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Cluster algebras and the associated varieties

Cluster algebras are commutative algebras
=⇒ cluster varieties (their spectrum) are algebraic varieties

Question: can we compute their cohomology rings ?

Why is this interesting ?
→ classical way to study algebraic varieties
→ useful (necessary) to understand integration on them
(there are interesting periods involved)
→ answer is not obvious, and sometimes nice
→ there are interesting known differential forms
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My choice goes to trees

Choice: try to handle first some simple cases
=⇒ restriction to quivers that are trees

(general quivers are more complicated)

This choice is restrictive and rather arbitrary,
but turns out to involve a nice combinatorics of perfect
matchings and independent sets in trees

→ computing number of points over finite fields Fq

can be seen as a first approximation towards determination of
cohomology and is usually much more easy
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First example (for babies)

Cluster algebra of type A1:
xα

with one frozen vertex α.
Presentation by the unique relation

x x ′ = 1 + α

We will consider cluster algebras with invertible coefficients
So here α is assumed to be invertible.
One can then do two different things:
→ (1) either let α vary in C∗.
This gives an open sub-variety in C2 with coordinates x , x ′.
→ (2) or fix α to a generic invertible value (here α 6= −1, 0)
This gives a variety isomorphic to C∗ with coordinate x .
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First example (for babies)

x x ′ = 1 + α (∗)

The first case (1) (α as variable) is a cluster variety
spectrum of the cluster algebra R = C[x , x ′, α, α−1]/(∗)

The second case (2) (α fixed to a generic value) could be called a
cluster fiber variety:
the inclusion of algebras C[α, α−1]→ R
gives a projection of varieties C∗ ← Spec(R)
and one looks at the (generic) fibers of this coefficient
morphism.

Note that the fiber at α = −1 is singular.
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General case of trees

Let us generalize this simple example.

For any tree, there is a well-defined cluster type
(because all orientations of a tree are equivalent by mutation)
one can therefore work with the alternating orientation

For any tree T , the aim is to define several varieties
that are a kind of mixture between cluster varieties and fibers

For that, need first to introduce some combinatorics on trees
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Independent sets in graphs

By definition, an independent set in a graph G is
a subset S of the set of vertices of G
such that every edge contains at most one element of S
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independent and not independent

A maximum independent set is an independent set of maximal
cardinality among all independent sets.



Independent sets in graphs

By definition, an independent set in a graph G is
a subset S of the set of vertices of G
such that every edge contains at most one element of S

5 61 2

3

4 5 61 2

3

4

independent and not independent

A maximum independent set is an independent set of maximal
cardinality among all independent sets.



Independent sets in graphs

Independent sets are a very classical notion in graph theory.
→ NP-complete problem for general graphs (Richard Karp, 1972)
→ polynomial algorithm for bipartite graphs (Jack Edmonds,
1961).
→ a very nice description for trees (Jennifer Zito 1991 ; Michel
Bauer and Stéphane Coulomb 2004)

One has to distinguish three kinds of vertices:
- vertices belonging to all maximal independent sets: RED •
- vertices belonging to some max. independent sets: ORANGE •
- vertices belonging to no maximal independent set: GREEN •
Colors chosen are “traffic light colors”

Nota Bene: this has nothing to do with green sequences
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Canonical coloring

This gives a canonical coloring of every tree !
Here is one example of coloring
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Here, there are 2 maximal indep. sets, of cardinality 4

This coloring can be described by local “Feynman” rules:
- a green vertex has at least two red neighbors
- a red vertex has only green neighbors
- orange vertices are grouped into neighbourly pairs

It turns out that this coloring is also related to matchings.
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Coloring and matchings

A matching is a set of edges with no common vertices.
A maximum matching is a matching of maximum cardinality
among all matchings.
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Other names: dimer coverings or domino tilings.
Here not required to cover all vertices (perfect matchings)

Theorem (Zito ; Bauer-Coulomb)

This coloring is the same as:
• orange: vertices always in the same domino in all max. matchings
• green: vertices always covered by a domino in any max. matching
• red: vertices not covered by a domino in some max. matching
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Red-green components

One can then use this coloring to define red-green components:
keep only the edges linking a red vertex to a green vertex; this
defines a forest; take its connected components
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An example with two red-green components {0, 1, 2} and {3, 4, 5}

For a tree T , let us call dimension dimT = # red• −# green•.
This is always an integer dim(T ) ≥ 0.
In the example above, the dimension is 4− 2 = 2.
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Here is a big random example, with canonical coloring



So what are the varieties ?

Take a tree T and consider the alternating (bipartite) orientation
on T . This gives a quiver, initial data for cluster theory.
Another orientation would give a quiver equivalent by mutation.

Pick a maximum matching of T and attach one frozen vertex to
every vertex not covered by the matching.

β

α

(Claim: no loss in generality compared to arbitrary coefficients)
→ every coefficient is attached to a red vertex
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So what are the varieties ?

β

α

→ the extended graph is still a tree, and has a perfect matching.
→ the number of frozen vertices is dim(T ).

Then choose independently for every red-green component:
- either to let all coefficients vary (but staying invertible)
- or to let all coefficients be fixed at generic (invertible) values
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So what are the varieties ?

The equations are the cluster exchange relations for the alternating
orientation (of the extended tree): xix

′
i = 1 +

∏
j xj .

One uses here a theorem of Berenstein-Fomin-Zelevinsky (in
Cluster III) which gives a presentation by generators and relations
of acyclic cluster algebras.

β

α

In this example, one can choose to fix β and let α vary.
This is really a mixture between the global cluster variety and the
fibers of the coefficient morphism.
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The matching does not matter

Theorem

This variety does not depend on the matching (up to isomorphism).
All these varieties are smooth.

Proved using monomial isomorphisms ; smoothness by induction

Note that the genericity condition can be made very explicit
and is really necessary to ensure smoothness: Counter examples

α α

A3 singular when α = 1 and A1 when α = −1
(A1 was the baby example)
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Points over finite fields

equations have coefficients in Z → reduction to finite field Fq.

Theorem

For X any of these varieties, there exists a polynomial PX such
that #X (Fq) is given by Px(q).

This is a first hint that maybe cohomology may be “nice”.

The proof is by induction on the size of trees. One picks a vertex,
corresponding to a variable x . Then either x = 0 or x 6= 0. Both
reduces to similar varieties (for well chosen vertices).

α

For A3 with α generic, one gets q3 − 1 points.
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Free action of a torus

Recall the dimension dim(T ) = # red−# green
Clearly the dimension is additive over red-green components.

Consider the variety XT associated with tree T and a choice for
every red-green component of T between “varying” or “generic”
coefficients. Let N be the sum of dimC over all “generic”-type
red-green components C .

Theorem

There is a free action of (C∗)N on XT .
Moreover the enumerating polynomial PX can be written as
(q − 1)N times a reciprocal polynomial.

Reciprocal means P(1/q) = qdP(q) (palindromic coefficients)
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Free action: an example

Let us look at the example of type A3 (with dim(T ) = 1):

α

xx ′ = 1 + αy ,

yy ′ = 1 + xz ,

zz ′ = 1 + y .

Here N = 1 and one can pick α = −1 as generic value
Free action of C∗ with coordinate λ:

x 7→ λx ,

y 7→ y ,

z 7→ z/λ.

The enumerating polynomial is q3 − 1 = (q − 1)(q2 − q + 1)
This variety is not a product, but a non-trivial C∗-principal bundle.
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What about cohomology ?

Tools that can be used to study cohomology :
- algebraic de Rham cohomology (algebraic differential forms)
- cohomology with compact support
- mixed Hodge structure, weights on cohomology

Lemma

For two adjacent vertices x , y, either x 6= 0 or y 6= 0.

Just because of the exchange relation xx ′ = 1 + ∗y !
=⇒ coverings by two open sets, can apply Mayer-Vietoris long

exact sequence
can also find covering by more open sets → use spectral sequences.
The Hodge structure sometimes help to prove that the spectral
sequence degenerates at step 2.
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Some simple classes in cohomology

With all these tools , only partial results.
For every “varying” coefficient α, there is a class dα

α .

For every tree, there is a natural 2-form usually called the
Weil-Petersson form (Gekhtman-Schapiro-Vainshtein,
Fock-Goncharov, G. Muller)

WP =
∑
i→j

dxidxj
xixj

.

sum running over edges in the frozen quiver, excluding the fixed
coefficients.

Not enough

The sub-algebra generated by those forms is not the full
cohomology ring in general !
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There are other classes in cohomology

Example of type A3

α

• For α invertible variable, one-form dα
α and 2-form

WP = dxdα
xα + dxdy

xy + dzdy
zy do generate all the cohomology

H∗ = Q, Q, Q, Q, Q.

• For α generic fixed, WP = dxdy
xy + dzdy

zy , but cohomology has
dimensions

H∗ = Q, 0, Q, Q2
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Mixed Tate-Hodge structures

They form an Abelian category, with a forgetful functor to
Q-vector spaces, and with one simple object Q(i) for every i ∈ Z
no morphisms Q(i)→ Q(j) if i 6= j .
Some extensions Q(i)→ E → Q(j) if j > i .
Think of representations of a hereditary quiver with vertices
Q0 ' Z

One can find such structure on the cohomology of all these
varieties.
Deligne (and many famous names involved) gives a mixed Hodge
structure.
One can prove by induction that it is Hodge-Tate in the varieties
under consideration. This means that there are no “more
complicated factors”.
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Mixed Tate-Hodge structures: one example

Consider the type A3 for generic α

α

H∗ = Q(0), 0, Q(2), Q(2)⊕Q(3)

the last summand H3 is not pure (has several weights)

Knowing this decomposition allows to recover the number of
points over finite fields. Essentially every direct summand Q(i) in
the cohomology group H j gives a summand (−1)jqi . (But beware
that one must use cohomology with compact support).

The cohomological information above gives back q3 − 1.
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Some results (Dynkin diagrams are trees)

� For type An with n even, every class is a power of the
Weil-Petersson 2-form.

� For type An with n odd and one varying coefficient α, every
class is in the ring generated by WP and dα

α .
� For type An with n odd and one generic coefficient α, only a
guess: Besides powers of WP, there are (n + 1)/2 more forms in
top degree, with distinct weights.
� For type Dn with n odd and one generic coefficient, one can
show that besides powers of WP, there is one more form in degree
3 and one more in degree n.
� Something can also be said about some trees of general shape
H, in particular for E6 and E8

� case E7 with generic coefficient not fully understood.
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Some details on type D

α

One concrete example : Dn with n odd and generic coefficient α

Theorem

The cohomology is given by
Q(k) if k = 0 mod (2)

Q(k − 1) if k = 1 mod (2) and k 6= 1, n

Q(n − 1)⊕Q(n) if k = n

For n = 3, this coincide with the answer for A3, as it should.



Some things being skipped

→ Results on counting points over Fq (nice formulas)
Just one tiny example in type En for n even:

(q2 − q + 1)
(qn−1 − 1)

(q − 1)

→ cellular decomposition (when coefficients are variables)
=⇒ sum formula for the number of points over Fq.

→ Simple algorithm to compute the coloring.



Some perspectives (many things to do)

- at least complete the case of type A and Dynkin diagrams

- go beyond trees to all acyclic quivers and general matrices
(announced article by David E Speyer and Thomas Lam.)

- say something about the periods (ζ(2) and ζ(3) are involved)

- try to organize all the cohomology rings of type A into some kind
of algebraic structure (Hopf algebra, operad ?)

- study the topology of the real points (in relation with q = −1)

- topology of the set of non-generic parameters

- what about K-theory instead of cohomology ?

- understand the mysterious palindromic property

- some amusing relations with Pisot numbers



(THE END)


