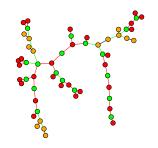
Cluster varieties for tree-shaped quivers and their cohomology

Frédéric Chapoton

CNRS & Université Claude Bernard Lyon 1

December 2014



(日) (월) (분) (분)

500

Cluster algebras are commutative algebras

 \implies cluster varieties (their spectrum) are algebraic varieties

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Question: can we compute their cohomology rings ?

Cluster algebras are commutative algebras

 \implies cluster varieties (their spectrum) are algebraic varieties

Question: can we compute their cohomology rings ?

Why is this interesting ?

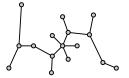
- \rightarrow classical way to study algebraic varieties
- \rightarrow useful (necessary) to understand integration on them (there are interesting periods involved)

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

- \rightarrow answer is not obvious, and sometimes nice
- \rightarrow there are interesting known differential forms

My choice goes to trees

Choice: try to handle first some simple cases \implies restriction to quivers that are **trees** (general quivers are more complicated)

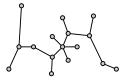


・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

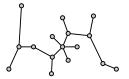
500

Choice: try to handle first some simple cases \implies restriction to quivers that are **trees** (general quivers are more complicated)



▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

This choice is restrictive and rather arbitrary, but turns out to involve a **nice combinatorics** of perfect matchings and independent sets in trees Choice: try to handle first some simple cases \implies restriction to quivers that are **trees** (general quivers are more complicated)



・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

This choice is restrictive and rather arbitrary, but turns out to involve a **nice combinatorics** of perfect matchings and independent sets in trees

 \rightarrow computing number of **points over finite fields** \mathbb{F}_q can be seen as a first approximation towards determination of cohomology and is usually much more easy

Cluster algebra of type \mathbb{A}_1 : $\square \times$ with one frozen vertex α . Presentation by the unique relation

$$x x' = 1 + \alpha$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Cluster algebra of type \mathbb{A}_1 : α with one frozen vertex α . Presentation by the unique relation

$$x x' = 1 + \alpha$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

We will consider cluster algebras with invertible coefficients So here α is assumed to be invertible.

Cluster algebra of type \mathbb{A}_1 : α with one frozen vertex α . Presentation by the unique relation

$$x x' = 1 + \alpha$$

We will consider cluster algebras with invertible coefficients So here α is assumed to be invertible.

One can then do two different things:

 \rightarrow (1) either let α vary in \mathbb{C}^* .

This gives an open sub-variety in \mathbb{C}^2 with coordinates x, x'.

 \rightarrow (2) or fix α to a generic invertible value (here $\alpha \neq -1, 0$) This gives a variety isomorphic to \mathbb{C}^* with coordinate x.

$$x \, x' = 1 + \alpha \quad (*)$$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

The first case (1) (α as variable) is a **cluster variety** spectrum of the cluster algebra $R = \mathbb{C}[x, x', \alpha, \alpha^{-1}]/(*)$

$$x x' = 1 + \alpha$$
 (*)

The first case (1) (α as variable) is a **cluster variety** spectrum of the cluster algebra $R = \mathbb{C}[x, x', \alpha, \alpha^{-1}]/(*)$

The second case (2) (α fixed to a generic value) could be called a **cluster fiber variety**:

the inclusion of algebras $\mathbb{C}[\alpha, \alpha^{-1}] \to R$ gives a projection of varieties $\mathbb{C}^* \leftarrow Spec(R)$ and one looks at the (generic) fibers of this **coefficient morphism**.

$$x x' = 1 + \alpha$$
 (*)

The first case (1) (α as variable) is a **cluster variety** spectrum of the cluster algebra $R = \mathbb{C}[x, x', \alpha, \alpha^{-1}]/(*)$

The second case (2) (α fixed to a generic value) could be called a **cluster fiber variety**:

the inclusion of algebras $\mathbb{C}[\alpha, \alpha^{-1}] \to R$ gives a projection of varieties $\mathbb{C}^* \leftarrow Spec(R)$ and one looks at the (generic) fibers of this **coefficient morphism**.

Note that the fiber at $\alpha = -1$ is singular.

Let us generalize this simple example.

For any tree, there is a well-defined cluster type (because all orientations of a tree are equivalent by mutation) one can therefore work with the alternating orientation

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Let us generalize this simple example.

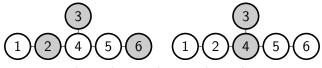
For any tree, there is a well-defined cluster type (because all orientations of a tree are equivalent by mutation) one can therefore work with the alternating orientation

For any tree T, the aim is to define several varieties that are a kind of **mixture** between cluster varieties and fibers

For that, need first to introduce some combinatorics on trees

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

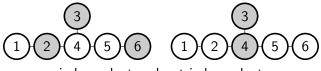
By definition, an **independent set** in a graph G is a subset S of the set of vertices of Gsuch that every edge contains at most one element of S



independent and not independent

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

By definition, an **independent set** in a graph G is a subset S of the set of vertices of Gsuch that every edge contains at most one element of S



independent and not independent

A **maximum independent set** is an independent set of maximal cardinality among all independent sets.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Independent sets are a very classical notion in graph theory.

- \rightarrow NP-complete problem for general graphs (Richard Karp, 1972)
- \rightarrow polynomial algorithm for bipartite graphs (Jack Edmonds, 1961).
- \rightarrow a very nice description for trees (Jennifer Zito 1991 ; Michel Bauer and Stéphane Coulomb 2004)

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Independent sets are a very classical notion in graph theory.

- ightarrow NP-complete problem for general graphs (Richard Karp, 1972)
- \rightarrow polynomial algorithm for bipartite graphs (Jack Edmonds, 1961).
- \rightarrow a very nice description for trees (Jennifer Zito 1991 ; Michel Bauer and Stéphane Coulomb 2004)

One has to distinguish three kinds of vertices:

- vertices belonging to all maximal independent sets: RED
 vertices belonging to some max. independent sets: ORANGE
- vertices belonging to no maximal independent set: GREEN
 Colors chosen are "traffic light colors"

Independent sets are a very classical notion in graph theory.

- \rightarrow NP-complete problem for general graphs (Richard Karp, 1972)
- \rightarrow polynomial algorithm for bipartite graphs (Jack Edmonds, 1961).
- \rightarrow a very nice description for trees (Jennifer Zito 1991 ; Michel Bauer and Stéphane Coulomb 2004)

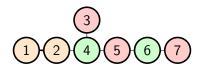
One has to distinguish three kinds of vertices:

vertices belonging to all maximal independent sets: RED
 vertices belonging to some max. independent sets: ORANGE
 vertices belonging to no maximal independent set: GREEN
 Colors chosen are "traffic light colors"

Nota Bene: this has nothing to do with green sequences

Canonical coloring

This gives a **canonical** coloring of every tree ! Here is one example of coloring

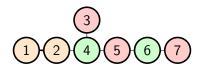


▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Here, there are 2 maximal indep. sets, of cardinality 4

Canonical coloring

This gives a **canonical** coloring of every tree ! Here is one example of coloring



▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

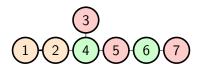
Here, there are 2 maximal indep. sets, of cardinality 4

This coloring can be described by local "Feynman" rules:

- a green vertex has at least two red neighbors
- a red vertex has only green neighbors
- orange vertices are grouped into neighbourly pairs

Canonical coloring

This gives a **canonical** coloring of every tree ! Here is one example of coloring



Here, there are 2 maximal indep. sets, of cardinality 4

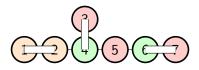
This coloring can be described by local "Feynman" rules:

- a green vertex has at least two red neighbors
- a red vertex has only green neighbors
- orange vertices are grouped into neighbourly pairs

It turns out that this coloring is also related to matchings.

Coloring and matchings

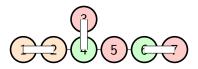
A matching is a set of edges with no common vertices. A **maximum matching** is a matching of maximum cardinality among all matchings.



▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Coloring and matchings

A matching is a set of edges with no common vertices. A **maximum matching** is a matching of maximum cardinality among all matchings.

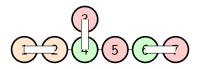


▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Other names: **dimer coverings** or **domino tilings**. Here not required to cover all vertices (perfect matchings)

Coloring and matchings

A matching is a set of edges with no common vertices. A **maximum matching** is a matching of maximum cardinality among all matchings.



Other names: **dimer coverings** or **domino tilings**. Here not required to cover all vertices (perfect matchings)

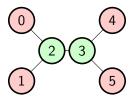
Theorem (Zito ; Bauer-Coulomb)

This coloring is the same as:

orange: vertices always in the same domino in all max. matchings

- green: vertices always covered by a domino in any max. matching
- red: vertices not covered by a domino in some max. matching

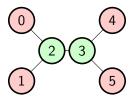
One can then use this coloring to define **red-green components**: keep only the edges linking a red vertex to a green vertex; this defines a forest; take its connected components



An example with two red-green components $\{0, 1, 2\}$ and $\{3, 4, 5\}$

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

One can then use this coloring to define **red-green components**: keep only the edges linking a red vertex to a green vertex; this defines a forest; take its connected components

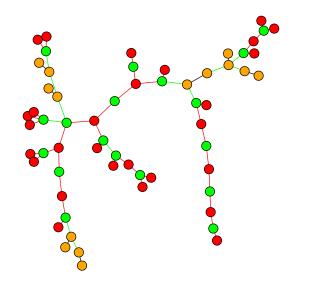


An example with two red-green components $\{0, 1, 2\}$ and $\{3, 4, 5\}$

For a tree T, let us call **dimension** dim T = # red• - # green•. This is always an integer dim $(T) \ge 0$. In the example above, the dimension is 4 - 2 = 2.

くりょう 山田 (山田) (山田) (山) (山)

Here is a big random example, with canonical coloring



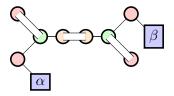
▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 臣 のへで

Take a tree T and consider the alternating (bipartite) orientation on T. This gives a quiver, initial data for cluster theory. Another orientation would give a quiver equivalent by mutation.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

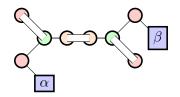
Take a tree T and consider the alternating (bipartite) orientation on T. This gives a quiver, initial data for cluster theory. Another orientation would give a quiver equivalent by mutation.

Pick a maximum matching of T and attach one frozen vertex to every vertex not covered by the matching.



(Claim: no loss in generality compared to arbitrary coefficients) \rightarrow every coefficient is attached to a red vertex

So what are the varieties ?

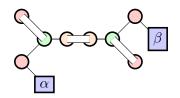


 \rightarrow the extended graph is still a tree, and has a perfect matching.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

 \rightarrow the number of frozen vertices is dim(*T*).

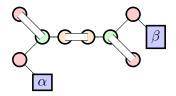
So what are the varieties ?



- \rightarrow the extended graph is still a tree, and has a perfect matching.
- \rightarrow the number of frozen vertices is dim(*T*).
- Then choose independently for every red-green component:
- either to let all coefficients vary (but staying invertible)
- or to let all coefficients be fixed at generic (invertible) values

The equations are the cluster exchange relations for the alternating orientation (of the extended tree): $x_i x'_i = 1 + \prod_j x_j$. One uses here a theorem of Berenstein-Fomin-Zelevinsky (in Cluster III) which gives a presentation by generators and relations of **acyclic** cluster algebras.

The equations are the cluster exchange relations for the alternating orientation (of the extended tree): $x_i x'_i = 1 + \prod_j x_j$. One uses here a theorem of Berenstein-Fomin-Zelevinsky (in Cluster III) which gives a presentation by generators and relations of **acyclic** cluster algebras.



In this example, one can choose to fix β and let α vary.

This is really a mixture between the global cluster variety and the fibers of the coefficient morphism.

The matching does not matter

Theorem

This variety does not depend on the matching (up to isomorphism). All these varieties are smooth.

Proved using monomial isomorphisms ; smoothness by induction

Theorem

This variety does not depend on the matching (up to isomorphism). All these varieties are smooth.

Proved using monomial isomorphisms ; smoothness by induction Note that the genericity condition can be made very explicit and is really necessary to ensure smoothness: Counter examples

 \mathbb{A}_3 singular when $\alpha = 1$ and \mathbb{A}_1 when $\alpha = -1$ (\mathbb{A}_1 was the baby example) equations have coefficients in $\mathbb{Z} \to$ reduction to finite field \mathbb{F}_q .

Theorem

For X any of these varieties, there exists a polynomial P_X such that $\#X(\mathbb{F}_q)$ is given by $P_x(q)$.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

This is a first hint that maybe cohomology may be "nice".

equations have coefficients in $\mathbb{Z} \to$ reduction to finite field \mathbb{F}_q .

Theorem

For X any of these varieties, there exists a polynomial P_X such that $\#X(\mathbb{F}_q)$ is given by $P_x(q)$.

This is a first hint that maybe cohomology may be "nice". The proof is by induction on the size of trees. One picks a vertex, corresponding to a variable x. Then either x = 0 or $x \neq 0$. Both reduces to similar varieties (for well chosen vertices).

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

equations have coefficients in $\mathbb{Z} \to$ reduction to finite field \mathbb{F}_q .

Theorem

For X any of these varieties, there exists a polynomial P_X such that $\#X(\mathbb{F}_q)$ is given by $P_x(q)$.

This is a first hint that maybe cohomology may be "nice". The proof is by induction on the size of trees. One picks a vertex, corresponding to a variable x. Then either x = 0 or $x \neq 0$. Both reduces to similar varieties (for well chosen vertices).

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

For \mathbb{A}_3 with α generic, one gets $q^3 - 1$ points.

Free action of a torus

Recall the dimension dim(T) = # red – # green Clearly the dimension is additive over red-green components.

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Recall the dimension $\dim(T) = \# \operatorname{red} - \# \operatorname{green}$ Clearly the dimension is additive over red-green components.

Consider the variety X_T associated with tree T and a choice for every red-green component of T between "varying" or "generic" coefficients. Let N be the sum of dim C over all "generic"-type red-green components C.

Theorem

There is a free action of $(\mathbb{C}^*)^N$ on X_T . Moreover the enumerating polynomial P_X can be written as $(q-1)^N$ times a reciprocal polynomial.

- ロ ト - 4 回 ト - 4 □ - 4

Recall the dimension dim(T) = # red – # green Clearly the dimension is additive over red-green components.

Consider the variety X_T associated with tree T and a choice for every red-green component of T between "varying" or "generic" coefficients. Let N be the sum of dim C over all "generic"-type red-green components C.

Theorem

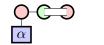
There is a free action of $(\mathbb{C}^*)^N$ on X_T . Moreover the enumerating polynomial P_X can be written as $(q-1)^N$ times a reciprocal polynomial.

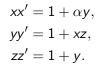
Reciprocal means $P(1/q) = q^d P(q)$ (palindromic coefficients)

- ロ ト - 4 回 ト - 4 □

Free action: an example

Let us look at the example of type \mathbb{A}_3 (with dim(T) = 1):





・ロト・日本・モート モー うへぐ

Let us look at the example of type \mathbb{A}_3 (with dim(T) = 1):

Here N = 1 and one can pick $\alpha = -1$ as generic value Free action of \mathbb{C}^* with coordinate λ :

 $\begin{array}{l} x \mapsto \lambda x, \\ y \mapsto y, \\ z \mapsto z/\lambda. \end{array}$

Let us look at the example of type \mathbb{A}_3 (with dim(T) = 1):

$$\begin{array}{c} xx' = 1 + \alpha y, \\ yy' = 1 + xz, \\ zz' = 1 + y. \end{array}$$

.

Here N = 1 and one can pick $\alpha = -1$ as generic value Free action of \mathbb{C}^* with coordinate λ :

 $\begin{array}{l} x \mapsto \lambda x, \\ y \mapsto y, \\ z \mapsto z/\lambda. \end{array}$

The enumerating polynomial is $q^3 - 1 = (q - 1)(q^2 - q + 1)$ This variety is not a product, but a non-trivial \mathbb{C}^* -principal bundle.

What about cohomology ?

 $\ensuremath{\text{Tools}}$ that can be used to study cohomology :

- algebraic de Rham cohomology (algebraic differential forms)

- cohomology with compact support
- mixed Hodge structure, weights on cohomology

What about cohomology ?

Tools that can be used to study cohomology :

- algebraic de Rham cohomology (algebraic differential forms)
- cohomology with compact support
- mixed Hodge structure, weights on cohomology

Lemma

For two adjacent vertices x, y, either $x \neq 0$ or $y \neq 0$.

Just because of the exchange relation xx' = 1 + *y!

 \implies coverings by two open sets, can apply Mayer-Vietoris long exact sequence

What about cohomology ?

Tools that can be used to study cohomology :

- algebraic de Rham cohomology (algebraic differential forms)
- cohomology with compact support
- mixed Hodge structure, weights on cohomology

Lemma

For two adjacent vertices x, y, either $x \neq 0$ or $y \neq 0$.

Just because of the exchange relation xx' = 1 + *y!

 \implies coverings by two open sets, can apply Mayer-Vietoris long exact sequence

can also find covering by more open sets \rightarrow use spectral sequences. The Hodge structure sometimes help to prove that the spectral sequence degenerates at step 2.

Some simple classes in cohomology

With all these tools , only partial results. For every "varying" coefficient α , there is a class $\frac{d\alpha}{\alpha}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

With all these tools , only partial results. For every "varying" coefficient α , there is a class $\frac{d\alpha}{\alpha}$.

For every tree, there is a natural 2-form usually called the **Weil-Petersson** form (Gekhtman-Schapiro-Vainshtein, Fock-Goncharov, G. Muller)

$$\mathsf{WP} = \sum_{i \to j} \frac{dx_i dx_j}{x_i x_j}.$$

sum running over edges in the frozen quiver, excluding the fixed coefficients.

With all these tools , only partial results. For every "varying" coefficient α , there is a class $\frac{d\alpha}{\alpha}$.

For every tree, there is a natural 2-form usually called the **Weil-Petersson** form (Gekhtman-Schapiro-Vainshtein, Fock-Goncharov, G. Muller)

$$\mathsf{WP} = \sum_{i \to j} \frac{dx_i dx_j}{x_i x_j}.$$

sum running over edges in the frozen quiver, excluding the fixed coefficients.

Not enough

The sub-algebra generated by those forms is **not** the full cohomology ring in general !

There are other classes in cohomology

Example of type \mathbb{A}_3

• For α invertible variable, one-form $\frac{d\alpha}{\alpha}$ and 2-form $WP = \frac{dxd\alpha}{x\alpha} + \frac{dxdy}{xy} + \frac{dzdy}{zy}$ do generate all the cohomology $H^* = \mathbb{Q}, \quad \mathbb{Q}, \quad \mathbb{Q}, \quad \mathbb{Q}.$

There are other classes in cohomology

Example of type \mathbb{A}_3

• For α invertible variable, one-form $\frac{d\alpha}{\alpha}$ and 2-form WP = $\frac{dxd\alpha}{x\alpha} + \frac{dxdy}{xy} + \frac{dzdy}{zy}$ do generate all the cohomology

 $H^*=\mathbb{Q},\quad \mathbb{Q},\quad \mathbb{Q},\quad \mathbb{Q},\quad \mathbb{Q}.$

• For α generic fixed, WP = $\frac{dxdy}{xy} + \frac{dzdy}{zy}$, but cohomology has dimensions

$$H^* = \mathbb{Q}, \quad 0, \quad \mathbb{Q}, \quad \mathbb{Q}^2$$

They form an Abelian category, with a forgetful functor to \mathbb{Q} -vector spaces, and with one simple object $\mathbb{Q}(i)$ for every $i \in \mathbb{Z}$ no morphisms $\mathbb{Q}(i) \to \mathbb{Q}(j)$ if $i \neq j$. Some extensions $\mathbb{Q}(i) \to E \to \mathbb{Q}(j)$ if j > i. Think of representations of a hereditary quiver with vertices $Q_0 \simeq \mathbb{Z}$

They form an Abelian category, with a forgetful functor to \mathbb{Q} -vector spaces, and with one simple object $\mathbb{Q}(i)$ for every $i \in \mathbb{Z}$ no morphisms $\mathbb{Q}(i) \to \mathbb{Q}(j)$ if $i \neq j$.

Some extensions $\mathbb{Q}(i) \to E \to \mathbb{Q}(j)$ if j > i.

Think of representations of a hereditary quiver with vertices $Q_0 \simeq \mathbb{Z}$

One can find such structure on the cohomology of all these varieties.

Deligne (and many famous names involved) gives a mixed Hodge structure.

They form an Abelian category, with a forgetful functor to \mathbb{Q} -vector spaces, and with one simple object $\mathbb{Q}(i)$ for every $i \in \mathbb{Z}$ no morphisms $\mathbb{Q}(i) \to \mathbb{Q}(j)$ if $i \neq j$.

Some extensions $\mathbb{Q}(i) \to E \to \mathbb{Q}(j)$ if j > i.

Think of representations of a hereditary quiver with vertices $Q_0 \simeq \mathbb{Z}$

One can find such structure on the cohomology of all these varieties.

Deligne (and many famous names involved) gives a mixed Hodge structure.

One can prove by induction that it is Hodge-Tate in the varieties under consideration. This means that there are no "more complicated factors".

Mixed Tate-Hodge structures: one example

Consider the type \mathbb{A}_3 for generic α

$$H^*=\mathbb{Q}(0), \quad 0, \quad \mathbb{Q}(2), \quad \mathbb{Q}(2)\oplus \mathbb{Q}(3)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

the last summand H^3 is not pure (has several weights)

Consider the type \mathbb{A}_3 for generic α

$$H^*=\mathbb{Q}(0), \quad 0, \quad \mathbb{Q}(2), \quad \mathbb{Q}(2)\oplus \mathbb{Q}(3)$$

the last summand H^3 is not pure (has several weights)

Knowing this decomposition allows to recover the number of points over finite fields. Essentially every direct summand $\mathbb{Q}(i)$ in the cohomology group H^j gives a summand $(-1)^j q^i$. (But beware that one must use cohomology with compact support).

The cohomological information above gives back $q^3 - 1$.

Some results (Dynkin diagrams are trees)

For type \mathbb{A}_n with *n* even, every class is a power of the Weil-Petersson 2-form.

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Some results (Dynkin diagrams are trees)

For type \mathbb{A}_n with *n* even, every class is a power of the Weil-Petersson 2-form.

For type \mathbb{A}_n with *n* odd and one varying coefficient α , every class is in the ring generated by WP and $\frac{d\alpha}{\alpha}$.

For type \mathbb{A}_n with *n* even, every class is a power of the Weil-Petersson 2-form.

For type \mathbb{A}_n with *n* odd and one varying coefficient α , every class is in the ring generated by WP and $\frac{d\alpha}{\alpha}$.

For type \mathbb{A}_n with *n* odd and one generic coefficient α , only a guess: Besides powers of WP, there are (n + 1)/2 more forms in top degree, with distinct weights.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

For type \mathbb{A}_n with *n* even, every class is a power of the Weil-Petersson 2-form.

For type \mathbb{A}_n with *n* odd and one varying coefficient α , every class is in the ring generated by WP and $\frac{d\alpha}{\alpha}$.

For type \mathbb{A}_n with *n* odd and one generic coefficient α , only a guess: Besides powers of WP, there are (n + 1)/2 more forms in top degree, with distinct weights.

For type \mathbb{D}_n with *n* odd and one generic coefficient, one can show that besides powers of WP, there is one more form in degree 3 and one more in degree *n*.

For type \mathbb{A}_n with *n* even, every class is a power of the Weil-Petersson 2-form.

For type \mathbb{A}_n with *n* odd and one varying coefficient α , every class is in the ring generated by WP and $\frac{d\alpha}{\alpha}$.

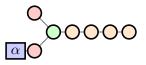
For type \mathbb{A}_n with *n* odd and one generic coefficient α , only a guess: Besides powers of WP, there are (n + 1)/2 more forms in top degree, with distinct weights.

For type \mathbb{D}_n with *n* odd and one generic coefficient, one can show that besides powers of WP, there is one more form in degree 3 and one more in degree *n*.

Something can also be said about some trees of general shape H, in particular for \mathbb{E}_6 and \mathbb{E}_8

\square case \mathbb{E}_7 with generic coefficient not fully understood.

Some details on type $\mathbb D$



One concrete example : \mathbb{D}_n with *n* odd and generic coefficient α

Theorem

The cohomology is given by

	$\mathbb{Q}(k)$	if $k = 0$	mod (2)
ł	$egin{pmatrix} \mathbb{Q}(k) \ \mathbb{Q}(k-1) \ \mathbb{Q}(n-1) \oplus \mathbb{Q}(n) \end{split}$	if $k = 1$	mod (2) and $k \neq 1, n$
	$\mathbb{Q}(n-1)\oplus\mathbb{Q}(n)$	if $k = n$	

For n = 3, this coincide with the answer for \mathbb{A}_3 , as it should.

 \rightarrow Results on counting points over \mathbb{F}_q (nice formulas) Just one tiny example in type \mathbb{E}_n for *n* even:

$$(q^2-q+1)rac{(q^{n-1}-1)}{(q-1)}$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

→ cellular decomposition (when coefficients are variables) \implies sum formula for the number of points over \mathbb{F}_q .

 \rightarrow Simple algorithm to compute the coloring.

Some perspectives (many things to do)

- at least complete the case of type $\mathbb A$ and Dynkin diagrams
- go beyond trees to all acyclic quivers and general matrices (announced article by David E Speyer and Thomas Lam.)
- say something about the periods ($\zeta(2)$ and $\zeta(3)$ are involved)
- try to organize all the cohomology rings of type $\mathbb A$ into some kind of algebraic structure (Hopf algebra, operad ?)

- study the topology of the real points (in relation with q=-1)
- topology of the set of non-generic parameters
- what about K-theory instead of cohomology ?
- understand the mysterious palindromic property
- some amusing relations with Pisot numbers

감사합니다

