M2 (2011-2012)

Cours de Combinatoire Algébrique Fiche de T.D. numéro 2

Représentations des groupes symétriques

Exercice 1. (composante isotypique)

Soit G un groupe fini et (V, ρ) une représentation de G.

Soit W_i une représentation irréductible de G de caractère χ_i et de degré n_i .

(a) En choisissant une décomposition de V en somme directe de repr. irréductibles, on définit V_i comme la somme directe des facteurs isomorphes à W_i . Montrer que V_i est l'image d'un projecteur défini par

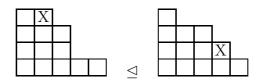
$$\frac{n_i}{\#G} \sum_{t \in G} \bar{\chi}_i(t) \rho(t). \tag{1}$$

En déduire que V_i ne dépend pas du choix initial.

- (a) Soit V_i^{\sharp} le sous-espace de V engendré par les images de tous les morphismes de W_i dans V. Montrer que V_i^{\sharp} est une sous-représentation de V.
 - (b) Montrer que V_i^{\sharp} est inclus dans V_i . Montrer l'inclusion dans l'autre sens et conclure.
 - (c) Montrer que toute sous-représentation irréductible de V'_i est isomorphe à W_i .
- (d) Montrer que si on a un isomorphisme $\varphi: V \simeq V'$ de représentations, alors φ induit un isomorphisme de V_i dans V_i' .
 - (e) Montrer que V_i et V_j sont en somme directe si $W_i \not\simeq W_j$.

Remarque : V_i est appelé la **composante isotypique** de V de type W_i .

Exercice 2. (ordre de dominance)



Soit n un entier non nul. Soient λ et μ deux partitions de n.

On note \leq l'ordre de dominance sur les partitions de n.

On note \leq_{ℓ} la relation suivante : $\lambda \leq_{\ell} \mu$ si on passe de λ à μ en "faisant tomber une case vers la droite" : on déplace une case du sommet d'une colonne vers le sommet d'une colonne plus à droite, à condition que cela forme encore une partition.

(a) Montrer que si $\lambda \leq_{\ell} \mu$, alors $\lambda \leq \mu$.

(b) Montrer que si $\lambda \leq \mu$, on peut trouver ν (distinct de μ) tel que

$$\lambda \leq \nu \leq_{\ell} \mu$$
.

Indications: On considère la première ligne k qui diffère entre les deux partitions. On peut supposer (quitte à changer k) que la case à droite de cette ligne est un coin. On trouve une ligne s plus haut avec moins de cases dans μ que dans λ .

- (c) En déduire que \leq est la clôture transitive de \leq_{ℓ} .
- (d) Déterminer les paires $\lambda \leq \mu$ telles que l'intervalle

$$[\lambda, \mu] = \{ \nu \mid \lambda \trianglelefteq \nu \trianglelefteq \mu \}$$

contienne exactement deux éléments. (Relations de couvertures)

(e) Dessiner les diagrammes de Hasse des ordres partiels \triangleleft pour n < 6.

Exercice 3. (Quelques calculs)

Soient χ_1, χ_2, χ_3 les caractères irréd. de S_3 (on note χ_2 le caractère de degré 2).

- (a) Calculer la décomposition de $\chi_i \otimes \chi_j$ en irréductibles.
- (b) On considère S_3 comme le sous-groupe de S_4 fixant 4.

Calculer le caractère induit de χ_2 et sa décomposition en irréductibles.

- (c) En déduire des informations sur la restriction de certaines repr. irréductibles de S_4 .
- (d) Pour G groupe fini quelconque, décrire le produit tensoriel par la représentation régulière.

Exercice 4. (sous-groupes de Young)

On considère une partition de l'ensemble $\{1, \ldots, n\}$ en blocs B_1, \ldots, B_r formés d'entiers consécutifs. On note $\mu_1, \mu_2, \ldots, \mu_r$ les tailles des blocs.

Le sous-groupe de Young de S_n associé à la partition μ est le sous groupe des permutations qui préservent les blocs : $\sigma(B_i) = B_i$ pour tout i. On le note S_{μ} .

- (a) Quelle est la dimension du module M_{λ} induit (de S_{μ} à S_{n}) du module trivial de S_{μ} ?
- (b) Décrire les classes à droite en termes d'objets ressemblant aux tableaux/tabloides.
- (c) Montrer que M_{λ} est cyclique (engendré par un élément).
- (d) Calculer les caractères des repr. M_{λ} pour S_3 . Les comparer aux caractères irréductibles.