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The space of configurations

Take:

e a group G,

e a set A (called the alphabet or the set of symbols).
The set

A® ={x:G— A}

is endowed with its prodiscrete topology, i.e., the product topology obtained by taking
the discrete topology on each factor A of A°.
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The space of configurations

Take:
e a group G,
e a set A (called the alphabet or the set of symbols).
The set
A® ={x:G— A}

is endowed with its prodiscrete topology, i.e., the product topology obtained by taking
the discrete topology on each factor A of A°.
Thus, a base of open neighborhoods of x € A® is provided by the sets

V(x,Q) :={y € A : x|a = yla},

where Q runs over all finite subsets of G (we denote by x|o € A? the restriction of
x € A® to Q).
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The space of configurations

Take:
e a group G,
e a set A (called the alphabet or the set of symbols).
The set
A® ={x:G— A}

is endowed with its prodiscrete topology, i.e., the product topology obtained by taking
the discrete topology on each factor A of A°.
Thus, a base of open neighborhoods of x € A® is provided by the sets

V(x,Q) :={y € A : x|a = yla},

where Q runs over all finite subsets of G (we denote by x|o € A? the restriction of
x € A® to Q).

Example

If G is countably infinite, A is finite of cardinality |A| > 2, then A® is homeomorphic to
the Cantor set. This is the case for G = Z and A = {0,1}, where A® is the space of
bi-infinite sequences of 0's and 1's.
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is endowed with its prodiscrete topology, i.e., the product topology obtained by taking
the discrete topology on each factor A of A°.
Thus, a base of open neighborhoods of x € A® is provided by the sets

V(x,Q) :={y € A : x|a = yla},

where Q runs over all finite subsets of G (we denote by x|o € A? the restriction of
x € A® to Q).

Example

If G is countably infinite, A is finite of cardinality |A| > 2, then A® is homeomorphic to
the Cantor set. This is the case for G = Z and A = {0,1}, where A® is the space of
bi-infinite sequences of 0's and 1's.

The space A° is called the space of configurations over the group G and the alphabet A.
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The shift action

There is a natural continuous left action of G on A® given by

G x A® — A®
(g,x) — gx

where
gx(h)=x(g 'h) YheG.
This action is called the G-shift on A°C.
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The shift action

There is a natural continuous left action of G on A® given by
G x A® — A®
(g,x) — gx

where
gx(h)=x(g 'h) YheG.
This action is called the G-shift on A°C.

Example

The Z-shift on {0, 1}%:

x(n):...101001101000110111001010011 ...
3x(n) = x(n—3):...101001101000110111001010011 . ..

Michel Coornaert (IRMA, Strasbourg, France) Algebraic Cellular Automata and Groups March 7, 2011 3/25



The shift action

There is a natural continuous left action of G on A® given by
G x A® — A®
(g,x) — gx

where
gx(h)=x(g 'h) YheG.

This action is called the G-shift on A°C.
Example

The Z-shift on {0, 1}%:

x(n):...101001101000110111001010011 ...
3x(n) = x(n—3):...101001101000110111001010011 . ..

The study of the shift action on A is the central theme in symbolic dynamics.
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Cellular automata

Definition
A cellular automaton over the group G and the alphabet A is a map
T A° = A€

satisfying the following condition:
there exist a finite subset M C G and a map un: AY — A such that:

(r(x))(g) = um((g 7' x)Im) Vx € A°,Vg € G,

1

where (g 'x)|m denotes the restriction of the configuration g~ 'x to M.
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(r(x))(g) = um((g 7' x)Im) Vx € A°,Vg € G,

1

where (g 'x)|m denotes the restriction of the configuration g~ 'x to M.

Such a set M is called a memory set and the map puy: AY — A is called the associated
local defining map.
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Cellular automata

Definition
A cellular automaton over the group G and the alphabet A is a map
T A° = A€

satisfying the following condition:
there exist a finite subset M C G and a map un: AY — A such that:

(r(x))(g) = um((g 7' x)Im) Vx € A°,Vg € G,

1

where (g 'x)|m denotes the restriction of the configuration g~ 'x to M.

Such a set M is called a memory set and the map puy: AY — A is called the associated
local defining map.

e Every cellular automaton 7: A® — A® admits a minimal memory set Mp. It is
characterized by the fact that a finite subset M C G is a memory set for 7 if and only if
Mo C M. Moreover, one then has

MM = My O T,
where m: AY — AMo denotes the projection map.
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Example: Conway's Game of Life

Life was introduced by J. H. Conway in the 1970's.
Take G = Z? and A= {0,1}.
Life is the cellular automaton

7 {0,1}% — {0,1}%

with memory set M = {—1,0,1}> C Z? and local defining map p: AM — A given by

> y(m)=3

1oifg Y
pm(y) = or Z y(m) =4 and y((0,0)) =1

meM
0 otherwise

Vy € AM,
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Example: Conway's Game of Life

™ 2 ? 2
Death by overcrowding death
any live cell vith mare —p- a a
than three live neighbours ' L
dies at the next generation
. 9 2 2
? ? ?
Death by loneliness : death
any live cell with fewer & - ? ?
than twen live neighbours
dies at the next generatian
? ? ”
® ? 2 ?
Birth birth
dead cell with exactly three —p 7 [ ] 7
live neighbours comes
to live at the next generation
"' ] ? ? ?
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Example: Conway's Game of Life
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The Curtis-Hedlund theorem

From the definition, it easily follows that:
e Every cellular automaton 7: A® — A® is G-equivariant, i.e.,

7(gx) = g7(x) Vx € A®,Vg € G.

Michel Coornaert (IRMA, Strasbourg, France) Algebraic Cellular Automata and Groups March 7, 2011 8 /25



The Curtis-Hedlund theorem

From the definition, it easily follows that:
e Every cellular automaton 7: A® — A® is G-equivariant, i.e.,
7(gx) = g7(x) Vx € A®,Vg € G.

e Every cellular automaton 7: A® — A® is continuous (w.r. to the prodiscrete topology
G
on A%).
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The Curtis-Hedlund theorem
From the definition, it easily follows that:
e Every cellular automaton 7: A® — A® is G-equivariant, i.e.,

7(gx) = g7(x) Vx € A®,Vg € G.

e Every cellular automaton 7: A® — A® is continuous (w.r. to the prodiscrete topology
on A%).
Conversely, one has the Curtis-Hedlund theorem:

Theorem (He-1969)

Let G be a group and let A be a finite set. Let 7: A® — A® be a map. Then the
following conditions are equivalent:

(a) 7 is a cellular automaton;

(b) T is continuous (w.r. to the prodiscrete topology on A®) and G-equivariant.

Michel Coornaert (IRMA, Strasbourg, France) Algebraic Cellular Automata and Groups March 7, 2011 8 /25



The Curtis-Hedlund theorem

From the definition, it easily follows that:
e Every cellular automaton 7: A® — A® is G-equivariant, i.e.,

7(gx) = g7(x) Vx € A®,Vg € G.

e Every cellular automaton 7: A® — A® is continuous (w.r. to the prodiscrete topology

on A%).
Conversely, one has the Curtis-Hedlund theorem:

Theorem (He-1969)

Let G be a group and let A be a finite set. Let 7: A® — A® be a map. Then the
following conditions are equivalent:

(a) 7 is a cellular automaton;

(b) T is continuous (w.r. to the prodiscrete topology on A®) and G-equivariant.

when A is infinite and the group G is non-periodic, one can always construct a
G-equivariant continuous self-mapping of A® which is not a cellular automaton.
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The Curtis-Hedlund theorem

From the definition, it easily follows that:
e Every cellular automaton 7: A® — A® is G-equivariant, i.e.,

7(gx) = g7(x) Vx € A®,Vg € G.

e Every cellular automaton 7: A® — A® is continuous (w.r. to the prodiscrete topology

on A%).
Conversely, one has the Curtis-Hedlund theorem:

Theorem (He-1969)

Let G be a group and let A be a finite set. Let 7: A® — A® be a map. Then the
following conditions are equivalent:

(a) 7 is a cellular automaton;

(b) T is continuous (w.r. to the prodiscrete topology on A®) and G-equivariant.

when A is infinite and the group G is non-periodic, one can always construct a
G-equivariant continuous self-mapping of A® which is not a cellular automaton.

Example (CC-2008)

For G = A=Z, the map 7: A® — A®, defined by 7(x)(n) = x(x(n) + n), is
G-equivariant and continuous, but 7 is not a cellular automaton.
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Uniform spaces

Let X be a set.
Ax = {(x,x) : x € X} denote the diagonal in X x X.
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Uniform spaces

Let X be a set.

Ax = {(x,x) : x € X} denote the diagonal in X x X.

Definition

A uniform structure on X is a non—empty set U/ of subsets of X x X called entourages
satisfying the following conditions:

(UN-1) if V €U, then Ax C V;

( ) if Vel and V C V' C X x X, then V' € U;

(UN-3) if Vel and W € U, then VN W € U;
(UN-4)
(UN-5)

—i

if Ve, then V :={(x,y): (y,x) € V} €U;

if V € U, then there exists W € U such that

WoW :={(x,y):3dz€ X s. t. (x,2),(z,y) e W} C V.
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Uniform spaces

Let X be a set.
Ax = {(x,x) : x € X} denote the diagonal in X x X.
Definition
A uniform structure on X is a non—empty set U/ of subsets of X x X called entourages
satisfying the following conditions:
UN-1) if V €U, then Ax C V;
if Veldand VC V' C X x X, then V' €U
if Veldand W el, then VN W €U,

—i
if Ve, then V :={(x,y): (y,x) € V} €U;

if V € U, then there exists W € U such that

WoW :={(x,y):3dz€ X s. t. (x,2),(z,y) e W} C V.

A set equipped with a uniform structure is called a uniform space.

The discrete uniform structure on X is the one for which every subset of X x X
containing the diagonal is an entourage.

A map f: X — Y between uniform spaces is said to be uniformly continuous if

VW entourage of Y,3V entourage of X s. t.
(Fxf)(V)ycw
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The generalized Curtis-Hedlund theorem

The product uniform structure on a product X = [];, Xi of uniform spaces is the
smallest uniform structure on X for which each projection map is uniformly continuous.
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The generalized Curtis-Hedlund theorem

The product uniform structure on a product X = [];, Xi of uniform spaces is the
smallest uniform structure on X for which each projection map is uniformly continuous.
Let G be a group and let A be a set.
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The generalized Curtis-Hedlund theorem

The product uniform structure on a product X = [];, Xi of uniform spaces is the
smallest uniform structure on X for which each projection map is uniformly continuous.
Let G be a group and let A be a set.

The prodiscrete uniform structure on A is the product uniform structure obtained by
taking the discrete uniform structure on each factor A of A°.
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The generalized Curtis-Hedlund theorem

The product uniform structure on a product X = [];, Xi of uniform spaces is the
smallest uniform structure on X for which each projection map is uniformly continuous.
Let G be a group and let A be a set.

The prodiscrete uniform structure on A is the product uniform structure obtained by
taking the discrete uniform structure on each factor A of A°.

A base of entourages for the prodiscrete uniform structure on A® is provided by the sets:

N(Q) = {(x,y) € A® x A® : x|q = yla} C A® x A,

where Q runs over all finite subsets of G.
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The generalized Curtis-Hedlund theorem

The product uniform structure on a product X = [];, Xi of uniform spaces is the
smallest uniform structure on X for which each projection map is uniformly continuous.
Let G be a group and let A be a set.

The prodiscrete uniform structure on A is the product uniform structure obtained by
taking the discrete uniform structure on each factor A of A°.

A base of entourages for the prodiscrete uniform structure on A® is provided by the sets:

N(Q) = {(x,y) € A® x A® : x|q = yla} C A® x A,
where Q runs over all finite subsets of G.
Theorem (CC-2008)

Let G be a group and let A be a set. Let 7: A° — A® be a map. Then the following
conditions are equivalent:
(a) 7 is a cellular automaton;

(b) 7 is uniformly continuous (w.r. to the uniform prodiscrete structure on A®) and
G-equivariant.
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Algebraic subsets

Let K be a field.
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Algebraic subsets

Let K be a field.
Definition

A subset A C K™ is called an algebraic subset if there exists a subset S C K[t1,. .., tm]
such that A is the set of common zeroes of the polynomials in S, i.e.,

A=7(S)={a=(a1,...,am) € K" : P(a) =0 VP e S}
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Algebraic subsets

Let K be a field.
Definition

A subset A C K™ is called an algebraic subset if there exists a subset S C K[t1,. .., tm]
such that A is the set of common zeroes of the polynomials in S, i.e.,

A=7(S)={a=(a1,...,am) € K" : P(a) =0 VP e S}

A map P: K™ — K" is called polynomial if there exist polynomials
Pi,...,Pn € K[t1,...,ta] such that

P(a) = (P(a),..., Pa(a)) Vac K™
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Algebraic subsets

Let K be a field.

Definition

A subset A C K™ is called an algebraic subset if there exists a subset S C K|t ...

such that A is the set of common zeroes of the polynomials in S, i.e.,

A=7(S)={a=(a1,...,am) € K" : P(a) =0 VP e S}

s tm)

A map P: K™ — K" is called polynomial if there exist polynomials
Pi,...,Pn € K[t1,...,ta] such that

P(a) = (P(a),..., Pa(a)) Vac K™

Definition
Let AC K™ and B C K" be algebraic subsets.

A map f: A — B is called regular if f is the restriction of some polynomial map
P: K" — K"
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The category of affine algebraic sets

The identity map on any algebraic subset is regular. The composite of two regular maps
is regular.

Thus, the algebraic subsets of K", m = 0,1,..., are the objects of a category whose
morphisms are the regular maps.
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The identity map on any algebraic subset is regular. The composite of two regular maps
is regular.

Thus, the algebraic subsets of K", m = 0,1,..., are the objects of a category whose
morphisms are the regular maps.

This category is the category of affine algebraic sets over K.
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The category of affine algebraic sets

The identity map on any algebraic subset is regular. The composite of two regular maps
is regular.
Thus, the algebraic subsets of K", m = 0,1,..., are the objects of a category whose
morphisms are the regular maps.
This category is the category of affine algebraic sets over K.
This category admits finite direct products. Indeed, if A C K™ and B C K" are algebraic
subsets then

AxBCK™"x K"=K"™"

is also an algebraic subset. It is the direct product of A and B in the category of
algebraic sets over K.
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Algebraic cellular automata

Definition

Let G be a group and let K be a field. One says that a cellular automaton 7: A® — A®
is an algebraic cellular automaton over K if:

e A is an affine algebraic set over K;

e for some (or, equivalently, any) memory set M, the associated local defining map
um: AM = Ais regular.
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Examples of algebraic cellular automata
1) The map 7: K% — K defined by
7(x)(n) = x(n+1) — x(n)® Vx € K*,VYn € Z,

is an algebraic cellular automaton with memory set M = {0, 1}.
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1) The map 7: K% — K defined by
7(x)(n) = x(n+1) — x(n)® Vx € K*,VYn € Z,

is an algebraic cellular automaton with memory set M = {0, 1}.

2) Let G be a group, A an affine algebraic set, f: A — A a regular map, and go € G.
Then the map 7: A® — A®, defined by

7(x)(g) = f(x(gg)) Vx€ A% g€ G,

is an algebraic cellular automaton.
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Examples of algebraic cellular automata
1) The map 7: K% — K defined by
7(x)(n) = x(n+1) — x(n)® Vx € K*,VYn € Z,

is an algebraic cellular automaton with memory set M = {0, 1}.

2) Let G be a group, A an affine algebraic set, f: A — A a regular map, and go € G.
Then the map 7: A® — A®, defined by

7(x)(g) = f(x(gg)) Vx€ A% g€ G,

is an algebraic cellular automaton.

3) Let A be an affine algebraic group (e.g. A= SL,(K)). Then the map 7: A” — AZ,
defined by
7(x)(n) = x(n) " 'x(n+1) Vxe A* neZ,

is an algebraic cellular automaton with memory set M = {0, 1}.
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Examples of algebraic cellular automata
1) The map 7: K% — K defined by
7(x)(n) = x(n+1) — x(n)® Vx € K*,VYn € Z,

is an algebraic cellular automaton with memory set M = {0, 1}.

2) Let G be a group, A an affine algebraic set, f: A — A a regular map, and go € G.
Then the map 7: A® — A®, defined by

7(x)(g) = f(x(gg)) Vx€ A% g€ G,

is an algebraic cellular automaton.

3) Let A be an affine algebraic group (e.g. A= SL,(K)). Then the map 7: A” — AZ,
defined by
7(x)(n) = x(n) " 'x(n+1) Vxe A* neZ,

is an algebraic cellular automaton with memory set M = {0, 1}.

Remark

Every cellular automaton with finite alphabet A may be regarded as an algebraic cellular
automaton (embed A in some field K).
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The Closed Image Property

One says that a map f: X — Y between topological spaces X and Y has the closed
image property (= CIP) if its image set f(X) is closed in Y.
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The Closed Image Property

One says that a map f: X — Y between topological spaces X and Y has the closed
image property (= CIP) if its image set f(X) is closed in Y.

Example

If X is compact and Y Hausdorff, then every continuous map f: X — Y has the CIP. In
particular, if A is a finite set, then every cellular automaton 7: A® — AC has the CIP.
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The Closed Image Property

One says that a map f: X — Y between topological spaces X and Y has the closed
image property (= CIP) if its image set f(X) is closed in Y.
Example

If X is compact and Y Hausdorff, then every continuous map f: X — Y has the CIP. In
particular, if A is a finite set, then every cellular automaton 7: A® — AC has the CIP.

Remark

When A is infinite and the group G is non-periodic, one can always construct a cellular
automaton 7: A® — A® which does not satisfy the closed image property [CC-2011].
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The Closed Image Property

One says that a map f: X — Y between topological spaces X and Y has the closed
image property (= CIP) if its image set f(X) is closed in Y.
Example

If X is compact and Y Hausdorff, then every continuous map f: X — Y has the CIP. In
particular, if A is a finite set, then every cellular automaton 7: A® — AC has the CIP.

Remark

When A is infinite and the group G is non-periodic, one can always construct a cellular
automaton 7: A® — A® which does not satisfy the closed image property [CC-2011].

Theorem (Gr-1999, CC-2010a)

Let G be a group, K an uncountable algebraically closed field, and A an affine algebraic
set over K. Then every algebraic cellular automaton 7: A® — A® over K has the CIP
with respect to the prodiscrete topology on AC.
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An application of the CIP theorem

A group G is called residually finite if the intersection of its finite-index subgroups is
reduced to the identity element.
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An application of the CIP theorem

A group G is called residually finite if the intersection of its finite-index subgroups is
reduced to the identity element.

e The group Z is residually finite since ﬂnZl nZ = {0}.
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An application of the CIP theorem

A group G is called residually finite if the intersection of its finite-index subgroups is
reduced to the identity element.

e The group Z is residually finite since (-, nZ = {0}.
e The direct product of two residually finite groups is residually finite.
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An application of the CIP theorem

A group G is called residually finite if the intersection of its finite-index subgroups is
reduced to the identity element.

e The group Z is residually finite since (-, nZ = {0}.

e The direct product of two residually finite groups is residually finite.

o It follows that Z¢ is residually finite for every integer d > 1.
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An application of the CIP theorem

A group G is called residually finite if the intersection of its finite-index subgroups is
reduced to the identity element.

e The group Z is residually finite since (-, nZ = {0}.

e The direct product of two residually finite groups is residually finite.

o It follows that Z¢ is residually finite for every integer d > 1.

e More generally, by a result of Malcev, any finitely generated linear group is residually
finite. Recall that a group is called linear if one can find a field K such that G embeds
into GL,(K) for n large enough.

Michel Coornaert (IRMA, Strasbourg, France) Algebraic Cellular Automata and Groups March 7, 2011 16 / 25



An application of the CIP theorem

A group G is called residually finite if the intersection of its finite-index subgroups is
reduced to the identity element.

e The group Z is residually finite since (-, nZ = {0}.

e The direct product of two residually finite groups is residually finite.

o It follows that Z¢ is residually finite for every integer d > 1.

e More generally, by a result of Malcev, any finitely generated linear group is residually
finite. Recall that a group is called linear if one can find a field K such that G embeds
into GL,(K) for n large enough.

Corollary

Let G be a residually finite group (e.g., G = Z¢), and K an uncountable algebraically
closed field. Then every injective algebraic cellular automaton 7: A® — A® over K is
surjective and hence bijective.
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The Ax-Grothendieck theorem

For the proof of the corollary, we need the following result from algebraic geometry:
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Theorem (Ax-Grothendieck)

Let K be an algebraically closed field and let A be an affine algebraic set over K. Then
every injective regular map f: A — A is surjective and hence bijective.
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The Ax-Grothendieck theorem

For the proof of the corollary, we need the following result from algebraic geometry:

Theorem (Ax-Grothendieck)

Let K be an algebraically closed field and let A be an affine algebraic set over K. Then
every injective regular map f: A — A is surjective and hence bijective.

Remark

The polynomial map f: Q@ — Q given by f(t) = t> is injective but not surjective.
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Proof of the corollary

A configuration x € A® is periodic if its orbit under the G-shift is finite.
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Proof of the corollary

A configuration x € A® is periodic if its orbit under the G-shift is finite.

The fact that G is residually finite implies that periodic configurations are dense in A°.
Let x € A® be a periodic configuration and H = {g € G : gx = x} its stabilizer.

Then H is a finite-index subgroup of G and there is a bijective map

pt: AMNG 5 Fix(H) C A® defined by p*(y) = y o p, where p: G — H\G is the canonical
surjection.
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Let x € A® be a periodic configuration and H = {g € G : gx = x} its stabilizer.

Then H is a finite-index subgroup of G and there is a bijective map

pt: AMNG 5 Fix(H) C A® defined by p*(y) = y o p, where p: G — H\G is the canonical
surjection.

One has a commutative diagram:

*

ARG 2, Fix(H)
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AM\C . Fix(H)
o
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Proof of the corollary

A configuration x € A® is periodic if its orbit under the G-shift is finite.

The fact that G is residually finite implies that periodic configurations are dense in A°.
Let x € A® be a periodic configuration and H = {g € G : gx = x} its stabilizer.

Then H is a finite-index subgroup of G and there is a bijective map

pt: AMNG 5 Fix(H) C A® defined by p*(y) = y o p, where p: G — H\G is the canonical
surjection.

One has a commutative diagram:

*

ARG 2, Fix(H)

fl lf\rix(H)

AM\C . Fix(H)
o

If 7 is injective, then f is injective and hence surjective by the Ax-Grothendieck theorem.
Thus 7(Fix(H)) = Fix(H). As x € Fix(H), this implies that every periodic configuration
is in the image of 7.
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Proof of the corollary

A configuration x € A® is periodic if its orbit under the G-shift is finite.

The fact that G is residually finite implies that periodic configurations are dense in A°.
Let x € A® be a periodic configuration and H = {g € G : gx = x} its stabilizer.

Then H is a finite-index subgroup of G and there is a bijective map

pt: AMNG 5 Fix(H) C A® defined by p*(y) = y o p, where p: G — H\G is the canonical
surjection.

One has a commutative diagram:

*

ARG 2, Fix(H)

fl lf\rix(H)

AMNE — Fix(H)
e
If 7 is injective, then f is injective and hence surjective by the Ax-Grothendieck theorem.
Thus 7(Fix(H)) = Fix(H). As x € Fix(H), this implies that every periodic configuration
is in the image of 7.

By density of periodic configurations and the CIP theorem, this implies that
T(A®) = A°. O
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First ingredient in the proof of the CIP theorem

Let K be a field. If A is an affine algebraic set over K, the algebraic subsets of A are the
closed subsets of a topology.
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closed subsets of a topology.

This topology is called the Zariski topology on A.

Given a topological space X, a subset L C X is called locally closed if L = U N V, where
U is open and V is closed in X.

A subset C C X is called constructible if C is a finite union of locally closed subsets of X.

Theorem (Chevalley)

Let K be an algebraically closed field. Let A and B be affine algebraic sets over K, and
let f: A— B be a regular map. Then every constructible subset C C A has a
constructible image f(C) C B. In particular, f(A) is a constructible subset of B.
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First ingredient in the proof of the CIP theorem

Let K be a field. If A is an affine algebraic set over K, the algebraic subsets of A are the
closed subsets of a topology.

This topology is called the Zariski topology on A.

Given a topological space X, a subset L C X is called locally closed if L = U N V, where
U is open and V is closed in X.

A subset C C X is called constructible if C is a finite union of locally closed subsets of X.

Theorem (Chevalley)

Let K be an algebraically closed field. Let A and B be affine algebraic sets over K, and
let f: A— B be a regular map. Then every constructible subset C C A has a
constructible image f(C) C B. In particular, f(A) is a constructible subset of B.

Remark

The image of the polynomial map f: R — R defined by f(t) = t* is [0, 00) which is not
constructible in R for the Zariski topology (the only constructible subsets of R for the
Zariski topology are the finite subsets of R and their complements).
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Second ingredient in the proof of the CIP theorem

Lemma 1

Let K be an uncountable algebraically closed field and let A be an affine algebraic set
over K. Suppose that Cy, Ci, Gy, ... is a sequence of nonempty constructible subsets of
A such that

GODGDODGD...
Then one has ﬂnZO C #0.

Michel Coornaert (IRMA, Strasbourg, France) Algebraic Cellular Automata and Groups March 7, 2011 20 / 25



Second ingredient in the proof of the CIP theorem

Lemma 1

Let K be an uncountable algebraically closed field and let A be an affine algebraic set
over K. Suppose that Cy, Ci, Gy, ... is a sequence of nonempty constructible subsets of
A such that

GODGDO>GD...
Then one has (1,5, Cn # 2.

Remark

The preceding lemma becomes false if the field K is countable, e.g., K = Q or K = F,.

v
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A real counterexample to the CIP

Here we take G =Z and A = R.
Consider the algebraic cellular automaton 7: R — RZ defined by

7(x)(n) = x(n+1) — x(n)> Vx € R”,VYn € Z.
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Consider the algebraic cellular automaton 7: R — RZ defined by

7(x)(n) = x(n+1) — x(n)> Vx € R”,VYn € Z.

The image of 7 is dense in R” (for the prodiscrete topology).

Indeed, if y € RZ is an arbitrary configuration and [—k, k] C Z, we can construct by
induction a configuration x € R” such that

{x(n) =0 Vn < —k,
x(n+1) — x(n)? = y(n) Vn > —k.
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{x(n) =0 n < —k,
x(n+1) — x(n)? = y(n) Vn > —k.

Then y and 7(x) coincide on [—k, k]. This shows that 7(R”) is dense in RZ.
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Here we take G =Z and A = R.
Consider the algebraic cellular automaton 7: R — RZ defined by

7(x)(n) = x(n+1) — x(n)> Vx € R”,VYn € Z.

The image of 7 is dense in R” (for the prodiscrete topology).
Indeed, if y € RZ is an arbitrary configuration and [—k, k] C Z, we can construct by
induction a configuration x € R” such that

x(n) =0 Vn < —k,

x(n+1) — x(n)? = y(n) Vn > —k.
Then y and 7(x) coincide on [—k, k]. This shows that 7(R”) is dense in RZ.
However, 7 is not surjective.

Indeed the constant configuration z € R”, given by z(n) = 1 for all n € Z, is not in the
image of 7.
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x(n+1) — x(n)? = y(n) Vn > —k.
Then y and 7(x) coincide on [—k, k]. This shows that 7(R”) is dense in RZ.
However, 7 is not surjective.
Indeed the constant configuration z € R”, given by z(n) = 1 for all n € Z, is not in the
image of 7.

Otherwise, there would be x € R such that x(n+1) — x(n)? =1 for all n € Z.
This implies x(n) increasing and x(n) > 1 for all n.
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Here we take G =Z and A = R.
Consider the algebraic cellular automaton 7: R — RZ defined by

7(x)(n) = x(n+1) — x(n)> Vx € R”,VYn € Z.

The image of 7 is dense in R” (for the prodiscrete topology).
Indeed, if y € RZ is an arbitrary configuration and [—k, k] C Z, we can construct by
induction a configuration x € R” such that

x(n) =0 Vn < —k,
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Then y and 7(x) coincide on [—k, k]. This shows that 7(R”) is dense in RZ.
However, 7 is not surjective.
Indeed the constant configuration z € R”, given by z(n) = 1 for all n € Z, is not in the
image of 7.
Otherwise, there would be x € R such that x(n+1) — x(n)? =1 for all n € Z.

This implies x(n) increasing and x(n) > 1 for all n.
Thus x(n) would have a finite limit as n — —oo.
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A real counterexample to the CIP

Here we take G =Z and A = R.
Consider the algebraic cellular automaton 7: R — RZ defined by

7(x)(n) = x(n+1) — x(n)> Vx € R”,VYn € Z.

The image of 7 is dense in R” (for the prodiscrete topology).
Indeed, if y € RZ is an arbitrary configuration and [—k, k] C Z, we can construct by
induction a configuration x € R” such that

x(n) =0 Vn < —k,
x(n+1) — x(n)? = y(n) Vn > —k.
Then y and 7(x) coincide on [—k, k]. This shows that 7(R”) is dense in RZ.
However, 7 is not surjective.
Indeed the constant configuration z € R”, given by z(n) = 1 for all n € Z, is not in the
image of 7.
Otherwise, there would be x € R such that x(n+1) — x(n)? =1 for all n € Z.
This implies x(n) increasing and x(n) > 1 for all n.

Thus x(n) would have a finite limit as n — —o0.
This is impossible since @ — o = 1 has no real roots.
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Reversibility

Definition

Let G be a group and let A be a set. A cellular automaton 7: A® — AC is called
reversible if T is bijective and its inverse map 7~ *: A® — AC is also a cellular automaton.
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Reversibility

Definition

Let G be a group and let A be a set. A cellular automaton 7: A® — AC is called

reversible if T is bijective and its inverse map 7~ *: A® — AC is also a cellular automaton.
v

Proposition

Let G be a group and let A be a finite set. Then every bijective cellular automaton
7: A® — AC s reversible.
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Reversibility

Definition

Let G be a group and let A be a set. A cellular automaton 7: A® — AC is called

reversible if T is bijective and its inverse map 7~ *: A® — AC is also a cellular automaton.
v

Proposition

Let G be a group and let A be a finite set. Then every bijective cellular automaton
7: A® — AC s reversible.

Proof.

Let 7: A® — AC be a bijective cellular automaton. As 7 is continuous and
G-equivariant, its inverse map 7! is also G-equivariant and continuous by compactness
of A®. We deduce that 7 is a cellular automaton by the Curtis-Hedlund theorem. [

v
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Reversibility

Definition

Let G be a group and let A be a set. A cellular automaton 7: A® — AC is called

reversible if T is bijective and its inverse map 7~ *: A® — AC is also a cellular automaton.
v

Proposition

Let G be a group and let A be a finite set. Then every bijective cellular automaton
7: A® — AC s reversible.

Proof.

Let 7: A® — AC be a bijective cellular automaton. As 7 is continuous and
G-equivariant, its inverse map 7! is also G-equivariant and continuous by compactness
of A®. We deduce that 7 is a cellular automaton by the Curtis-Hedlund theorem. [

v

Remark

When A is infinite and the group G is non-periodic, one can always construct a bijective
cellular automaton 7: A® — A® which is not reversible [CC-2011].
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Reversibility of algebraic cellular automata

Theorem (CC-2010a)

Let G be a group, and K an uncountable algebraically closed field. Then every bijective
algebraic cellular automaton 7: A® — A® over K is reversible.
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Reversibility of algebraic cellular automata

Theorem (CC-2010a)

Let G be a group, and K an uncountable algebraically closed field. Then every bijective
algebraic cellular automaton 7: A® — A® over K is reversible.

Under the hypotheses of the preceding theorem, it may happen that the inverse cellular
automaton is not algebraic.
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Reversibility of algebraic cellular automata

Theorem (CC-2010a)

Let G be a group, and K an uncountable algebraically closed field. Then every bijective
algebraic cellular automaton 7: A® — A® over K is reversible.

Under the hypotheses of the preceding theorem, it may happen that the inverse cellular
automaton is not algebraic.

Example

Let K be an uncountable algebraically closed field of characteristic p > 0 and consider
the Frobenius automorphism f: K — K given by A — AP. Then the map 7: K¢ — K¢,
defined by

7(x)(g) = f(x(g)) Vx€ K®,Vge G,

is a bijective algebraic cellular automaton with memory set {1¢} and local defining map
f. The inverse cellular automaton 7~ 1: K¢ — K¢ is given by
T ()(g) = f'(x(g)) VxeK®VgeG,

1

Therefore 7! is not algebraic since =1 is not polynomial.
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Questions

The following questions are natural :
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(Q1) — Does there exist a bijective algebraic cellular automaton 7: A% — A% over C
whose inverse cellular automaton 7—%: AZ — A” is not algebraic ?
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Questions

The following questions are natural :

(Q1) — Does there exist a bijective algebraic cellular automaton 7: A% — A% over C
whose inverse cellular automaton 7—%: AZ — A” is not algebraic ?

(Q2) — Does there exist an injective algebraic cellular automaton 7: A* — A” over R
which is not surjective ?
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which is not surjective ?

(Q3) — For K = Q or K = F,, does there exist an injective algebraic cellular automaton
7: A — AZ over K which is not surjective ?
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Questions

The following questions are natural :

(Q1) — Does there exist a bijective algebraic cellular automaton 7: A% — A% over C
whose inverse cellular automaton 7—%: AZ — A” is not algebraic ?

(Q2) — Does there exist an injective algebraic cellular automaton 7: A* — A” over R
which is not surjective ?

(Q3) — For K = Q or K = F,, does there exist an injective algebraic cellular automaton
7: A — AZ over K which is not surjective ?

(Q4) — For K = Q or K = F,, does there exist an algebraic cellular automaton
7: A2 — A% over K which does not satisfy the closed image property ?
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