot \chi} \mathrm{e}^{S[\phi+\chi]}\right\}=\sum_{\gamma \text { comnected diagram }} \frac{A^{\gamma}(S)}{\mathrm{S}_{\gamma}}[\phi]
$$

- associate a matrix element $A_{i j}$ to edges
- associate $\frac{\partial^{n} S}{\partial \phi_{j_{1}} \cdots \partial \phi_{j_{n}}}(\phi)$ to vertices of valence n
- sum over all free indices
- divide by the symmetry factor S_{γ}

A simple example:

$$
\frac{1}{12} \sum_{\substack{i_{1}, i_{2}, i_{3} \\ j_{1}, j_{2}, j_{3}}} \frac{\partial^{3} S}{\partial \phi_{i_{1}} \partial \phi_{i_{2}} \partial \phi_{i_{3}}}[\phi] A_{i_{1}, j_{1}} A_{i_{2}, j_{2}} A_{i_{3}, j_{3}} \frac{\partial^{3} S}{\partial \phi_{j_{1}} \partial \phi_{j_{2}} \partial \phi_{j_{3}}}[\phi]
$$

Hopf algebra of connected diagrams

Hopf algebra of connected diagrams

\mathcal{H}_{F} free commutative algebra generated by all connected Feynman diagrams with vertices of arbirary valence and coproduct

$$
\Delta(\Gamma)=\Gamma \otimes 1+1 \otimes \Gamma+\sum_{\gamma_{i} \cap \gamma_{j}=\emptyset} \gamma_{1} \cdots \gamma_{n} \otimes \Gamma /\left(\gamma_{1} \cdots \gamma_{n}\right),
$$

Hopf algebra of connected diagrams

\mathcal{H}_{F} free commutative algebra generated by all connected Feynman diagrams with vertices of arbirary valence and coproduct

$$
\Delta(\Gamma)=\Gamma \otimes 1+1 \otimes \Gamma+\sum_{\gamma_{i} \cap \gamma_{j}=\emptyset} \gamma_{1} \cdots \gamma_{n} \otimes \Gamma /\left(\gamma_{1} \cdots \gamma_{n}\right),
$$

- sum over all possible mutually disjoint connected subdiagrams,

Hopf algebra of connected diagrams

\mathcal{H}_{F} free commutative algebra generated by all connected Feynman diagrams with vertices of arbirary valence and coproduct

$$
\Delta(\Gamma)=\Gamma \otimes 1+1 \otimes \Gamma+\sum_{\gamma_{i} \cap \gamma_{j}=\emptyset} \gamma_{1} \cdots \gamma_{n} \otimes \Gamma /\left(\gamma_{1} \cdots \gamma_{n}\right),
$$

- sum over all possible mutually disjoint connected subdiagrams,
- subdiagram $=$ subset lines and vertices related to them.

Hopf algebra of connected diagrams

\mathcal{H}_{F} free commutative algebra generated by all connected Feynman diagrams with vertices of arbirary valence and coproduct

$$
\Delta(\Gamma)=\Gamma \otimes 1+1 \otimes \Gamma+\sum_{\gamma_{i} \cap \gamma_{j}=\emptyset} \gamma_{1} \cdots \gamma_{n} \otimes \Gamma /\left(\gamma_{1} \cdots \gamma_{n}\right),
$$

- sum over all possible mutually disjoint connected subdiagrams,
- subdiagram $=$ subset lines and vertices related to them.
- reduced diagram $\Gamma /\left(\gamma_{1} \cdots \gamma_{n}\right)$ obtained by shrinking all γ_{i} to single vertices in Γ.

Hopf algebra of connected diagrams

\mathcal{H}_{F} free commutative algebra generated by all connected Feynman diagrams with vertices of arbirary valence and coproduct

$$
\Delta(\Gamma)=\Gamma \otimes 1+1 \otimes \Gamma+\sum_{\gamma_{i} \cap \gamma_{j}=\emptyset} \gamma_{1} \cdots \gamma_{n} \otimes \Gamma /\left(\gamma_{1} \cdots \gamma_{n}\right),
$$

- sum over all possible mutually disjoint connected subdiagrams,
- subdiagram $=$ subset lines and vertices related to them.
- reduced diagram $\Gamma /\left(\gamma_{1} \cdots \gamma_{n}\right)$ obtained by shrinking all γ_{i} to single vertices in Γ.
\mathcal{H}_{T} is bigraded by the number of internal lines (edges) and loops (cycles).

Hopf algebra of connected diagrams

\mathcal{H}_{F} free commutative algebra generated by all connected Feynman diagrams with vertices of arbirary valence and coproduct

$$
\Delta(\Gamma)=\Gamma \otimes 1+1 \otimes \Gamma+\sum_{\gamma_{i} \cap \gamma_{j}=\emptyset} \gamma_{1} \cdots \gamma_{n} \otimes \Gamma /\left(\gamma_{1} \cdots \gamma_{n}\right)
$$

- sum over all possible mutually disjoint connected subdiagrams,
- subdiagram $=$ subset lines and vertices related to them.
- reduced diagram $\Gamma /\left(\gamma_{1} \cdots \gamma_{n}\right)$ obtained by shrinking all γ_{i} to single vertices in Γ.
\mathcal{H}_{T} is bigraded by the number of internal lines (edges) and loops (cycles).
Any $\alpha \in G_{T}$ define the weights of the diagram in the expansion

$$
\mathcal{S}^{\prime}=\Psi_{\alpha}(\mathcal{S})=\sum_{\gamma} \alpha(\gamma) \frac{\mathcal{A}^{\gamma}(\mathcal{S})}{\mathrm{S}_{\gamma}}
$$

Hopf algebra of connected diagrams

\mathcal{H}_{F} free commutative algebra generated by all connected Feynman diagrams with vertices of arbirary valence and coproduct

$$
\Delta(\Gamma)=\Gamma \otimes 1+1 \otimes \Gamma+\sum_{\gamma_{i} \cap \gamma_{j}=\emptyset} \gamma_{1} \cdots \gamma_{n} \otimes \Gamma /\left(\gamma_{1} \cdots \gamma_{n}\right),
$$

- sum over all possible mutually disjoint connected subdiagrams,
- subdiagram $=$ subset lines and vertices related to them.
- reduced diagram $\Gamma /\left(\gamma_{1} \cdots \gamma_{n}\right)$ obtained by shrinking all γ_{i} to single vertices in Γ.
\mathcal{H}_{T} is bigraded by the number of internal lines (edges) and loops (cycles).
Any $\alpha \in G_{T}$ define the weights of the diagram in the expansion

$$
\mathcal{S}^{\prime}=\Psi_{\alpha}(\mathcal{S})=\sum_{\gamma} \alpha(\gamma) \frac{A^{\gamma}(\mathcal{S})}{\mathrm{S}_{\gamma}}
$$

Composition law analogous to B-series:

Ordered diagrams

Ordered diagrams

Ordered diagram = diagram with a hierarchy of boxes drawn on the subdiagrams s.t.

Ordered diagrams

Ordered diagram= diagram with a hierarchy of boxes drawn on the subdiagrams s.t.

- boxes are either nested or disjoint,

Ordered diagrams

Ordered diagram= diagram with a hierarchy of boxes drawn on the subdiagrams s.t.

- boxes are either nested or disjoint,
- boxes differ from their followers by one internal line.

Ordered diagrams

Ordered diagram= diagram with a hierarchy of boxes drawn on the subdiagrams s.t.

- boxes are either nested or disjoint,
- boxes differ from their followers by one internal line.

Ordered diagram generate a commutative Hopf algebra $\mathcal{H}_{F}^{\text {ord }}$ with coproduct similar to \mathcal{H}_{F} except that it has to preserve the box structure.

Ordered diagrams

Ordered diagram = diagram with a hierarchy of boxes drawn on the subdiagrams s.t.

- boxes are either nested or disjoint,
- boxes differ from their followers by one internal line.

Ordered diagram generate a commutative Hopf algebra $\mathcal{H}_{F}^{\text {ord }}$ with coproduct similar to \mathcal{H}_{F} except that it has to preserve the box structure.

Examples (with Δ^{\prime} the non trivial part of Δ):

$$
\Delta^{\prime}\left(\delta_{0}\right)=2 \bullet \otimes 0+\bullet^{2} \otimes \bullet
$$

Ordered diagrams

Ordered diagram = diagram with a hierarchy of boxes drawn on the subdiagrams s.t.

- boxes are either nested or disjoint,
- boxes differ from their followers by one internal line.

Ordered diagram generate a commutative Hopf algebra $\mathcal{H}_{F}^{\text {ord }}$ with coproduct similar to \mathcal{H}_{F} except that it has to preserve the box structure.

Examples (with Δ^{\prime} the non trivial part of Δ):

$\Delta^{\prime}\left(\sigma_{0}\right)=2 \bullet \otimes 0+\bullet^{2} \otimes \bullet$

Hopf algebra morphisms:

Ordered diagrams

Ordered diagram = diagram with a hierarchy of boxes drawn on the subdiagrams s.t.

- boxes are either nested or disjoint,
- boxes differ from their followers by one internal line.

Ordered diagram generate a commutative Hopf algebra $\mathcal{H}_{F}^{\text {ord }}$ with coproduct similar to \mathcal{H}_{F} except that it has to preserve the box structure.

Examples (with Δ^{\prime} the non trivial part of Δ):

$\Delta^{\prime}\left(\sigma_{0}\right)=2 \bullet \otimes 0 \cdot \bullet^{2} \otimes \bullet$

Hopf algebra morphisms:

- ordered diagrams \rightarrow trees: $\quad \gamma^{\text {ord }} \rightarrow t$,

Ordered diagrams

Ordered diagram = diagram with a hierarchy of boxes drawn on the subdiagrams s.t.

- boxes are either nested or disjoint,
- boxes differ from their followers by one internal line.

Ordered diagram generate a commutative Hopf algebra $\mathcal{H}_{F}^{\text {ord }}$ with coproduct similar to \mathcal{H}_{F} except that it has to preserve the box structure.

Examples (with Δ^{\prime} the non trivial part of Δ):

$\Delta^{\prime}\left(\sigma_{0}\right)=2 \bullet \otimes \dot{0}+\bullet^{2} \otimes \bullet$

Hopf algebra morphisms:

- ordered diagrams \rightarrow trees: $\quad \gamma^{\text {ord }} \rightarrow t$,
- diagrams \rightarrow ordered diagrams: $\quad \frac{\gamma}{\mathrm{S}_{\gamma}} \rightarrow \sum_{\text {orders on } \gamma} \frac{\gamma^{\text {ord }}}{\mathrm{S}_{\gamma}^{\text {ord }}}$.

Deletion/contraction of edges

Deletion/contraction of edges

In the Lie algebra of \mathcal{G}_{T} define the infinitesimal characters such that $\delta_{\text {tree }}(\bullet)=1$ and $\delta_{\text {loop }}(\odot)=1$ and vanish otherwise.

Deletion/contraction of edges

In the Lie algebra of \mathcal{G}_{T} define the infinitesimal characters such that $\delta_{\text {tree }}(\cdot)=1$ and $\delta_{\text {loop }}(\odot)=1$ and vanish otherwise.
$\alpha=\exp _{*}\left\{s a \delta_{\text {tree }}+s b \delta_{\text {loop }}\right\}(\gamma)=s^{l_{\gamma}} a^{l_{\gamma}-L_{\gamma}} b^{L_{\gamma}}$ obeys the differential equation

$$
\frac{d \alpha}{d s}=\left(a \delta_{\text {tree }} * \alpha+b \delta_{\text {loop }}\right) * \alpha
$$

Deletion/contraction of edges

In the Lie algebra of \mathcal{G}_{T} define the infinitesimal characters such that $\delta_{\text {tree }}(\cdot)=1$ and $\delta_{\text {loop }}(\odot)=1$ and vanish otherwise.
$\alpha=\exp _{*}\left\{s a \delta_{\text {tree }}+s b \delta_{\text {loop }}\right\}(\gamma)=s^{l_{\gamma}} a^{l_{\gamma}-L_{\gamma}} \boldsymbol{b}^{L_{\gamma}}$ obeys the differential equation

$$
\frac{d \alpha}{d s}=\left(a \delta_{\text {tree }} * \alpha+b \delta_{\text {loop }}\right) * \alpha
$$

Any $\delta \in \mathcal{G}_{T}$ defines two derivations $f \triangleleft \delta=(\delta \otimes \mathrm{Id}) \circ \Delta(f)$ and $\delta \triangleright f=(\operatorname{Id} \otimes \delta) \circ \Delta(f)$.

Deletion/contraction of edges

In the Lie algebra of \mathcal{G}_{T} define the infinitesimal characters such that $\delta_{\text {tree }}(\bullet)=1$ and $\delta_{\text {loop }}(\odot)=1$ and vanish otherwise.
$\alpha=\exp _{*}\left\{s a \delta_{\text {tree }}+s b \delta_{\text {loop }}\right\}(\gamma)=s^{l_{\gamma}} a^{l_{\gamma}-L_{\gamma}} b^{L_{\gamma}}$ obeys the differential equation

$$
\frac{d \alpha}{d s}=\left(a \delta_{\text {tree }} * \alpha+b \delta_{\text {loop }}\right) * \alpha
$$

Any $\delta \in \mathcal{G}_{T}$ defines two derivations $f \triangleleft \delta=(\delta \otimes \mathrm{Id}) \circ \Delta(f)$ and $\delta \triangleright f=(\operatorname{Id} \otimes \delta) \circ \Delta(f)$.
Deletion/contraction interpretation:

Deletion/contraction of edges

In the Lie algebra of \mathcal{G}_{T} define the infinitesimal characters such that $\delta_{\text {tree }}(\bullet)=1$ and $\delta_{\text {loop }}(\odot)=1$ and vanish otherwise.
$\alpha=\exp _{*}\left\{s a \delta_{\text {tree }}+s b \delta_{\text {loop }}\right\}(\gamma)=s^{l_{\gamma}} a^{l_{\gamma}-L_{\gamma}} b^{L_{\gamma}}$ obeys the differential equation

$$
\frac{d \alpha}{d s}=\left(a \delta_{\text {tree }} * \alpha+b \delta_{\text {loop }}\right) * \alpha
$$

Any $\delta \in \mathcal{G}_{T}$ defines two derivations $f \triangleleft \delta=(\delta \otimes \mathrm{Id}) \circ \Delta(f)$ and $\delta \triangleright f=(\operatorname{Id} \otimes \delta) \circ \Delta(f)$.
Deletion/contraction interpretation:

- $\delta_{\text {tree }} \triangleright \gamma$ is a sum over all the diagrams obtained from γ by cutting a bridge.

Deletion/contraction of edges

In the Lie algebra of \mathcal{G}_{T} define the infinitesimal characters such that $\delta_{\text {tree }}(\cdot)=1$ and $\delta_{\text {loop }}(\odot)=1$ and vanish otherwise.
$\alpha=\exp _{*}\left\{s a \delta_{\text {tree }}+s b \delta_{\text {loop }}\right\}(\gamma)=s^{l_{\gamma}} \boldsymbol{a}^{l_{\gamma}-L_{\gamma}} \boldsymbol{b}^{L_{\gamma}}$ obeys the differential equation

$$
\frac{d \alpha}{d s}=\left(a \delta_{\text {tree }} * \alpha+b \delta_{\text {loop }}\right) * \alpha
$$

Any $\delta \in \mathcal{G}_{T}$ defines two derivations $f \triangleleft \delta=(\delta \otimes \mathrm{Id}) \circ \Delta(f)$ and $\delta \triangleright f=(\operatorname{Id} \otimes \delta) \circ \Delta(f)$.
Deletion/contraction interpretation:

- $\delta_{\text {tree }} \triangleright \gamma$ is a sum over all the diagrams obtained from γ by cutting a bridge.
- $\delta_{\text {loop }} \triangleright \gamma$ is a sum over all the diagrams obtained from γ by cutting a line which is not a bridge.

Deletion/contraction of edges

In the Lie algebra of \mathcal{G}_{T} define the infinitesimal characters such that $\delta_{\text {tree }}(\cdot)=1$ and $\delta_{\text {loop }}(\odot)=1$ and vanish otherwise.
$\alpha=\exp _{*}\left\{s a \delta_{\text {tree }}+s b \delta_{\text {loop }}\right\}(\gamma)=s^{l_{\gamma}} a^{l_{\gamma}-L_{\gamma}} b^{L_{\gamma}}$ obeys the differential equation

$$
\frac{d \alpha}{d s}=\left(a \delta_{\text {tree }} * \alpha+b \delta_{\text {loop }}\right) * \alpha
$$

Any $\delta \in \mathcal{G}_{T}$ defines two derivations $f \triangleleft \delta=(\delta \otimes \mathrm{Id}) \circ \Delta(f)$ and $\delta \triangleright f=(\operatorname{Id} \otimes \delta) \circ \Delta(f)$.
Deletion/contraction interpretation:

- $\delta_{\text {tree }} \triangleright \gamma$ is a sum over all the diagrams obtained from γ by cutting a bridge.
- $\delta_{\text {loop }} \triangleright \gamma$ is a sum over all the diagrams obtained from γ by cutting a line which is not a bridge.
- $\gamma \triangleleft \delta_{\text {loop }}$ is a sum over all the diagrams obtained from γ by contracting a self-loop with one edge.

Deletion/contraction of edges

In the Lie algebra of \mathcal{G}_{T} define the infinitesimal characters such that $\delta_{\text {tree }}(\bullet)=1$ and $\delta_{\text {loop }}(\odot)=1$ and vanish otherwise.
$\alpha=\exp _{*}\left\{\right.$ sa $\left.\delta_{\text {tree }}+s b \delta_{\text {loop }}\right\}(\gamma)=s^{l_{\gamma}} a^{I_{\gamma}}-L_{\gamma} b^{L_{\gamma}}$ obeys the differential equation

$$
\frac{d \alpha}{d s}=\left(a \delta_{\text {tree }} * \alpha+b \delta_{\text {loop }}\right) * \alpha
$$

Any $\delta \in \mathcal{G}_{T}$ defines two derivations $f \triangleleft \delta=(\delta \otimes \mathrm{Id}) \circ \Delta(f)$ and $\delta \triangleright f=(\mathrm{Id} \otimes \delta) \circ \Delta(f)$.
Deletion/contraction interpretation:

- $\delta_{\text {tree }} \triangleright \gamma$ is a sum over all the diagrams obtained from γ by cutting a bridge.
$-\delta_{\text {loop }} \triangleright \gamma$ is a sum over all the diagrams obtained from γ by cutting a line which is not a bridge.
- $\gamma \triangleleft \delta_{\text {loop }}$ is a sum over all the diagrams obtained from γ by contracting a self-loop with one edge.
- $\gamma \triangleleft \delta_{\text {tree }}$ is a sum over all the diagrams obtained from γ by contracting a line which is not a self-loop.

The Tutte polynomial

The Tutte polynomial

The Tutte polynomial is a two variable polynomial attached to graphs

$$
P_{\gamma}(x, y)=\sum_{A \subset E}(y-1)^{n(A)}(x-1)^{r(E)-r(A)}
$$

where the sum runs over all subsets of the set of edges E of γ. In the QFT language, the nullity and the rank of a connected diagram can be expressed in terms of the number of internal lines and loops $n(\gamma)=I_{\gamma}-L_{\gamma}$ and $r(\gamma)=L_{\gamma}$.

The Tutte polynomial

The Tutte polynomial is a two variable polynomial attached to graphs

$$
P_{\gamma}(x, y)=\sum_{A \subset E}(y-1)^{n(A)}(x-1)^{r(E)-r(A)}
$$

where the sum runs over all subsets of the set of edges E of γ. In the QFT language, the nullity and the rank of a connected diagram can be expressed in terms of the number of internal lines and loops $n(\gamma)=I_{\gamma}-L_{\gamma}$ and $r(\gamma)=L_{\gamma}$.

Therefore, it can be expressed as the evaluation at $s=1$ of the character

$$
\alpha=\exp _{*} s\left\{\delta_{\text {tree }}+(y-1) \delta_{\text {loop }}\right\} * \exp _{*} s\left\{(x-1) \delta_{\text {tree }}+\delta_{\text {loop }}\right\},
$$

solution of the differential equation with boundary condition $\alpha(0)=\epsilon$,

$$
\frac{d \alpha}{d s}=x \alpha * \delta_{\text {tree }}+y \delta_{\text {loop }} * \alpha+\left[\delta_{\text {tree }}, \alpha\right]_{*}-\left[\delta_{\text {loop }}, \alpha\right]_{*}
$$

Universality of the Tutte polynomial

Universality of the Tutte polynomial

Consider a four variable graph polynomial $Q_{\gamma}(x, y, a, b)$ that is multiplicative on disjoint unions and one vertex unions and obeys the following contraction/deletion rules

Universality of the Tutte polynomial

Consider a four variable graph polynomial $Q_{\gamma}(x, y, a, b)$ that is multiplicative on disjoint unions and one vertex unions and obeys the following contraction/deletion rules

- $Q_{\gamma}(x, y, a, b)=x Q_{\gamma-e}(x, y, a, b)$ if e is a bridge

Universality of the Tutte polynomial

Consider a four variable graph polynomial $Q_{\gamma}(x, y, a, b)$ that is multiplicative on disjoint unions and one vertex unions and obeys the following contraction/deletion rules

- $Q_{\gamma}(x, y, a, b)=x Q_{\gamma-e}(x, y, a, b)$ if e is a bridge
- $Q_{\gamma}(x, y, a, b)=y Q_{\gamma / e}(x, y, a, b)$ if e is a self-loop

Universality of the Tutte polynomial

Consider a four variable graph polynomial $Q_{\gamma}(x, y, a, b)$ that is multiplicative on disjoint unions and one vertex unions and obeys the following contraction/deletion rules

- $Q_{\gamma}(x, y, a, b)=x Q_{\gamma-e}(x, y, a, b)$ if e is a bridge
- $Q_{\gamma}(x, y, a, b)=y Q_{\gamma / e}(x, y, a, b)$ if e is a self-loop
- $Q_{\gamma}(x, y, a, b)=a Q_{\gamma-e}(x, y, a, b)+,b Q_{\gamma / e}(x, y, a, b)$ if e is neither a bridge nor a self-loop

Universality of the Tutte polynomial

Consider a four variable graph polynomial $Q_{\gamma}(x, y, a, b)$ that is multiplicative on disjoint unions and one vertex unions and obeys the following contraction/deletion rules

- $Q_{\gamma}(x, y, a, b)=x Q_{\gamma-e}(x, y, a, b)$ if e is a bridge
- $Q_{\gamma}(x, y, a, b)=y Q_{\gamma / e}(x, y, a, b)$ if e is a self-loop
- $Q_{\gamma}(x, y, a, b)=a Q_{\gamma-e}(x, y, a, b)+,b Q_{\gamma / e}(x, y, a, b)$
if e is neither a bridge nor a self-loop
The character $\beta(\gamma)=s^{l_{\gamma}} Q_{\gamma}(x, y, a, b)$ obeys the differential equation

$$
\frac{d \beta}{d s}=x \beta * \delta_{\text {tree }}+y \delta_{\text {loop }} * \beta+a\left[\delta_{\text {tree }}, \beta\right]_{*}-b\left[\delta_{\text {loop }}, \beta\right]_{*} .
$$

Universality of the Tutte polynomial

Consider a four variable graph polynomial $Q_{\gamma}(x, y, a, b)$ that is multiplicative on disjoint unions and one vertex unions and obeys the following contraction/deletion rules

- $Q_{\gamma}(x, y, a, b)=x Q_{\gamma-e}(x, y, a, b)$ if e is a bridge
- $Q_{\gamma}(x, y, a, b)=y Q_{\gamma / e}(x, y, a, b)$ if e is a self-loop
- $Q_{\gamma}(x, y, a, b)=a Q_{\gamma-e}(x, y, a, b)+,b Q_{\gamma / e}(x, y, a, b)$ if e is neither a bridge nor a self-loop
The character $\beta(\gamma)=s^{l_{\gamma}} Q_{\gamma}(x, y, a, b)$ obeys the differential equation

$$
\frac{d \beta}{d s}=x \beta * \delta_{\text {tree }}+y \delta_{\text {loop }} * \beta+a\left[\delta_{\text {tree }}, \beta\right]_{*}-b\left[\delta_{\text {loop }}, \beta\right]_{*} .
$$

Acting with the automorphism $\varphi_{a^{-1, b-1}}(\gamma)=a^{-\left(l_{\gamma}-L_{\gamma}\right)} b^{-L_{\gamma}} \gamma$, we obtain the Tutte polynomial differential equation with modified parameters $\frac{x}{a}$ and $\frac{y}{b}$, so that

$$
Q_{\gamma}(x, y, a, b)=a^{l_{\gamma}-L_{\gamma}} b^{L_{\gamma}} P_{\gamma}\left(\frac{x}{a}, \frac{y}{b}\right)
$$

Composition of effective actions and the Tutte polynomial

Composition of effective actions and the Tutte polynomial

The Tutte polynomial is obtained by a composition of effective action computations starting with a universal action $S[\phi]=e^{\phi}$ that generate all diagrams.

Composition of effective actions and the Tutte polynomial

The Tutte polynomial is obtained by a composition of effective action computations starting with a universal action $S[\phi]=e^{\phi}$ that generate all diagrams.

- To generate $v^{L_{\gamma}}$, we weight loops by $h=v$ (with $v=y-1$),

$$
S^{\prime}[\phi]=v \log \left\{\int[D \chi] \mathrm{e}^{-\frac{1}{2 v} \chi^{2}} \mathrm{e}^{\frac{S[\phi+\chi]}{v}}\right\}
$$

Composition of effective actions and the Tutte polynomial

The Tutte polynomial is obtained by a composition of effective action computations starting with a universal action $S[\phi]=\mathrm{e}^{\phi}$ that generate all diagrams.

- To generate $v^{L_{\gamma}}$, we weight loops by $h=v$ (with $v=y-1$),

$$
S^{\prime}[\phi]=v \log \left\{\int[D \chi] \mathrm{e}^{-\frac{1}{2 v} \chi^{2}} \mathrm{e}^{\frac{S[\phi+\chi]}{v}}\right\}
$$

- To generate $u^{l_{\gamma}-L_{\gamma}}$, we weight internal lines by u (with $u=x-1$) and loops by $\frac{1}{u}$, so that

$$
S^{\prime \prime}[\psi]=\frac{1}{u} \log \left\{\int[D \phi] \mathrm{e}^{-\frac{1}{2} \phi^{2}} \mathrm{e}^{u S[\psi+\phi]}\right\} .
$$

Composition of effective actions and the Tutte polynomial

The Tutte polynomial is obtained by a composition of effective action computations starting with a universal action $S[\phi]=\mathrm{e}^{\phi}$ that generate all diagrams.

- To generate $v^{L_{\gamma}}$, we weight loops by $h=v$ (with $v=y-1$),

$$
S^{\prime}[\phi]=v \log \left\{\int[D \chi] \mathrm{e}^{-\frac{1}{2 v} \chi^{2}} \mathrm{e}^{\frac{S[\phi+\chi]}{v}}\right\}
$$

- To generate $u^{l_{\gamma}-L_{\gamma}}$, we weight internal lines by u (with $u=x-1$) and loops by $\frac{1}{u}$, so that

$$
S^{\prime \prime}[\psi]=\frac{1}{u} \log \left\{\int[D \phi] \mathrm{e}^{-\frac{1}{2} \phi^{2}} \mathrm{e}^{u S[\psi+\phi]}\right\} .
$$

- Then, we substitute S^{\prime} into the expression of $S^{\prime \prime}$ and evaluate at $\psi=0$,

$$
G_{\text {Tutte }}(u, v)=\frac{1}{u} \log I=\frac{1}{u} \log \left\{\int[D \phi] \mathrm{e}^{-\frac{1}{2} \phi^{2}}\left(\int[D \chi] \mathrm{e}^{-\frac{1}{2 v} \chi^{2}} \mathrm{e}^{\frac{S[\phi+\chi]}{v}}\right)^{q}\right\}
$$

with $q=u v$.

Generating function for the Tutte polynomial

Generating function for the Tutte polynomial

When q is an integer, we introduce q independent fields χ_{i}

$$
I=\int[D \phi] \int \prod_{1 \leq i \leq q}\left[D \chi_{i}\right] \mathrm{e}^{-\frac{1}{2} \phi^{2}} \mathrm{e}^{-\frac{1}{2 v} \sum_{i}\left(\chi_{i}\right)^{2}} \mathrm{e}^{\frac{1}{v} \sum_{i} S\left[\chi_{i}+\phi\right]}
$$

Generating function for the Tutte polynomial

When q is an integer, we introduce q independent fields χ_{i}

$$
I=\int[D \phi] \int \prod_{1 \leq i \leq q}\left[D \chi_{i}\right] \mathrm{e}^{-\frac{1}{2} \phi^{2}} \mathrm{e}^{-\frac{1}{2 v} \sum_{i}\left(\chi_{i}\right)^{2}} \mathrm{e}^{\frac{1}{v} \sum_{i} S\left[\chi_{i}+\phi\right]}
$$

It is convenient to trade χ_{i} for $\xi_{i}=\chi_{i}+\phi$ so that the integral over ϕ is Gaußian and can be performed

$$
I=\int \prod_{1 \leq i \leq q}\left[D \xi_{i}\right] \mathrm{e}^{-\frac{1}{2 v}\left\{\left(\sum_{i}\left(\xi_{i}\right)^{2}-\frac{1}{v(1+u)}\left(\sum_{i} \xi_{i}\right)^{2}\right)\right\}} \times \mathrm{e}^{\frac{1}{v} \sum_{i} S\left[\xi_{i}\right]} .
$$

Generating function for the Tutte polynomial

When q is an integer, we introduce q independent fields χ_{i}

$$
I=\int[D \phi] \int \prod_{1 \leq i \leq q}\left[D \chi_{i}\right] \mathrm{e}^{-\frac{1}{2} \phi^{2}} \mathrm{e}^{-\frac{1}{2 v} \sum_{i}\left(\chi_{i}\right)^{2}} \mathrm{e}^{\frac{1}{v} \sum_{i} S\left[\chi_{i}+\phi\right]}
$$

It is convenient to trade χ_{i} for $\xi_{i}=\chi_{i}+\phi$ so that the integral over ϕ is Gaußian and can be performed

$$
I=\int \prod_{1 \leq i \leq q}\left[D \xi_{i}\right] \mathrm{e}^{-\frac{1}{2 v}\left\{\left(\sum_{i}\left(\xi_{i}\right)^{2}-\frac{1}{v(1+u)}\left(\sum_{i} \xi_{i}\right)^{2}\right)\right\}} \times \mathrm{e}^{\frac{1}{v} \sum_{i} S\left[\xi_{i}\right]}
$$

By expanding the integral over a multiplet of fields $\xi=\left(\xi_{i}\right)$ using
Feynman diagrams, we generate the Tutte polynomials,

$$
G_{\text {Tutte }}(u, v)=\frac{1}{u} \log \left\{\int[D \xi] \mathrm{e}^{-\frac{1}{2} \xi \cdot A^{-1} \xi} \mathrm{e}^{V(\xi)}\right\}
$$

with a $q \times q$ propagator $A=v+M$, where M is the $q \times q$ matrix whose entries are all equal to 1 , and an interaction $V(\xi)=\frac{1}{v} \sum_{i} S\left(\xi_{i}\right)$.

Relation to the Potts model partition function

Relation to the Potts model partition function

The Feynman rules for this expansion are as follows:

Relation to the Potts model partition function

The Feynman rules for this expansion are as follows:

- each vertex contributes to a factor $\frac{1}{v}$ and is equipped with an index i taking q values, because of the q independent fields in the interaction;

Relation to the Potts model partition function

The Feynman rules for this expansion are as follows:

- each vertex contributes to a factor $\frac{1}{v}$ and is equipped with an index i taking q values, because of the q independent fields in the interaction;
- each line contributes a factor of $1+v$ if it connects vertices with the same index and a factor of 1 otherwise,

Relation to the Potts model partition function

The Feynman rules for this expansion are as follows:

- each vertex contributes to a factor $\frac{1}{v}$ and is equipped with an index i taking q values, because of the q independent fields in the interaction;
- each line contributes a factor of $1+v$ if it connects vertices with the same index and a factor of 1 otherwise,
- sum over all the indices.

Relation to the Potts model partition function

The Feynman rules for this expansion are as follows:

- each vertex contributes to a factor $\frac{1}{v}$ and is equipped with an index i taking q values, because of the q independent fields in the interaction;
- each line contributes a factor of $1+v$ if it connects vertices with the same index and a factor of 1 otherwise,
- sum over all the indices.

The evaluation of a graph γ is proportional to the q-state Potts model partition function on γ,

$$
Z(\beta, J, \gamma)=\sum_{\sigma} \mathrm{e}^{-\beta H(\sigma)}
$$

where the sum runs over all states and β is such that $v=\mathrm{e}^{-\beta J}-1$. A state σ is a assigment of spin in q element set to each vertex of the graph and the Hamiltonian is

$$
H(\sigma)=-\#\{\text { edges joining identical spins }\}
$$

Tree level Feynman diagrams and Postnikov's formula

Tree level Feynman diagrams and Postnikov's formula

By Cayley's formula, the number of labelled non rooted trees τ with $|\tau|=n$ edges is $(n+1)^{n-1}$. Accordingly,

$$
\sum_{|\tau|=n} \frac{(2 s)^{n}}{\mathrm{~S}_{\tau}}=\frac{(n+1)^{n-1}(2 s)^{n}}{(n+1)!}
$$

Tree level Feynman diagrams and Postnikov's formula

By Cayley's formula, the number of labelled non rooted trees τ with $|\tau|=n$ edges is $(n+1)^{n-1}$. Accordingly,

$$
\sum_{|\tau|=n} \frac{(2 s)^{n}}{\mathrm{~S}_{\tau}}=\frac{(n+1)^{n-1}(2 s)^{n}}{(n+1)!}
$$

This sum is generated by the tree level part of an equation of the Polchinski type (note the absence of $\frac{1}{2}$ prefactor)

$$
\frac{\partial S}{\partial s}=\left(\frac{\partial S}{\partial \phi}\right)^{2} \quad S_{0}[\phi]=\mathrm{e}^{\phi}
$$

Tree level Feynman diagrams and Postnikov's formula

By Cayley's formula, the number of labelled non rooted trees τ with $|\tau|=n$ edges is $(n+1)^{n-1}$. Accordingly,

$$
\sum_{|\tau|=n} \frac{(2 s)^{n}}{\mathrm{~S}_{\tau}}=\frac{(n+1)^{n-1}(2 s)^{n}}{(n+1)!}
$$

This sum is generated by the tree level part of an equation of the Polchinski type (note the absence of $\frac{1}{2}$ prefactor)

$$
\frac{\partial S}{\partial s}=\left(\frac{\partial S}{\partial \phi}\right)^{2} \quad S_{0}[\phi]=\mathrm{e}^{\phi}
$$

This non linear equation can be solved using sum over plane binary trees:

Tree level Feynman diagrams and Postnikov's formula

By Cayley's formula, the number of labelled non rooted trees τ with $|\tau|=n$ edges is $(n+1)^{n-1}$. Accordingly,

$$
\sum_{|\tau|=n} \frac{(2 s)^{n}}{S_{\tau}}=\frac{(n+1)^{n-1}(2 s)^{n}}{(n+1)!}
$$

This sum is generated by the tree level part of an equation of the Polchinski type (note the absence of $\frac{1}{2}$ prefactor)

$$
\frac{\partial S}{\partial s}=\left(\frac{\partial S}{\partial \phi}\right)^{2} \quad S_{0}[\phi]=\mathrm{e}^{\phi}
$$

This non linear equation can be solved using sum over plane binary trees:

- $\frac{1}{t!}=\prod_{v} \frac{1}{h_{v}}$ is generated by the iterated integrals

Tree level Feynman diagrams and Postnikov's formula

By Cayley's formula, the number of labelled non rooted trees τ with $|\tau|=n$ edges is $(n+1)^{n-1}$. Accordingly,

$$
\sum_{|\tau|=n} \frac{(2 s)^{n}}{S_{\tau}}=\frac{(n+1)^{n-1}(2 s)^{n}}{(n+1)!}
$$

This sum is generated by the tree level part of an equation of the Polchinski type (note the absence of $\frac{1}{2}$ prefactor)

$$
\frac{\partial S}{\partial s}=\left(\frac{\partial S}{\partial \phi}\right)^{2} \quad S_{0}[\phi]=\mathrm{e}^{\phi}
$$

This non linear equation can be solved using sum over plane binary trees:

- $\frac{1}{t!}=\prod_{v} \frac{1}{h_{v}}$ is generated by the iterated integrals
- $\prod_{v \neq \text { root }}\left(1+h_{v}\right)$ is generated by iterations of $\frac{\partial}{\partial \phi}$

Tree level Feynman diagrams and Postnikov's formula

By Cayley's formula, the number of labelled non rooted trees τ with $|\tau|=n$ edges is $(n+1)^{n-1}$. Accordingly,

$$
\sum_{|\tau|=n} \frac{(2 s)^{n}}{S_{\tau}}=\frac{(n+1)^{n-1}(2 s)^{n}}{(n+1)!}
$$

This sum is generated by the tree level part of an equation of the Polchinski type (note the absence of $\frac{1}{2}$ prefactor)

$$
\frac{\partial S}{\partial s}=\left(\frac{\partial S}{\partial \phi}\right)^{2} \quad S_{0}[\phi]=\mathrm{e}^{\phi}
$$

This non linear equation can be solved using sum over plane binary trees:

- $\frac{1}{t!}=\prod_{v} \frac{1}{h_{v}}$ is generated by the iterated integrals
- $\prod_{v \neq \text { root }}\left(1+h_{v}\right)$ is generated by iterations of $\frac{\partial}{\partial \phi}$

We recover Postnikov's formula by evaluating $\frac{\partial S}{\partial \phi}$ at $s=1$ and $\phi=0$.

Feynman graphs and their Symanzik polynomials

In quantum field theory, a Feynman diagram γ with n edges can be evaluated, in dimension D as

$$
\int \frac{d^{n} \alpha}{\left(U_{\gamma}(\alpha)\right)^{\frac{D}{2}}} \mathrm{e}^{-\frac{V_{\gamma}(\alpha, p)}{U_{\gamma}(\alpha)}}
$$

where $U_{\gamma}(\alpha)$ is the (first) Symanzik polynomial

$$
U_{\gamma}(\alpha)=\sum_{\substack{t \\ \text { spanning trees }}} \prod_{i \notin t} \alpha_{i}
$$

and α_{i} are variables associated to the edges.

Feynman graphs and their Symanzik polynomials

In quantum field theory, a Feynman diagram γ with n edges can be evaluated, in dimension D as

$$
\int \frac{d^{n} \alpha}{\left(U_{\gamma}(\alpha)\right)^{\frac{D}{2}}} \mathrm{e}^{-\frac{V_{\gamma}(\alpha, p)}{U_{\gamma}(\alpha)}}
$$

where $U_{\gamma}(\alpha)$ is the (first) Symanzik polynomial

$$
U_{\gamma}(\alpha)=\sum_{\substack{t \\ \text { spanning tres }}} \prod_{i \notin t} \alpha_{i}
$$

and α_{i} are variables associated to the edges. For example,

yields $U_{\gamma}(\alpha)=\alpha_{1} \alpha_{3}+\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{3}+\alpha_{2} \alpha_{4}+\alpha_{3} \alpha_{4}$.

Loop decomposition of the Symanzik polynomial

Loop decomposition of the Symanzik polynomial

In the Hopf algebra of Feynman diagrams with labelled edges consider the infinitesimal characters

$$
\delta_{\text {tree }}(\bullet)=1 \quad \text { and } \quad \delta_{\text {loop }}(\odot)=\alpha_{i}
$$

and vanish otherwise.

Loop decomposition of the Symanzik polynomial

In the Hopf algebra of Feynman diagrams with labelled edges consider the infinitesimal characters

$$
\delta_{\text {tree }}(\leftharpoondown)=1 \quad \text { and } \quad \delta_{\text {loop }}(\odot)=\alpha_{i}
$$

and vanish otherwise.

$$
\begin{aligned}
U_{\gamma}(\alpha) & =\mathrm{e}^{\delta_{\text {tree }}} * \mathrm{e}^{\delta_{\text {loop }}} \\
& =\mathrm{e}^{\delta_{\text {tree }}} * \mathrm{e}^{\delta_{\text {loop }}} * \mathrm{e}^{-\delta_{\text {tree }}} * \mathrm{e}^{\delta_{\text {tree }}} \\
& =\mathrm{e}^{\sum_{n} \delta_{n \text { loop }}} * \mathrm{e}^{\delta_{\text {tree }}}
\end{aligned}
$$

since, in the Lie algebra of Feynman diagrams,

$$
\frac{1}{n!} \underbrace{\left[\delta_{\text {tree }},\left[\cdots\left[\delta_{\text {tree }}, \delta_{\text {loop }}\right] \cdots\right]\right]}_{n \text { iterations }}=\delta_{n \text { loop }}
$$

with $\delta_{n \text { loop }}$ taking the value $\sum_{i} \alpha_{i}$ on the one loop diagram with n edges and vanishes otherwise. Thus, $U_{\gamma}(\alpha)$ can be evaluated by summing over all contraction schemes of the loops.

Loop decomposition of the Symanzik polynomial

In the Hopf algebra of Feynman diagrams with labelled edges consider the infinitesimal characters

$$
\delta_{\text {tree }}(\bullet)=1 \quad \text { and } \quad \delta_{\text {loop }}(\odot)=\alpha_{i}
$$

and vanish otherwise.

$$
\begin{aligned}
U_{\gamma}(\alpha) & =\mathrm{e}^{\delta_{\text {tree }}} * \mathrm{e}^{\delta_{\text {loop }}} \\
& =\mathrm{e}^{\delta_{\text {tree }}} * \mathrm{e}^{\delta_{\text {loop }}} * \mathrm{e}^{-\delta_{\text {tree }}} * \mathrm{e}^{\delta_{\text {tree }}} \\
& =\mathrm{e}_{n}^{\sum_{n} \delta_{n \text { loop }}} * \mathrm{e}^{\delta_{\delta_{\text {tree }}}}
\end{aligned}
$$

since, in the Lie algebra of Feynman diagrams,

$$
\frac{1}{n!} \underbrace{\left[\delta_{\text {tree }},\left[\cdots\left[\delta_{\text {tree }}, \delta_{\text {loop }}\right] \cdots\right]\right]}_{n \text { iterations }}=\delta_{n \text { loop }}
$$

with $\delta_{n \text { loop }}$ taking the value $\sum_{i} \alpha_{i}$ on the one loop diagram with n edges and vanishes otherwise. Thus, $U_{\gamma}(\alpha)$ can be evaluated by summing over all contraction schemes of the loops. For example,
$U_{\nless \notin}(\alpha)=\frac{1}{2}\left\{\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) \alpha_{4}+\left(\alpha_{1}+\alpha_{2}+\alpha_{4}\right) \alpha_{3}+\left(\alpha_{1}+\alpha_{2}\right)\left(\alpha_{3}+\alpha_{4}\right)\right\}$

Conclusion

Conclusion

Common framework for perturbative resolution of non linear equations and effective actions based on Hopf algebras of rooted trees and Feynman diagrams.

Conclusion

Common framework for perturbative resolution of non linear equations and effective actions based on Hopf algebras of rooted trees and Feynman diagrams.

rooted trees	Feynman diagrams
non linear analysis	perturbative path integrals
fixed point equation	renormalization group equation
Powers of non linear operators $X^{t}(x)$	background field technique $A^{\gamma}(S)$
$x^{\prime}=(\mathrm{id}-X)(x)$	$S^{\prime}[\phi]=\log \int[D \chi] \mathrm{e}^{-\frac{1}{2} \chi \cdot A \cdot \chi+S[\phi+\chi]}$ $=\sum_{t} \frac{\chi^{t}}{S_{t}}$
$=\sum_{\gamma} \frac{A^{\gamma}(S)}{S_{\gamma}}[\phi]$	
composition	successive integrations

Conclusion

Common framework for perturbative resolution of non linear equations and effective actions based on Hopf algebras of rooted trees and Feynman diagrams.

rooted trees	Feynman diagrams
non linear analysis	perturbative path integrals
fixed point equation	renormalization group equation
Powers of non linear operators $X^{t}(x)$	background field technique $A^{\gamma}(S)$
$x^{\prime}=(\mathrm{id}-X)(x)$	$S^{\prime}[\phi]=\log \int[D \chi] \mathrm{e}^{-\frac{1}{2} \chi \cdot A \cdot \chi+S[\phi+\chi]}$ $=\sum_{t} \frac{\chi^{t}}{S_{t}}$
$=\sum_{\gamma} \frac{A^{\gamma}(S)}{S_{\gamma}}[\phi]$	
composition	successive integrations

Derivation of combinatorial identities (hook length formula, properties of the tutte polynomial, ...) inspired by effective action computations.

