Expansive actions of countable amenable groups, homoclinic pairs, and the Myhill property

Michel Coornaert

IRMA, University of Strasbourg

“Random walks and harmonic functions on groups”, 7–11 December 2015, Centre Interfacultaire Bernoulli, Lausanne, Suisse
This is joint work with Tullio Ceccherini-Silberstein.
This is joint work with Tullio Ceccherini-Silberstein.
Our motivation came from the following phrase of Gromov [Gro-1999, p. 195]:

"...the Garden of Eden theorem can be generalized to a suitable class of hyperbolic actions..."
Dynamical systems

A dynamical system is a pair \((X, G)\), where \(X\) is a compact metrizable topological space, \(G\) is a countable group acting continuously on \(X\). The space \(X\) is called the phase space.

If \(f: X \to X\) is a homeomorphism, the d.s. \((X, f)\), where \(nx := f^n(x)\) for all \(n \in \mathbb{Z}\), \(x \in X\), is also denoted \((X, f)\).
A dynamical system is a pair \((X, G)\), where
- \(X\) is a compact metrizable topological space,
- \(G\) is a countable group acting continuously on \(X\).
A dynamical system is a pair \((X, G)\), where

- \(X\) is a compact metrizable topological space,
- \(G\) is a countable group acting continuously on \(X\).

The space \(X\) is called the phase space.
A **dynamical system** is a pair \((X, G)\), where

- \(X\) is a compact metrizable topological space,
- \(G\) is a countable group acting continuously on \(X\).

The space \(X\) is called the **phase space**.

If \(f : X \rightarrow X\) is a homeomorphism, the d.s. \((X, \mathbb{Z})\), where

\[nx := f^n(x) \quad \forall n \in \mathbb{Z}, \forall x \in X, \]

is also denoted \((X, f)\).
Examples of Dynamical systems

Example (Arnold’s cat)
This is the d.s. \((T^2, f)\), where \(f\) is the homeomorphism of the 2-torus \(T^2 = \mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}\) given by \(f: T^2 \to T^2 (x_1, x_2) \mapsto (x_2, x_1 + x_2)\).

Example (Shifts and subshifts)
We take a discrete finite space \(A\), called the alphabet or the set of states, and a countable group \(G\). The associated shift is the d.s. \((A^G, G)\), where \(A^G = \{x: G \to A\}\) is equipped with the product topology and \(G\) acts on \(A^G\) by \((gx)(h) := x(g^{-1}h)\) for all \(g, h \in G\), \(x \in A^G\).

An element of \(A^G\) is called a configuration. A subsystem of the shift (i.e., a pair \((X, G)\), where \(X \subset A^G\) is a closed \(G\)-invariant subspace) is called a subshift.
Examples of Dynamical systems

Example (Arnold’s cat)

This is the d.s. \((\mathbb{T}^2, f)\), where \(f\) is the homeomorphism of the 2-torus \(\mathbb{T}^2 = \mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}\) given by

\[
f: \mathbb{T}^2 \to \mathbb{T}^2
\]

\((x_1, x_2) \mapsto (x_2, x_1 + x_2)\).
Examples of Dynamical systems

Example (Arnold’s cat)

This is the d.s. \((\mathbb{T}^2, f)\), where \(f\) is the homeomorphism of the 2-torus \(\mathbb{T}^2 = \mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}\) given by

\[
f : \mathbb{T}^2 \rightarrow \mathbb{T}^2 \\
(x_1, x_2) \mapsto (x_2, x_1 + x_2).
\]

Example (Shifts and subshifts)

We take a discrete finite space \(A\), called the alphabet or the set of states, and a countable group \(G\).

Examples of Dynamical systems

Example (Arnold’s cat)

This is the d.s. \((\mathbb{T}^2, f)\), where \(f\) is the homeomorphism of the 2-torus \(\mathbb{T}^2 = \mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}\) given by

\[
f : \mathbb{T}^2 \to \mathbb{T}^2
\]

\[(x_1, x_2) \mapsto (x_2, x_1 + x_2).\]

Example (Shifts and subshifts)

We take a discrete finite space \(A\), called the alphabet or the set of states, and a countable group \(G\). The associated shift is the d.s. \((A^G, G)\), where

\[
A^G = \{x : G \to A\}
\]

is equipped with the product topology and \(G\) acts on \(A^G\) by

\[
(gx)(h) := x(g^{-1}h) \quad \forall g, h \in G, \forall x \in A^G.
\]
Examples of Dynamical systems

Example (Arnold’s cat)

This is the d.s. \((\mathbb{T}^2, f)\), where \(f\) is the homeomorphism of the 2-torus \(\mathbb{T}^2 = \mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}\) given by

\[
f : \mathbb{T}^2 \to \mathbb{T}^2
\]

\[
(x_1, x_2) \mapsto (x_2, x_1 + x_2).
\]

Example (Shifts and subshifts)

We take a discrete finite space \(A\), called the alphabet or the set of states, and a countable group \(G\). The associated shift is the d.s. \((A^G, G)\), where

\[
A^G = \{ x : G \to A \}
\]

is equipped with the product topology and \(G\) acts on \(A^G\) by

\[
(gx)(h) := x(g^{-1}h) \quad \forall g, h \in G, \forall x \in A^G.
\]

An element of \(A^G\) is called a configuration.
Examples of Dynamical systems

Example (Arnold’s cat)

This is the d.s. \((\mathbb{T}^2, f)\), where \(f\) is the homeomorphism of the 2-torus \(\mathbb{T}^2 = \mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}\) given by

\[
\begin{align*}
f : \mathbb{T}^2 &\to \mathbb{T}^2 \\
(x_1, x_2) &\mapsto (x_2, x_1 + x_2).
\end{align*}
\]

Example (Shifts and subshifts)

We take a discrete finite space \(A\), called the alphabet or the set of states, and a countable group \(G\). The associated shift is the d.s. \((A^G, G)\), where

\[
A^G = \{x : G \to A\}
\]

is equipped with the product topology and \(G\) acts on \(A^G\) by

\[
(gx)(h) := x(g^{-1}h) \quad \forall g, h \in G, \forall x \in A^G.
\]

An element of \(A^G\) is called a configuration. A subsystem of the shift (i.e., a pair \((X, G)\), were \(X \subset A^G\) is a closed \(G\)-invariant subspace) is called a subshift.
Examples of Dynamical systems (continued)

Example (The Ledrappier subshift)

The Ledrappier subshift is the subshift \((X, \mathbb{Z}^2)\) over the alphabet

\[A := \{0, 1\} = \mathbb{Z}/2\mathbb{Z} \]

consisting of all \(x : \mathbb{Z}^2 \to A\) such that

\[x(g) = x(g + e_1) + x(g + e_2) \quad \forall g \in \mathbb{Z}^2, \]

where \(e_1 = (1, 0)\) and \(e_2 = (0, 1)\).
Example (The Ledrappier subshift)

The **Ledrappier subshift** is the subshift \((X, \mathbb{Z}^2)\) over the alphabet \(A := \{0, 1\} = \mathbb{Z}/2\mathbb{Z}\) consisting of all \(x: \mathbb{Z}^2 \to A\) such that

\[
x(g) = x(g + e_1) + x(g + e_2) \quad \forall g \in \mathbb{Z}^2,
\]

where \(e_1 = (1, 0)\) and \(e_2 = (0, 1)\).
Homoclinicity

Let (X, G) be a dynamical system. Let d be a metric on X that is compatible with the topology.

Definition

Two points $x, y \in X$ are called homoclinic if

$$\lim_{g \to \infty} d(gx, gy) = 0,$$

i.e., for every $\varepsilon > 0$, there exists a finite subset $F \subset G$ such that $d(gx, gy) < \varepsilon \quad \forall g \in G \setminus F$.

Homoclinicity is an equivalence relation on X. This relation is G-invariant and does not depend on the choice of d.

Michel Coornaert (IRMA, University of Strasbourg)
Expansive actions of countable amenable groups
December 8, 2015 6 / 23
Let \((X, G)\) be a dynamical system.
Let (X, G) be a dynamical system. Let d be a metric on X that is compatible with the topology.

Homoclinicity is an equivalence relation on X. This relation is G-invariant and does not depend on the choice of d.

Michel Coornaert (IRMA, University of Strasbourg)
Homoclinicity

Let \((X, G)\) be a dynamical system. Let \(d\) be a metric on \(X\) that is compatible with the topology.

Definition

Two points \(x, y \in X\) are called homoclinic if

\[
\lim_{g \to \infty} d(gx, gy) = 0,
\]

i.e., for every \(\varepsilon > 0\), there exists a finite subset \(F \subset G\) such that

\[
d(gx, gy) < \varepsilon \quad \forall g \in G \setminus F.
\]
Homoclinicity

Let \((X, G)\) be a dynamical system. Let \(d\) be a metric on \(X\) that is compatible with the topology.

Definition

Two points \(x, y \in X\) are called **homoclinic** if

\[
\lim_{g \to \infty} d(gx, gy) = 0,
\]

i.e., for every \(\varepsilon > 0\), there exists a finite subset \(F \subset G\) such that

\[
d(gx, gy) < \varepsilon \quad \forall g \in G \setminus F.
\]

Homoclinicity is an equivalence relation on \(X\).
Homoclinicity

Let \((X, G)\) be a dynamical system. Let \(d\) be a metric on \(X\) that is compatible with the topology.

Definition

Two points \(x, y \in X\) are called **homoclinic** if

\[
\lim_{g \to \infty} d(gx, gy) = 0,
\]

i.e., for every \(\varepsilon > 0\), there exists a finite subset \(F \subset G\) such that

\[
d(gx, gy) < \varepsilon \quad \forall g \in G \setminus F.
\]

Homoclinicity is an equivalence relation on \(X\). This relation is \(G\)-invariant and does not depend on the choice of \(d\).
Example
Consider Arnold’s cat (\(T^2, f\)). Equip \(T^2 = \mathbb{R}^2/\mathbb{Z}^2\) with its Euclidean structure. The homoclinicity class of a point \(x \in T^2\) is \(D \cap D'\), where \(D\) is the line passing through \(x\) whose slope is the golden mean \(\phi := \frac{1 + \sqrt{5}}{2}\) and \(D'\) is the line passing through \(x\) and orthogonal to \(D'\). Each homoclinicity class is countably-infinite.

Example
Consider the full shift \((A^G, G)\) over a finite alphabet \(A\) and a countable group \(G\). Two configurations \(x, y \in A^G\) are homoclinic if and only if they coincide outside of a finite subset of \(G\). Thus, each homoclinicity class is countably-infinite as soon as \(A\) has more than one element and \(G\) is infinite.

Example
Consider the Ledrappier subshift \((X, Z_2)\). Observe that if two configurations \(x, y \in X\) coincide on the horizontal line \(Z \times \{n\} \subset Z^2\), then they coincide on \(Z \times \{n + 1\}\). Therefore, the homoclinicity relations is trivial: the homoclinicity class of every configuration \(x \in X\) is reduced to \(x\).
Example

Consider Arnold’s cat \((\mathbb{T}^2, f)\).

Equip \(\mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2\) with its Euclidean structure.

The homoclinicity class of a point \(x \in \mathbb{T}^2\) is \(D \cap D'\), where \(D\) is the line passing through \(x\) whose slope is the golden mean \(\phi := (1 + \sqrt{5})/2\) and \(D'\) is the line passing through \(x\) and orthogonal to \(D'\).

Each homoclinicity class is countably-infinite.

Example

Consider the full shift \((\mathcal{A}G, G)\) over a finite alphabet \(\mathcal{A}\) and a countable group \(G\).

Two configurations \(x, y \in \mathcal{A}G\) are homoclinic if and only if they coincide outside of a finite subset of \(G\).

Thus, each homoclinicity class is countably-infinite as soon as \(\mathcal{A}\) has more than one element and \(G\) is infinite.

Example

Consider the Ledrappier subshift \((X, \mathbb{Z}_2^n)\).

Observe that if two configurations \(x, y \in X\) coincide on the horizontal line \(\mathbb{Z} \times \{n\} \subset \mathbb{Z}^2\), then they coincide on \(\mathbb{Z} \times \{n + 1\}\).

Therefore, the homoclinicity relation is trivial: the homoclinicity class of every configuration \(x \in X\) is reduced to \(x\).
Example

Consider Arnold’s cat (T^2, f). Equip $T^2 = \mathbb{R}^2 / \mathbb{Z}^2$ with its Euclidean structure.
Consider Arnold’s cat \((\mathbb{T}^2, f)\).
Equip \(\mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2\) with its Euclidean structure.
The homoclinicity class of a point \(x \in \mathbb{T}^2\) is \(D \cap D'\), where \(D\) is the line passing through \(x\) whose slope is the golden mean \(\phi := (1 + \sqrt{5})/2\) and \(D'\) is the line passing through \(x\) and orthogonal to \(D'\).
Homoclinicity (continued)

Example

Consider Arnold’s cat \((\mathbb{T}^2, f)\).

Equip \(\mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2\) with its Euclidean structure.

The homoclinicity class of a point \(x \in \mathbb{T}^2\) is \(D \cap D'\), where \(D\) is the line passing through \(x\) whose slope is the golden mean \(\phi := (1 + \sqrt{5})/2\) and \(D'\) is the line passing through \(x\) and orthogonal to \(D'\). Each homoclinicity class is countably-infinite.
Homoclinicity (continued)

Example

Consider Arnold’s cat \((\mathbb{T}^2, f)\).
Equip \(\mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2\) with its Euclidean structure.
The homoclinicity class of a point \(x \in \mathbb{T}^2\) is \(D \cap D'\), where \(D\) is the line passing through \(x\) whose slope is the golden mean \(\phi := (1 + \sqrt{5})/2\) and \(D'\) is the line passing through \(x\) and orthogonal to \(D'\). Each homoclinicity class is countably-infinite.

Example

Consider the full shift \((A^G, G)\) over a finite alphabet \(A\) and a countable group \(G\).
Example

Consider Arnold’s cat \((\mathbb{T}^2, f)\).
Equip \(\mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2\) with its Euclidean structure.
The homoclinicity class of a point \(x \in \mathbb{T}^2\) is \(D \cap D'\), where \(D\) is the line passing through \(x\) whose slope is the golden mean \(\phi := (1 + \sqrt{5})/2\) and \(D'\) is the line passing through \(x\) and orthogonal to \(D'\). Each homoclinicity class is countably-infinite.

Example

Consider the full shift \((A^G, G)\) over a finite alphabet \(A\) and a countable group \(G\). Two configurations \(x, y \in A^G\) are homoclinic if and only if they coincide outside of a finite subset of \(G\).
Example

Consider Arnold’s cat \((\mathbb{T}^2, f)\).
Equip \(\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2\) with its Euclidean structure.
The homoclinicity class of a point \(x \in \mathbb{T}^2\) is \(D \cap D'\), where \(D\) is the line passing through \(x\) whose slope is the golden mean \(\phi := (1 + \sqrt{5})/2\) and \(D'\) is the line passing through \(x\) and orthogonal to \(D'\). Each homoclinicity class is countably-infinite.

Example

Consider the full shift \((A^G, G)\) over a finite alphabet \(A\) and a countable group \(G\). Two configurations \(x, y \in A^G\) are homoclinic if and only if they coincide outside of a finite subset of \(G\). Thus, each homoclinicity class is countably-infinite as soon as \(A\) has more than one element and \(G\) is infinite.
Homoclinicity (continued)

Example

Consider Arnold’s cat (\mathbb{T}^2, f).
Equip $\mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2$ with its Euclidean structure.
The homoclinicity class of a point $x \in \mathbb{T}^2$ is $D \cap D'$, where D is the line passing through x whose slope is the golden mean $\phi := (1 + \sqrt{5})/2$ and D' is the line passing through x and orthogonal to D'. Each homoclinicity class is countably-infinite.

Example

Consider the full shift (A^G, G) over a finite alphabet A and a countable group G. Two configurations $x, y \in A^G$ are homoclinic if and only if they coincide outside of a finite subset of G. Thus, each homoclinicity class is countably-infinite as soon as A has more than one element and G is infinite.

Example

Consider the Ledrappier subshift (X, \mathbb{Z}^2).
Example

Consider Arnold’s cat \((\mathbb{T}^2, f)\).
Equip \(\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2\) with its Euclidean structure.
The homoclinicity class of a point \(x \in \mathbb{T}^2\) is \(D \cap D'\), where \(D\) is the line passing through \(x\) whose slope is the golden mean \(\phi := (1 + \sqrt{5})/2\) and \(D'\) is the line passing through \(x\) and orthogonal to \(D'\). Each homoclinicity class is countably-infinite.

Example

Consider the full shift \((A^G, G)\) over a finite alphabet \(A\) and a countable group \(G\). Two configurations \(x, y \in A^G\) are homoclinic if and only if they coincide outside of a finite subset of \(G\). Thus, each homoclinicity class is countably-infinite as soon as \(A\) has more than one element and \(G\) is infinite.

Example

Consider the Ledrappier subshift \((X, \mathbb{Z}^2)\). Observe that if two configurations \(x, y \in X\) coincide on the horizontal line \(\mathbb{Z} \times \{n\} \subset \mathbb{Z}^2\), then they coincide on \(\mathbb{Z} \times \{n + 1\}\).
Example

Consider Arnold’s cat \((\mathbb{T}^2, f)\).
Equip \(\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2\) with its Euclidean structure.
The homoclinicity class of a point \(x \in \mathbb{T}^2\) is \(D \cap D'\), where \(D\) is the line passing through \(x\) whose slope is the golden mean \(\phi := (1 + \sqrt{5})/2\) and \(D'\) is the line passing through \(x\) and orthogonal to \(D'\). Each homoclinicity class is countably-infinite.

Example

Consider the full shift \((A^G, G)\) over a finite alphabet \(A\) and a countable group \(G\). Two configurations \(x, y \in A^G\) are homoclinic if and only if they coincide outside of a finite subset of \(G\). Thus, each homoclinicity class is countably-infinite as soon as \(A\) has more than one element and \(G\) is infinite.

Example

Consider the Ledrappier subshift \((X, \mathbb{Z}^2)\). Observe that if two configurations \(x, y \in X\) coincide on the horizontal line \(\mathbb{Z} \times \{n\} \subset \mathbb{Z}^2\), then they coincide on \(\mathbb{Z} \times \{n + 1\}\). Therefore, the homoclinicity relations is trivial: the homoclinicity class of every configuration \(x \in X\) is reduced to \(x\).
Pre-injective endomorphisms

Let \((X, G)\) be a dynamical system.

Definition
A continuous map \(\tau: X \to X\) is an endomorphism of the d.s. \((X, G)\) if it is \(G\)-equivariant, i.e.,
\[
\tau(gx) = g \tau(x) \quad \forall g \in G, x \in X.
\]

Remark
An endomorphism of a shift (or subshift) is also called a cellular automaton.

Definition
An endomorphism \(\tau: X \to X\) of the d.s. \((X, G)\) is called pre-injective if its restriction to each homoclinicity class is injective.

Of course \(\tau\) injective \(\Rightarrow\) \(\tau\) pre-injective but the converse implication is false in general.
Pre-injective endomorphisms

Let \((X, G)\) be a dynamical system.
Pre-injective endomorphisms

Let (X, G) be a dynamical system.

Definition

A continuous map $\tau : X \to X$ is an endomorphism of the d.s. (X, G) if it is G-equivariant, i.e.,

$$\tau(gx) = g\tau(x) \quad \forall g \in G, x \in X.$$
Let \((X, G)\) be a dynamical system.

Definition

A continuous map \(\tau: X \to X\) is an endomorphism of the d.s. \((X, G)\) if it is \(G\)-equivariant, i.e.,

\[\tau(gx) = g\tau(x) \quad \forall g \in G, x \in X.\]

Remark

An endomorphism of a shift (or subshift) is also called a cellular automaton.
Pre-injective endomorphisms

Let \((X, G)\) be a dynamical system.

Definition

A continuous map \(\tau : X \to X\) is an endomorphism of the d.s. \((X, G)\) if it is \(G\)-equivariant, i.e.,

\[
\tau(gx) = g\tau(x) \quad \forall g \in G, x \in X.
\]

Remark

An endomorphism of a shift (or subshift) is also called a cellular automaton.

Definition

An endomorphism \(\tau : X \to X\) of the d.s. \((X, G)\) is called pre-injective if its restriction to each homoclinicity class is injective.

Of course \(\tau\) injective \(\implies\) \(\tau\) pre-injective but the converse implication is false in general.
Pre-injective endomorphisms

Let \((X, G)\) be a dynamical system.

Definition

A continuous map \(\tau: X \rightarrow X\) is an endomorphism of the d.s. \((X, G)\) if it is \(G\)-equivariant, i.e.,

\[\tau(gx) = g\tau(x) \quad \forall g \in G, x \in X.\]

Remark

An endomorphism of a shift (or subshift) is also called a cellular automaton.

Definition

An endomorphism \(\tau: X \rightarrow X\) of the d.s. \((X, G)\) is called pre-injective if its restriction to each homoclinicity class is injective.

Of course

\[\tau\text{ injective} \implies \tau\text{ pre-injective}\]

but the converse implication is false in general.
Examples of pre-injective but not injective endomorphisms

Example (Arnold's cat)

The group endomorphism $\tau : \mathbb{T}^2 \to \mathbb{T}^2$ given by $x \mapsto 2x$ is an endomorphism of Arnold's cat (\mathbb{T}^2, f).

The kernel of τ is $\text{Ker}(\tau) = \{(0,0), (1/2,0), (0,1/2), (1/2,1/2)\}$.

The endomorphism τ is surjective and pre-injective but not injective.

Example

The endomorphism τ of the full shift (\mathbb{A}_Z, Z) on the alphabet $\mathbb{A} = \mathbb{Z}/2\mathbb{Z}$ defined by $\tau(x)_n := x_{n+1} + x_n$ $\forall x \in \{0,1\}^\mathbb{Z}, \forall n \in \mathbb{Z}$ is surjective and pre-injective but not injective.

Example (The Ledrappier subshift)

The constant map that sends each configuration $x \in X$ to the 0-configuration is an endomorphism of the Ledrappier subshift (X, Z_2) that is pre-injective but neither injective nor surjective.
Examples of pre-injective but not injective endomorphisms

Example (Arnold’s cat)

The group endomorphism \(\tau : \mathbb{T}^2 \rightarrow \mathbb{T}^2 \) given by \(x \mapsto 2x \) is an endomorphism of Arnold’s cat \((\mathbb{T}^2, f)\).
Examples of pre-injective but not injective endomorphisms

Example (Arnold’s cat)

The group endomorphism $\tau : \mathbb{T}^2 \to \mathbb{T}^2$ given by $x \mapsto 2x$ is an endomorphism of Arnold’s cat (\mathbb{T}^2, f). The kernel of τ is

$$\text{Ker}(\tau) = \{(0, 0), (1/2, 0), (0, 1/2), (1/2, 1/2)\}.$$
Example (Arnold’s cat)

The group endomorphism $\tau : \mathbb{T}^2 \to \mathbb{T}^2$ given by $x \mapsto 2x$ is an endomorphism of Arnold’s cat (\mathbb{T}^2, f). The kernel of τ is

$$\text{Ker}(\tau) = \{(0, 0), (1/2, 0), (0, 1/2), (1/2, 1/2)\}.$$

The endomorphism τ is surjective and pre-injective but not injective.
Examples of pre-injective but not injective endomorphisms

Example (Arnold’s cat)

The group endomorphism \(\tau : \mathbb{T}^2 \to \mathbb{T}^2 \) given by \(x \mapsto 2x \) is an endomorphism of Arnold’s cat \((\mathbb{T}^2, f)\). The kernel of \(\tau \) is

\[
\text{Ker}(\tau) = \{(0, 0), (1/2, 0), (0, 1/2), (1/2, 1/2)\}.
\]

The endomorphism \(\tau \) is surjective and pre-injective but not injective.

Example

The endomorphism \(\tau \) of the full shift \((A^\mathbb{Z}, \mathbb{Z})\) on the alphabet \(A = \mathbb{Z}/2\mathbb{Z} \) defined by

\[
\tau(x)(n) := x(n + 1) + x(n) \quad \forall x \in \{0, 1\}^\mathbb{Z}, \forall n \in \mathbb{Z}
\]

is surjective and pre-injective but not injective.
Examples of pre-injective but not injective endomorphisms

Example (Arnold’s cat)

The group endomorphism $\tau : \mathbb{T}^2 \to \mathbb{T}^2$ given by $x \mapsto 2x$ is an endomorphism of Arnold’s cat (\mathbb{T}^2, f). The kernel of τ is

$$\text{Ker}(\tau) = \{(0, 0), (1/2, 0), (0, 1/2), (1/2, 1/2)\}.$$

The endomorphism τ is surjective and pre-injective but not injective.

Example

The endomorphism τ of the full shift $(A^\mathbb{Z}, \mathbb{Z})$ on the alphabet $A = \mathbb{Z}/2\mathbb{Z}$ defined by

$$\tau(x)(n) := x(n + 1) + x(n) \quad \forall x \in \{0, 1\}^\mathbb{Z}, \forall n \in \mathbb{Z}$$

is surjective and pre-injective but not injective.

Example (The Ledrappier subshift)

The constant map that sends each configuration $x \in X$ to the 0-configuration is an endomorphism of the Ledrappier subshift (X, \mathbb{Z}^2) that is pre-injective but neither injective nor surjective.
Amenable groups

Let G be a countable group. Definition: The group G is called amenable if there exists a sequence $(F_n)_{n \geq 1}$ of non-empty finite subsets of G such that
\[
\lim_{n \to \infty} |F_n \setminus gF_n| / |F_n| = 0 \quad \forall g \in G.
\]
Such a sequence is called a Følner sequence for G.

- Every locally finite group is amenable.
- Every abelian group and, more generally, every solvable group is amenable.
- Every finitely generated group with subexponential growth is amenable.
- An example of a non-amenable group is provided by the free group on 2 generators. More generally, every group containing a non-abelian free subgroup is non-amenable.
Amenable groups

Let G be a countable group.

Definition

The group G is called **amenable** if there exists a sequence $(F_n)_{n \geq 1}$ of non-empty finite subsets of G such that

$$\lim_{n \to \infty} \frac{|F_n \setminus F_ng|}{|F_n|} = 0 \quad \forall g \in G.$$

Such a sequence is called a **Følner sequence** for G.

• Every locally finite group is amenable.
• Every abelian group and, more generally, every solvable group is amenable.
• Every finitely generated group with subexponential growth is amenable.
• An example of a non-amenable group is provided by the free group on 2 generators.

More generally, every group containing a non-abelian free subgroup is non-amenable.

Michel Coornaert (IRMA, University of Strasbourg)
Let G be a countable group.

Definition

The group G is called **amenable** if there exists a sequence $(F_n)_{n \geq 1}$ of non-empty finite subsets of G such that

$$\lim_{n \to \infty} \frac{|F_n \setminus F_ng|}{|F_n|} = 0 \quad \forall g \in G.$$

Such a sequence is called a **Følner sequence** for G.

- Every locally finite group is amenable.
Amenable groups

Let G be a countable group.

Definition

The group G is called amenable if there exists a sequence $(F_n)_{n \geq 1}$ of non-empty finite subsets of G such that

$$
\lim_{n \to \infty} \frac{|F_n \setminus F_ng|}{|F_n|} = 0 \quad \forall g \in G.
$$

Such a sequence is called a Følner sequence for G.

- Every locally finite group is amenable.
- Every abelian group and, more generally, every solvable group is amenable.
Amenable groups

Let G be a countable group.

Definition

The group G is called **amenable** if there exists a sequence $(F_n)_{n \geq 1}$ of non-empty finite subsets of G such that

$$\lim_{n \to \infty} \frac{|F_n \setminus F_ng|}{|F_n|} = 0 \quad \forall g \in G.$$

Such a sequence is called a **Følner sequence** for G.

- Every locally finite group is amenable.
- Every abelian group and, more generally, every solvable group is amenable.
- Every finitely generated group with subexponential growth is amenable.
Amenable groups

Let G be a countable group.

Definition

The group G is called **amenable** if there exists a sequence $(F_n)_{n \geq 1}$ of non-empty finite subsets of G such that

$$\lim_{n \to \infty} \frac{|F_n \setminus F_n g|}{|F_n|} = 0 \quad \forall g \in G.$$

Such a sequence is called a **Følner sequence** for G.

- Every locally finite group is amenable.
- Every abelian group and, more generally, every solvable group is amenable.
- Every finitely generated group with subexponential growth is amenable.
- An example of a non-amenable group is provided by the free group on 2 generators.
Amenable groups

Let G be a countable group.

Definition

The group G is called \textbf{amenable} if there exists a sequence $(F_n)_{n \geq 1}$ of non-empty finite subsets of G such that

$$\lim_{n \to \infty} \frac{|F_n \setminus F_ng|}{|F_n|} = 0 \quad \forall g \in G.$$

Such a sequence is called a \textbf{Følner sequence} for G.

- Every locally finite group is amenable.
- Every abelian group and, more generally, every solvable group is amenable.
- Every finitely generated group with subexponential growth is amenable.
- An example of a non-amenable group is provided by the free group on 2 generators.

More generally, every group containing a non-abelian free subgroup is non-amenable.
The Garden of Eden theorem

The following result is known as the Garden of Eden theorem:

Theorem (CMS-1999)

Let G be a countable amenable group and A a finite set. Then every endomorphism τ of the shift (A^G, G) satisfies

τ surjective $\iff \tau$ pre-injective.

Moore [Moo-1963] proved \Rightarrow for $G = \mathbb{Z}^d$,
Myhill [Myh-1963] proved \Leftarrow for $G = \mathbb{Z}^d$,
Ceccherini-Silberstein, Machì and Scarabotti [CMS-1999] proved \iff in the general case.

The proof consists in showing that τ surjective $\iff h_{\text{top}}(\tau(A^G), G) = h_{\text{top}}(A^G, G) \iff \tau$ pre-injective,
where $h_{\text{top}}(X, G)$ denotes the topological entropy of the d.s. (X, G).

Michel Coornaert (IRMA, University of Strasbourg)
Expansive actions of countable amenable groups
December 8, 2015 11 / 23
The following result is known as the Garden of Eden theorem:
The Garden of Eden theorem

The following result is known as the Garden of Eden theorem:

Theorem (CMS-1999)

Let G be a countable amenable group and A a finite set. Then every endomorphism τ of the shift (A^G, G) satisfies

$$\tau \text{ surjective } \iff \tau \text{ pre-injective}.$$
The Garden of Eden theorem

The following result is known as the Garden of Eden theorem:

Theorem (CMS-1999)

Let G be a countable amenable group and A a finite set. Then every endomorphism τ of the shift (A^G, G) satisfies

$$\tau \text{ surjective } \iff \tau \text{ pre-injective}.$$

- Moore [Moo-1963] proved \Rightarrow for $G = \mathbb{Z}^d$,
- Myhill [Myh-1963] proved \Leftarrow for $G = \mathbb{Z}^d$,
- Ceccherini-Silberstein, Machì and Scarabotti [CMS-1999] proved \iff in the general case.
The Garden of Eden theorem

The following result is known as the **Garden of Eden theorem**:

Theorem (CMS-1999)

Let G be a countable amenable group and A a finite set. Then every endomorphism τ of the shift (A^G, G) satisfies

$$\tau \text{ surjective } \iff \tau \text{ pre-injective}.$$

- Moore [Moo-1963] proved \implies for $G = \mathbb{Z}^d$,
- Myhill [Myh-1963] proved \impliedby for $G = \mathbb{Z}^d$,
The Garden of Eden theorem

The following result is known as the Garden of Eden theorem:

Theorem (CMS-1999)

Let G be a countable amenable group and A a finite set. Then every endomorphism τ of the shift (A^G, G) satisfies

\[\tau \text{ surjective } \iff \tau \text{ pre-injective.} \]

- Moore [Moo-1963] proved \implies for $G = \mathbb{Z}^d$,
- Myhill [Myh-1963] proved \impliedby for $G = \mathbb{Z}^d$,
- Ceccherini-Silberstein, Machì and Scarabotti [CMS-1999] proved \iff in the general case.
The following result is known as the Garden of Eden theorem:

Theorem (CMS-1999)

Let \(G \) be a countable amenable group and \(A \) a finite set. Then every endomorphism \(\tau \) of the shift \((A^G, G)\) satisfies

\[\tau \text{ surjective} \iff \tau \text{ pre-injective}. \]

- Moore [Moo-1963] proved \(\implies \) for \(G = \mathbb{Z}^d \),
- Myhill [Myh-1963] proved \(\impliedby \) for \(G = \mathbb{Z}^d \),
- Ceccherini-Silberstein, Machì and Scarabotti [CMS-1999] proved \(\iff \) in the general case.

The proof consists in showing that

\[\tau \text{ surjective} \iff h_{\text{top}}(\tau(A^G), G) = h_{\text{top}}(A^G, G) \iff \tau \text{ pre-injective}, \]

where \(h_{\text{top}}(X, G) \) denotes the topological entropy of the d.s. \((X, G)\).
The Moore and the Myhill property

Let \((X, G)\) be a dynamical system.

Definition

The d.s. \((X, G)\) has the Moore property if every surjective endomorphism of \((X, G)\) is pre-injective.

Definition

The d.s. \((X, G)\) has the Myhill property if every pre-injective endomorphism of \((X, G)\) is surjective.

Definition

A d.s. has the Moore-Myhill property if it has both the Moore and the Myhill property.
The Moore and the Myhill property

Let \((X, G)\) be a dynamical system.
Let \((X, G)\) be a dynamical system.

Definition

The d.s. \((X, G)\) has the *Moore property* if every surjective endomorphism of \((X, G)\) is pre-injective.

The d.s. \((X, G)\) has the *Myhill property* if every pre-injective endomorphism of \((X, G)\) is surjective.

A d.s. has the *Moore-Myhill property* if it has both the Moore and the Myhill property.
The Moore and the Myhill property

Let \((X, G)\) be a dynamical system.

Definition

The d.s. \((X, G)\) has the **Moore property** if every surjective endomorphism of \((X, G)\) is pre-injective.

Definition

The d.s. \((X, G)\) has the **Myhill property** if every pre-injective endomorphism of \((X, G)\) is surjective.
Let \((X, G)\) be a dynamical system.

Definition

The d.s. \((X, G)\) has the **Moore property** if every surjective endomorphism of \((X, G)\) is pre-injective.

Definition

The d.s. \((X, G)\) has the **Myhill property** if every pre-injective endomorphism of \((X, G)\) is surjective.

Definition

A d.s. has the **Moore-Myhill property** if it has both the Moore and the Myhill property.
Example
Arnold’s cat \((T^2, f)\) has the Moore-Myhill property. Indeed, it is easy to show that any endomorphism \(\tau\) of the cat is of the form \(\tau = m \text{Id} + nf\), for some \(m, n \in \mathbb{Z}\). Thus, with the exception of the 0-endomorphism, every endomorphism of the cat is both surjective and pre-injective.

Example
The GOE theorem says that the shift \(A_G\) has the Moore-Myhill property whenever \(A\) is finite and \(G\) is amenable. Bartholdi [Bar-2010] proved that if \(G\) is non-amenable then there is a finite set \(A\) such that \(A_G\) does not have the Moore property. It is known that if \(G\) contains a nonabelian free subgroup then there is a finite set \(A\) such that \(A_G\) does not have the Myhill property.

Example
The Ledrappier subshift \((X, Z_2)\) has the Moore property (since every endomorphism is pre-injective) but does not have the Myhill property (since the 0-endomorphism is pre-injective but not surjective).
Example

Arnold’s cat \((\mathbb{T}^2, f)\) has the Moore-Myhill property. Indeed, it is easy to show that any endomorphism \(\tau\) of the cat is of the form \(\tau = m\text{Id} + nf\), for some \(m, n \in \mathbb{Z}\). Thus, with the exception of the 0-endomorphism, every endomorphism of the cat is both surjective and pre-injective.

Example

The GOE theorem says that the shift \(\text{AG}\) has the Moore-Myhill property whenever \(A\) is finite and \(G\) is amenable. Bartholdi [Bar-2010] proved that if \(G\) is non-amenable then there is a finite set \(A\) such that \(A\text{G}\) does not have the Moore property. It is known that if \(G\) contains a nonabelian free subgroup then there is a finite set \(A\) such that \(A\text{G}\) does not have the Myhill property.

Example

The Ledrappier subshift \((X, Z^2)\) has the Moore property (since every endomorphism is pre-injective) but does not have the Myhill property (since the 0-endomorphism is pre-injective but not surjective).
The Moore and the Myhill property (continued)

Example

Arnold’s cat \((\mathbb{T}^2, f)\) has the Moore-Myhill property. Indeed, it is easy to show that any endomorphism \(\tau\) of the cat is of the form \(\tau = m \text{Id} + nf\), for some \(m, n \in \mathbb{Z}\). Thus, with the exception of the 0-endomorphism, every endomorphism of the cat is both surjective and pre-injective.

Example

The GOE theorem says that the shift \(A^G\) has the Moore-Myhill property whenever \(A\) is finite and \(G\) is amenable.
The Moore and the Myhill property (continued)

Example

Arnold’s cat \((\mathbb{T}^2, f)\) has the Moore-Myhill property. Indeed, it is easy to show that any endomorphism \(\tau\) of the cat is of the form \(\tau = m \text{Id} + nf\), for some \(m, n \in \mathbb{Z}\). Thus, with the exception of the 0-endomorphism, every endomorphism of the cat is both surjective and pre-injective.

Example

The GOE theorem says that the shift \(A^G\) has the Moore-Myhill property whenever \(A\) is finite and \(G\) is amenable. Bartholdi [Bar-2010] proved that if \(G\) is non-amenable then there is a finite set \(A\) such that \(A^G\) does not have the Moore property.
Arnold’s cat \((\mathbb{T}^2, f)\) has the Moore-Myhill property. Indeed, it is easy to show that any endomorphism \(\tau\) of the cat is of the form \(\tau = m \text{Id} + nf\), for some \(m, n \in \mathbb{Z}\). Thus, with the exception of the 0-endomorphism, every endomorphism of the cat is both surjective and pre-injective.

The GOE theorem says that the shift \(A^G\) has the Moore-Myhill property whenever \(A\) is finite and \(G\) is amenable. Bartholdi [Bar-2010] proved that if \(G\) is non-amenable then there is a finite set \(A\) such that \(A^G\) does not have the Moore property. It is known that if \(G\) contains a nonabelian free subgroup then there is a finite set \(A\) such that \(A^G\) does not have the Myhill property.
Arnold’s cat \((\mathbb{T}^2, f)\) has the Moore-Myhill property. Indeed, it is easy to show that any endomorphism \(\tau\) of the cat is of the form \(\tau = m\text{Id} + nf\), for some \(m, n \in \mathbb{Z}\). Thus, with the exception of the 0-endomorphism, every endomorphism of the cat is both surjective and pre-injective.

The GOE theorem says that the shift \(A^G\) has the Moore-Myhill property whenever \(A\) is finite and \(G\) is amenable. Bartholdi [Bar-2010] proved that if \(G\) is non-amenable then there is a finite set \(A\) such that \(A^G\) does not have the Moore property. It is known that if \(G\) contains a nonabelian free subgroup then there is a finite set \(A\) such that \(A^G\) does not have the Myhill property.

The Ledrappier subshift \((X, \mathbb{Z}^2)\) has the Moore property (since every endomorphism is pre-injective) but does not have the Myhill property (since the 0-endomorphism is pre-injective but not surjective).
Remark

The Moore property is a finiteness condition (i.e., every d.s. \((X, G)\) with \(X\) finite has the Moore property) whereas the Myhill property is not (consider a finite discrete space \(X\) with more than one point and a group \(G\) fixing each point of \(X\)).
Remark

The Moore property is a finiteness condition (i.e., every d.s. \((X, G)\) with \(X\) finite has the Moore property) whereas the Myhill property is not (consider a finite discrete space \(X\) with more than one point and a group \(G\) fixing each point of \(X\)).
Subshifts of finite type and strongly irreducible subshifts

Definition
A subshift $X \subset \mathcal{A}^G$ is said to be of finite type if there exist a finite subset $\Omega \subset \mathcal{G}$ and a subset $P \subset \mathcal{A}^\Omega$ such that $X = \{x \in \mathcal{A}^G : (gx)_{\Omega} \in P \text{ for all } g \in \mathcal{G}\}$.

Definition
A subshift $X \subset \mathcal{A}^G$ is said to be strongly irreducible if there exists a finite subset $\Delta \subset \mathcal{G}$ with the following property: if Ω_1 and Ω_2 are finite subsets of \mathcal{G} such that there is no element $g \in \Delta$ such that the set $\Omega_1 g$ meets Ω_2 (i.e., $\Omega_1 \Delta \cap \Omega_2 = \emptyset$) then, given any two configurations $x_1, x_2 \in X$, there exists a configuration $x \in X$ such that $x|_{\Omega_1} = x_1|_{\Omega_1}$ and $x|_{\Omega_2} = x_2|_{\Omega_2}$.
Subshifts of finite type and strongly irreducible subshifts

Definition

A subshift $X \subset A^G$ is said to be of *finite type* if there exist a finite subset $\Omega \subset G$ and a subset $P \subset A^\Omega$ such that

$$X = \{ x \in A^G : (gx)|_\Omega \in P \text{ for all } g \in G \}. $$

Subshifts of finite type and strongly irreducible subshifts

Definition

A subshift $X \subset A^G$ is said to be of *finite type* if there exist a finite subset $\Omega \subset G$ and a subset $\mathcal{P} \subset A^\Omega$ such that

$$X = \{x \in A^G : (gx)|_\Omega \in \mathcal{P} \text{ for all } g \in G\}.$$

Definition

A subshift $X \subset A^G$ is said to be *strongly irreducible* if there exists a finite subset $\Delta \subset G$ with the following property:

if Ω_1 and Ω_2 are finite subsets of G such that there is no element $g \in \Delta$ such that the set $\Omega_1 g$ meets Ω_2 (i.e., $\Omega_1 \Delta \cap \Omega_2 = \emptyset$) then, given any two configurations $x_1, x_2 \in X$, there exists a configuration $x \in X$ such that $x|_{\Omega_1} = x_1|_{\Omega_1}$ and $x|_{\Omega_2} = x_2|_{\Omega_2}$.
Fiorenzi extended the Garden of Eden theorem in the following way:

Theorem (Fio-2003)

Let G be a countable amenable group and A a finite set. Then every strongly irreducible subshift of finite type $X \subset A^G$ has the Moore-Myhill property.

Example

The hard sphere model is the subshift $X \subset \{0, 1\}^{\mathbb{Z}^d}$ consisting of all $x: \mathbb{Z}^d \to \{0, 1\}$ with no two 1s appearing at Euclidean distance 1 on \mathbb{Z}^d.

The hard sphere model is strongly irreducible and of finite type. Thus, it has the Moore-Myhill property.

Remark

For $d = 1$, the hard sphere model is also called the golden mean subshift because its topological entropy is equal to the golden mean.
Fiorenzi extended the Garden of Eden theorem in the following way:
Fiorenzi extended the Garden of Eden theorem in the following way:

Theorem (Fio-2003)

Let G be a countable amenable group and A a finite set. Then every strongly irreducible subshift of finite type $X \subset A^G$ has the Moore-Myhill property.

Example

The hard sphere model is the subshift $X \subset \{0, 1\}^{\mathbb{Z}^d}$ consisting of all $x: \mathbb{Z}^d \rightarrow \{0, 1\}$ with no two 1s appearing at Euclidean distance 1 on \mathbb{Z}^d.

The hard sphere model is strongly irreducible and of finite type. Thus, it has the Moore-Myhill property.

Remark

For $d = 1$, the hard sphere model is also called the golden mean subshift because its topological entropy is equal to the golden mean.
Fiorenzi extended the Garden of Eden theorem in the following way:

Theorem (Fio-2003)

Let G be a countable amenable group and A a finite set. Then every strongly irreducible subshift of finite type $X \subset A^G$ has the Moore-Myhill property.

Example

The hard sphere model is the subshift $X \subset \{0, 1\}^{\mathbb{Z}^d}$ consisting of all $x: \mathbb{Z}^d \to \{0, 1\}$ with no two 1s appearing at Euclidean distance 1 on \mathbb{Z}^d. The hard sphere model is strongly irreducible and of finite type. Thus, it has the Moore-Myhill property.

Remark

For $d = 1$, the hard sphere model is also called the golden mean subshift because its topological entropy is equal to the golden mean.
The Moore-Myhill property for strongly irreducible subshifts of finite type

Fiorenzi extended the Garden of Eden theorem in the following way:

Theorem (Fio-2003)

Let G be a countable amenable group and A a finite set. Then every strongly irreducible subshift of finite type $X \subset A^G$ has the Moore-Myhill property.

Example

The **hard sphere model** is the subshift $X \subset \{0, 1\}^{\mathbb{Z}^d}$ consisting of all $x: \mathbb{Z}^d \to \{0, 1\}$ with no two 1s appearing at Euclidean distance 1 on \mathbb{Z}^d. The hard sphere model is strongly irreducible and of finite type. Thus, it has the Moore-Myhill property.
Fiorenzi extended the Garden of Eden theorem in the following way:

Theorem (Fio-2003)

Let G be a countable amenable group and A a finite set. Then every strongly irreducible subshift of finite type $X \subset A^G$ has the Moore-Myhill property.

Example

The hard sphere model is the subshift $X \subset \{0,1\}^{\mathbb{Z}^d}$ consisting of all $x : \mathbb{Z}^d \to \{0,1\}$ with no two 1s appearing at Euclidean distance 1 on \mathbb{Z}^d. The hard sphere model is strongly irreducible and of finite type. Thus, it has the Moore-Myhill property.

Remark

For $d = 1$, the hard sphere model is also called the golden mean subshift because its topological entropy is equal to the golden mean.
The Myhill property for strongly irreducible subshifts

Let G be a countable amenable group and A a finite set. Then every strongly irreducible subshift $X \subset A^G$ has the Myhill property.

Example

The even subshift is the subshift $X \subset \{0, 1\}^\mathbb{Z}$ consisting of all bi-infinite sequences $x : \mathbb{Z} \to \{0, 1\}$ such that the number of 1s between any two 0s is even. The even subshift is strongly irreducible. Therefore, the even subshift has the Myhill property.

Note that the even subshift is not of finite type. Actually, Fiorenzi [Fio-2000] proved that the even subshift does not have the Moore property: it admits endomorphisms that are surjective but not pre-injective.
The Myhill property for strongly irreducible subshifts

Theorem (CC-2012)

Let G be a countable amenable group and A a finite set. Then every strongly irreducible subshift $X \subset A^G$ has the Myhill property.
The Myhill property for strongly irreducible subshifts

Theorem (CC-2012)

Let G be a countable amenable group and A a finite set. Then every strongly irreducible subshift $X \subset A^G$ has the Myhill property.

Example

The **even subshift** is the subshift $X \subset \{0,1\}^\mathbb{Z}$ consisting of all bi-infinite sequences $x: \mathbb{Z} \to \{0,1\}$ such that the number of 1s between any two 0s is even.

Note that the even subshift is not of finite type. Actually, Fiorenzi [Fio-2000] proved that the even subshift does not have the Moore property: it admits endomorphisms that are surjective but not pre-injective.
The Myhill property for strongly irreducible subshifts

Theorem (CC-2012)

Let G be a countable amenable group and A a finite set. Then every strongly irreducible subshift $X \subset A^G$ has the Myhill property.

Example

The **even subshift** is the subshift $X \subset \{0, 1\}^\mathbb{Z}$ consisting of all bi-infinite sequences $x : \mathbb{Z} \to \{0, 1\}$ such that the number of 1s between any two 0s is even. The even subshift is strongly irreducible. Therefore the even subshift has the Myhill property.
The Myhill property for strongly irreducible subshifts

Theorem (CC-2012)

Let G be a countable amenable group and A a finite set. Then every strongly irreducible subshift $X \subset A^G$ has the Myhill property.

Example

The even subshift is the subshift $X \subset \{0,1\}^\mathbb{Z}$ consisting of all bi-infinite sequences $x: \mathbb{Z} \to \{0,1\}$ such that the number of 1s between any two 0s is even. The even subshift is strongly irreducible. Therefore the even subshift has the Myhill property. Note that the even subshift is not of finite type.
The Myhill property for strongly irreducible subshifts

Theorem (CC-2012)

Let G be a countable amenable group and A a finite set. Then every strongly irreducible subshift $X \subset A^G$ has the Myhill property.

Example

The **even subshift** is the subshift $X \subset \{0, 1\}^\mathbb{Z}$ consisting of all bi-infinite sequences $x: \mathbb{Z} \to \{0, 1\}$ such that the number of 1s between any two 0s is even. The even subshift is strongly irreducible. Therefore the even subshift has the Myhill property. Note that the even subshift is not of finite type. Actually, Fiorenzi [Fio-2000] proved that the even subshift does not have the Moore property: it admits endomorphisms that are surjective but not pre-injective.
Let \((X, G)\) be a dynamical system and let \(d\) be a metric on \(X\) that is compatible with the topology.

Definition
The d.s. \((X, G)\) is expansive if there is a constant \(\varepsilon > 0\) such that, for all distinct points \(x, y \in X\), there exists \(g \in G\) such that

\[d(gx, gy) \geq \varepsilon.\]

This definition does not depend on the choice of \(d\).

Example
Arnold's cat is expansive.

Example
All shifts and subshifts are expansive.
Expansive dynamical systems

Let \((X, G)\) be a dynamical system and let \(d\) be a metric on \(X\) that is compatible with the topology.

Definition

The d.s. \((X, G)\) is expansive if there is a constant \(\varepsilon > 0\) such that, for all distinct points \(x, y \in X\), there exists \(g \in G\) such that \(d(gx, gy) \geq \varepsilon\).

This definition does not depend on the choice of \(d\).

Example

Arnold's cat is expansive.

Example

All shifts and subshifts are expansive.
Expansive dynamical systems

Let \((X, G)\) be a dynamical system and let \(d\) be a metric on \(X\) that is compatible with the topology.

Definition

The d.s. \((X, G)\) is expansive if there is a constant \(\varepsilon > 0\) such that, for all distinct points \(x, y \in X\), there exists \(g \in G\) such that

\[d(gx, gy) \geq \varepsilon. \]

This definition does not depend on the choice of \(d\).

Example

Arnold's cat is expansive.

Example

All shifts and subshifts are expansive.
Expansive dynamical systems

Let \((X, G)\) be a dynamical system and let \(d\) be a metric on \(X\) that is compatible with the topology.

Definition

The d.s. \((X, G)\) is expansive if there is a constant \(\varepsilon > 0\) such that, for all distinct points \(x, y \in X\), there exists \(g \in G\) such that

\[
d(gx, gy) \geq \varepsilon.
\]

This definition does not depend on the choice of \(d\).

Example

Arnold's cat is expansive.

Example

All shifts and subshifts are expansive.
Expansive dynamical systems

Let \((X, G)\) be a dynamical system and let \(d\) be a metric on \(X\) that is compatible with the topology.

Definition

The d.s. \((X, G)\) is **expansive** if there is a constant \(\varepsilon > 0\) such that, for all distinct points \(x, y \in X\), there exists \(g \in G\) such that

\[
d(gx, gy) \geq \varepsilon.
\]

This definition does not depend on the choice of \(d\).

Example

Arnold’s cat is expansive.
Expansive dynamical systems

Let \((X, G)\) be a dynamical system and let \(d\) be a metric on \(X\) that is compatible with the topology.

Definition

The d.s. \((X, G)\) is **expansive** if there is a constant \(\varepsilon > 0\) such that, for all distinct points \(x, y \in X\), there exists \(g \in G\) such that

\[
d(gx, gy) \geq \varepsilon.
\]

This definition does not depend on the choice of \(d\).

Example

Arnold’s cat is expansive.

Example

All shifts and subshifts are expansive.
The Myhill property for a class of expansive dynamical systems

Theorem (CC-2015b)

Let X be a compact metrizable space equipped with a continuous action of a countable amenable group G.

Suppose that the d.s. (X, G) is expansive and that there exist a finite set A, a strongly irreducible subshift $\Sigma \subset A^G$, and a continuous, surjective, G-equivariant and uniformly finite-to-one map $\pi : \Sigma \to X$.

Then the dynamical system (X, G) has the Myhill property.
The Myhill property for a class of expansive dynamical systems

Theorem (CC-2015b)

Let X be a compact metrizable space equipped with a continuous action of a countable amenable group G. Suppose that the d.s. (X, G) is expansive and that there exist a finite set A, a strongly irreducible subshift $\Sigma \subset A^G$, and a continuous, surjective, G-equivariant and uniformly finite-to-one map $\pi : \Sigma \to X$.

Then the dynamical system (X, G) has the Myhill property.
Smale’s Axiom A diffeomorphisms

Let \(f : M \to M \) be a diffeomorphism of a smooth compact manifold \(M \).

A closed \(f \)-invariant subset \(\Lambda \subset M \) is hyperbolic if the restriction to \(\Lambda \) of the tangent bundle of \(M \) splits as a direct sum of two invariant subbundles \(E^s \) and \(E^u \) such that, with respect to some (or equivalently any) Riemannian metric on \(M \), the differential \(df \) is uniformly contracting on \(E^s \) and uniformly expanding on \(E^u \).

A point \(x \in M \) is called non-wandering if for every neighborhood \(U \) of \(x \), there is an integer \(n \geq 1 \) such that \(f^n(U) \) meets \(U \). The set \(\Omega(f) \) consisting of all non-wandering points of \(f \) is a closed invariant subset of \(M \).

If \(\text{Per}(f) \) denotes the set of periodic points of \(f \), one always has \(\text{Per}(f) \subset \Omega(f) \).

Definition

One says that \(f \) is Axiom A if \(\Omega(f) \) is hyperbolic, and \(\text{Per}(f) \) is dense in \(\Omega(f) \).

If \(f \) is Axiom A, then \(\Omega(f) \) can be uniquely written as a disjoint union of closed invariant subsets \(\Omega(f) = \bigcup_{i=1}^{k} X_i \), such that the restriction of \(f \) to each \(X_i \) is topologically transitive (spectral decomposition theorem).

These subsets \(X_i \) are called the basic sets of \((M, f)\).
Smale’s Axiom A diffeomorphisms

Let \(f : M \to M \) be a diffeomorphism of a smooth compact manifold \(M \).
Smale’s Axiom A diffeomorphisms

Let $f : M \to M$ be a diffeomorphism of a smooth compact manifold M. A closed f-invariant subset $\Lambda \subset M$ is **hyperbolic** if the restriction to Λ of the tangent bundle of M splits as a direct sum of two invariant subbundles E_s and E_u such that, with respect to some (or equivalently any) Riemannian metric on M, the differential df is uniformly contracting on E_s and uniformly expanding on E_u.

A point $x \in M$ is called **non-wandering** if for every neighborhood U of x, there is an integer $n \geq 1$ such that $f^n(U)$ meets U. The set $\Omega(f) = \{x \in M : x \text{ is non-wandering} \}$ is a closed invariant subset of M. If $\text{Per}(f)$ denotes the set of periodic points of f, one always has $\text{Per}(f) \subset \Omega(f)$.

Definition One says that f is Axiom A if $\Omega(f)$ is hyperbolic, and $\text{Per}(f)$ is dense in $\Omega(f)$.

If f is Axiom A, then $\Omega(f)$ can be uniquely written as a disjoint union of closed invariant subsets $\Omega(f) = X_1 \cup \cdots \cup X_k$, such that the restriction of f to each X_i is topologically transitive (spectral decomposition theorem). These subsets X_i are called the basic sets of (M, f).

Michel Coornaert (IRMA, University of Strasbourg)
Let $f : M \to M$ be a diffeomorphism of a smooth compact manifold M. A closed f-invariant subset $\Lambda \subset M$ is \textbf{hyperbolic} if the restriction to Λ of the tangent bundle of M splits as a direct sum of two invariant subbundles E_s and E_u such that, with respect to some (or equivalently any) Riemannian metric on M, the differential df is uniformly contracting on E_s and uniformly expanding on E_u. A point $x \in M$ is called \textit{non-wandering} if for every neighborhood U of x, there is an integer $n \geq 1$ such that $f^n(U)$ meets U. The set $\Omega(f)$ consisting of all non-wandering points of f is a closed invariant subset of M.
Let \(f : M \to M \) be a diffeomorphism of a smooth compact manifold \(M \).

A closed \(f \)-invariant subset \(\Lambda \subset M \) is \textit{hyperbolic} if the restriction to \(\Lambda \) of the tangent bundle of \(M \) splits as a direct sum of two invariant subbundles \(E_s \) and \(E_u \) such that, with respect to some (or equivalently any) Riemannian metric on \(M \), the differential \(df \) is uniformly contracting on \(E_s \) and uniformly expanding on \(E_u \).

A point \(x \in M \) is called \textit{non-wandering} if for every neighborhood \(U \) of \(x \), there is an integer \(n \geq 1 \) such that \(f^n(U) \) meets \(U \). The set \(\Omega(f) \) consisting of all non-wandering points of \(f \) is a closed invariant subset of \(M \).

If \(\text{Per}(f) \) denotes the set of periodic points of \(f \), one always has \(\text{Per}(f) \subset \Omega(f) \).
Smale’s Axiom A diffeomorphisms

Let \(f : M \to M \) be a diffeomorphism of a smooth compact manifold \(M \).
A closed \(f \)-invariant subset \(\Lambda \subset M \) is hyperbolic if the restriction to \(\Lambda \) of the tangent bundle of \(M \) splits as a direct sum of two invariant subbundles \(E_s \) and \(E_u \) such that, with respect to some (or equivalently any) Riemannian metric on \(M \), the differential \(df \) is uniformly contracting on \(E_s \) and uniformly expanding on \(E_u \).

A point \(x \in M \) is called non-wandering if for every neighborhood \(U \) of \(x \), there is an integer \(n \geq 1 \) such that \(f^n(U) \) meets \(U \). The set \(\Omega(f) \) consisting of all non-wandering points of \(f \) is a closed invariant subset of \(M \).
If \(\text{Per}(f) \) denotes the set of periodic points of \(f \), one always has \(\text{Per}(f) \subset \Omega(f) \).

Definition

One says that \(f \) is Axiom A if
- \(\Omega(f) \) is hyperbolic, and
- \(\text{Per}(f) \) is dense in \(\Omega(f) \).
Let $f : M \to M$ be a diffeomorphism of a smooth compact manifold M. A closed f-invariant subset $\Lambda \subset M$ is **hyperbolic** if the restriction to Λ of the tangent bundle of M splits as a direct sum of two invariant subbundles E_s and E_u such that, with respect to some (or equivalently any) Riemannian metric on M, the differential df is uniformly contracting on E_s and uniformly expanding on E_u. A point $x \in M$ is called **non-wandering** if for every neighborhood U of x, there is an integer $n \geq 1$ such that $f^n(U)$ meets U. The set $\Omega(f)$ consisting of all non-wandering points of f is a closed invariant subset of M. If $\text{Per}(f)$ denotes the set of periodic points of f, one always has $\text{Per}(f) \subset \Omega(f)$.

Definition

One says that f is **Axiom A** if

- $\Omega(f)$ is hyperbolic, and
- $\text{Per}(f)$ is dense in $\Omega(f)$.

If f is Axiom A, then $\Omega(f)$ can be uniquely written as a disjoint union of closed invariant subsets $\Omega(f) = X_1 \cup \cdots \cup X_k$, such that the restriction of f to each X_i is topologically transitive (spectral decomposition theorem).
Smale’s Axiom A diffeomorphisms

Let $f : M \to M$ be a diffeomorphism of a smooth compact manifold M. A closed f-invariant subset $\Lambda \subset M$ is hyperbolic if the restriction to Λ of the tangent bundle of M splits as a direct sum of two invariant subbundles E_s and E_u such that, with respect to some (or equivalently any) Riemannian metric on M, the differential df is uniformly contracting on E_s and uniformly expanding on E_u.

A point $x \in M$ is called non-wandering if for every neighborhood U of x, there is an integer $n \geq 1$ such that $f^n(U)$ meets U. The set $\Omega(f)$ consisting of all non-wandering points of f is a closed invariant subset of M.

If $\text{Per}(f)$ denotes the set of periodic points of f, one always has $\text{Per}(f) \subset \Omega(f)$.

Definition

One says that f is **Axiom A** if

- $\Omega(f)$ is hyperbolic, and
- $\text{Per}(f)$ is dense in $\Omega(f)$.

If f is Axiom A, then $\Omega(f)$ can be uniquely written as a disjoint union of closed invariant subsets $\Omega(f) = X_1 \cup \cdots \cup X_k$, such that the restriction of f to each X_i is topologically transitive (spectral decomposition theorem). These subsets X_i are called the basic sets of (M, f).
A dynamical system \((X, G)\) is topologically mixing if, given any two non-empty open subsets \(U, V \subset X\), one has \(U \cap gV \neq \emptyset\) for all but finitely many \(g \in G\).

Corollary (CC-2015a)

Let \(f\) be an Axiom A diffeomorphism of a smooth compact manifold \(M\). Suppose that \(X\) is a topologically mixing basic set of \((M, f)\). Then the dynamical system \((X, f|_X)\) has the Myhill property.

Proof.
The fact that the dynamical system \((X, f|_X)\) satisfies the hypotheses of the theorem follows from results obtained by Rufus Bowen in the 1970s.
A dynamical system \((X, G)\) is \textit{topologically mixing} if, given any two non-empty open subsets \(U, V \subset X\), one has \(U \cap gV \neq \emptyset\) for all but finitely many \(g \in G\).
A dynamical system (X, G) is **topologically mixing** if, given any two non-empty open subsets $U, V \subset X$, one has $U \cap gV \neq \emptyset$ for all but finitely many $g \in G$.

Corollary (CC-2015a)

Let f be an Axiom A diffeomorphism of a smooth compact manifold M. Suppose that X is a topologically mixing basic set of (M, f). Then the dynamical system $(X, f|_X)$ has the Myhill property.
A dynamical system \((X, G)\) is topologically mixing if, given any two non-empty open subsets \(U, V \subset X\), one has \(U \cap gV \neq \emptyset\) for all but finitely many \(g \in G\).

Corollary (CC-2015a)

Let \(f\) be an Axiom A diffeomorphism of a smooth compact manifold \(M\). Suppose that \(X\) is a topologically mixing basic set of \((M, f)\). Then the dynamical system \((X, f|_X)\) has the Myhill property.

Proof.

The fact that the dynamical system \((X, f|_X)\) satisfies the hypotheses of the theorem follows from results obtained by Rufus Bowen in the 1970s.
Anosov diffeomorphisms

Let $f: M \to M$ be a diffeomorphism of a smooth compact manifold M. One says that f is Anosov if the whole manifold M is hyperbolic for f.

Corollary (CC-2015a) Let f be a topologically mixing Anosov diffeomorphism of a smooth compact manifold M. Then (M, f) has the Myhill property.

Example (Hyperbolic toral automorphisms) Consider a matrix $A \in \text{GL}_n(\mathbb{Z})$ with no eigenvalue of modulus 1. Then A induces a topologically mixing Anosov diffeomorphism f_A of the n-torus $T^n = \mathbb{R}^n / \mathbb{Z}^n$. One says that f_A is a hyperbolic toral automorphism.

Arnold’s cat is the hyperbolic toral automorphism associated with the matrix $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$.

Every Anosov diffeomorphisms of T^n is topologically conjugate to a hyperbolic toral automorphism. In particular, every Anosov diffeomorphism of T^n is topologically mixing.

Theorem (CC-2015a) Let f be an Anosov diffeomorphism of the n-torus T^n. Then the d.s. (T^n, f) has the Moore-Myhill property.
Anosov diffeomorphisms

Let $f : M \to M$ be a diffeomorphism of a smooth compact manifold M.

Corollary (CC-2015a)

Let f be a topologically mixing Anosov diffeomorphism of a smooth compact manifold M. Then (M, f) has the Myhill property.

Example (Hyperbolic toral automorphisms)

Consider a matrix $A \in \text{GL}_n(\mathbb{Z})$ with no eigenvalue of modulus 1. Then A induces a topologically mixing Anosov diffeomorphism f_A of the n-torus $T_n = \mathbb{R}^n / \mathbb{Z}^n$. One says that f_A is a hyperbolic toral automorphism.

Arnold's cat is the hyperbolic toral automorphism associated with the matrix $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$.

Every Anosov diffeomorphisms of T_n is topologically conjugate to a hyperbolic toral automorphism. In particular, every Anosov diffeomorphism of T_n is topologically mixing.

Theorem (CC-2015a)

Let f be an Anosov diffeomorphism of the n-torus T_n. Then the d.s. (T_n, f) has the Moore-Myhill property.
Anosov diffeomorphisms

Let $f : M \to M$ be a diffeomorphism of a smooth compact manifold M. One says that f is Anosov if the whole manifold M is hyperbolic for f.

Corollary (CC-2015a)

Let f be a topologically mixing Anosov diffeomorphism of a smooth compact manifold M. Then (M, f) has the Myhill property.

Example (Hyperbolic toral automorphisms)

Consider a matrix $A \in \text{GL}_n(\mathbb{Z})$ with no eigenvalue of modulus 1. Then A induces a topologically mixing Anosov diffeomorphism f_A of the n-torus $T^n = \mathbb{R}^n / \mathbb{Z}^n$. One says that f_A is a hyperbolic toral automorphism.

Arnold’s cat is the hyperbolic toral automorphism associated with the matrix

$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$

Every Anosov diffeomorphisms of T^n is topologically conjugate to a hyperbolic toral automorphism. In particular, every Anosov diffeomorphism of T^n is topologically mixing.

Theorem (CC-2015a)

Let f be an Anosov diffeomorphism of the n-torus T^n. Then the d.s. (T^n, f) has the Moore-Myhill property.
Anosov diffeomorphisms

Let \(f : M \to M \) be a diffeomorphism of a smooth compact manifold \(M \). One says that \(f \) is Anosov if the whole manifold \(M \) is hyperbolic for \(f \).

Corollary (CC-2015a)

Let \(f \) be a topologically mixing Anosov diffeomorphism of a smooth compact manifold \(M \). Then \((M, f)\) has the Myhill property.
Anosov diffeomorphisms

Let \(f: M \to M \) be a diffeomorphism of a smooth compact manifold \(M \). One says that \(f \) is Anosov if the whole manifold \(M \) is hyperbolic for \(f \).

Corollary (CC-2015a)

Let \(f \) be a topologically mixing Anosov diffeomorphism of a smooth compact manifold \(M \). Then \((M, f)\) has the Myhill property.

Example (Hyperbolic toral automorphisms)

Consider a matrix \(A \in \text{GL}_n(\mathbb{Z}) \) with no eigenvalue of modulus 1. Then \(A \) induces a topologically mixing Anosov diffeomorphism \(f_A \) of the \(n \)-torus \(\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n \). One says that \(f_A \) is a hyperbolic toral automorphism.
Anosov diffeomorphisms

Let $f : M \to M$ be a diffeomorphism of a smooth compact manifold M. One says that f is Anosov if the whole manifold M is hyperbolic for f.

Corollary (CC-2015a)

Let f be a topologically mixing Anosov diffeomorphism of a smooth compact manifold M. Then (M, f) has the Myhill property.

Example (Hyperbolic toral automorphisms)

Consider a matrix $A \in \text{GL}_n(\mathbb{Z})$ with no eigenvalue of modulus 1. Then A induces a topologically mixing Anosov diffeomorphism f_A of the n-torus $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$. One says that f_A is a hyperbolic toral automorphism. Arnold’s cat is the hyperbolic toral automorphism associated with the matrix

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}.$$
Anosov diffeomorphisms

Let \(f : M \to M \) be a diffeomorphism of a smooth compact manifold \(M \).
One says that \(f \) is **Anosov** if the whole manifold \(M \) is hyperbolic for \(f \).

Corollary (CC-2015a)

Let \(f \) be a topologically mixing Anosov diffeomorphism of a smooth compact manifold \(M \). Then \((M, f) \) has the Myhill property.

Example (Hyperbolic toral automorphisms)

Consider a matrix \(A \in \text{GL}_n(\mathbb{Z}) \) with no eigenvalue of modulus 1. Then \(A \) induces a topologically mixing Anosov diffeomorphism \(f_A \) of the \(n \)-torus \(\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n \). One says that \(f_A \) is a **hyperbolic toral automorphism**. Arnold’s cat is the hyperbolic toral automorphism associated with the matrix

\[
A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}.
\]

Every Anosov diffeomorphisms of \(\mathbb{T}^n \) is topologically conjugate to a hyperbolic toral automorphism. In particular, every Anosov diffeomorphism of \(\mathbb{T}^n \) is topologically mixing.
Anosov diffeomorphisms

Let $f : M \to M$ be a diffeomorphism of a smooth compact manifold M. One says that f is Anosov if the whole manifold M is hyperbolic for f.

Corollary (CC-2015a)

Let f be a topologically mixing Anosov diffeomorphism of a smooth compact manifold M. Then (M, f) has the Myhill property.

Example (Hyperbolic toral automorphisms)

Consider a matrix $A \in \text{GL}_n(\mathbb{Z})$ with no eigenvalue of modulus 1. Then A induces a topologically mixing Anosov diffeomorphism f_A of the n-torus $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$. One says that f_A is a hyperbolic toral automorphism. Arnold’s cat is the hyperbolic toral automorphism associated with the matrix

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}.$$

Every Anosov diffeomorphisms of \mathbb{T}^n is topologically conjugate to a hyperbolic toral automorphism. In particular, every Anosov diffeomorphism of \mathbb{T}^n is topologically mixing.

Theorem (CC-2015a)

Let f be an Anosov diffeomorphism of the n-torus \mathbb{T}^n. Then the d.s. (\mathbb{T}^n, f) has the Moore-Myhill property.
References
References

