The Garden of Eden theorem: old and new

Michel Coornaert

IRMA, Université de Strasbourg

“Groups and Computation”
Conference dedicated to the 80th birthday of Paul Schupp
Stevens Institute of Technology
June 26–30, 2017
This is joint work with Tullio Ceccherini-Silberstein.
Configurations and Shifts

Take a group G (called the universe), a finite set A (called the alphabet). The set $A^G = \{ x : G \to A \}$ is called the set of configurations. The shift on A^G is the left action of G on A^G given by $G \times A^G \to A^G \ (g, x) \mapsto gx$ where $gx(h) = x(g^{-1}h) \ \forall \ h \in G$.

Michel Coornaert (IRMA, Université de Strasbourg)

The Garden of Eden theorem

June 26, 2017
Take:

- a group G (called the *universe*),
Take:

- a group G (called the \textit{universe}),
- a finite set A (called the \textit{alphabet}).
Configurations and Shifts

Take:
- a group G (called the universe),
- a finite set A (called the alphabet).

The set

$$A^G = \{ x : G \to A \}$$

is called the set of configurations.
Configurations and Shifts

Take:
- a group G (called the universe),
- a finite set A (called the alphabet).

The set

$$A^G = \{x : G \to A\}$$

is called the set of configurations.

The shift on A^G is the left action of G on A^G given by

$$G \times A^G \to A^G$$

$$(g, x) \mapsto gx$$

where

$$gx(h) = x(g^{-1}h) \quad \forall h \in G.$$
Cellular Automata

Definition

A cellular automaton over the group G and the alphabet A is a map $\tau : A^G \to A^G$ satisfying the following condition: there exist a finite subset $M \subset G$ and a map $\mu : A^M \to A$ such that $\tau(x)(g) = \mu((g^{-1}x)|M) \forall x \in A^G, \forall g \in G$, where $(g^{-1}x)|M$ denotes the restriction of the configuration $g^{-1}x$ to M. Such a set M is called a memory set and μ is called a local defining map for τ.

Michel Coornaert (IRMA, Université de Strasbourg)

The Garden of Eden theorem

June 26, 2017 4 / 29
Cellular Automata

Definition

A cellular automaton over the group G and the alphabet A is a map

$$\tau : A^G \to A^G$$
A cellular automaton over the group G and the alphabet A is a map

$$\tau : A^G \to A^G$$

satisfying the following condition:

there exist a finite subset $M \subset G$ and a map $\mu : A^M \to A$ such that

$$(\tau(x))(g) = \mu((g^{-1}x)|_M) \quad \forall x \in A^G, \forall g \in G,$$

where $(g^{-1}x)|_M$ denotes the restriction of the configuration $g^{-1}x$ to M.
Cellular Automata

Definition

A cellular automaton over the group G and the alphabet A is a map

$$\tau : A^G \to A^G$$

satisfying the following condition:

there exist a finite subset $M \subset G$ and a map $\mu : A^M \to A$ such that

$$(\tau(x))(g) = \mu((g^{-1}x)|_M) \quad \forall x \in A^G, \forall g \in G,$$

where $(g^{-1}x)|_M$ denotes the restriction of the configuration $g^{-1}x$ to M.

Such a set M is called a memory set and μ is called a local defining map for τ.

Example: Conway’s Game of Life
Example: Conway’s Game of Life

Death by overcrowding:
any live cell with more than three live neighbours dies at the next generation

Death by loneliness:
any live cell with fewer than two live neighbours dies at the next generation

Birth:
dead cell with exactly three live neighbours comes to live at the next generation
Example: Conway’s Game of Life (continued)
Example: Conway’s Game of Life (continued)

Here \(G = \mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z} \) and \(A = \{0, 1\} \).
Example: Conway’s Game of Life (continued)

Here $G = \mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z}$ and $A = \{0, 1\}$. Life is described by the cellular automaton

$$\tau : \{0, 1\}^{\mathbb{Z}^2} \rightarrow \{0, 1\}^{\mathbb{Z}^2}$$
Example: Conway’s Game of Life (continued)

Here $G = \mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z}$ and $A = \{0, 1\}$. Life is described by the cellular automaton

$$\tau: \{0, 1\}^\mathbb{Z}^2 \to \{0, 1\}^\mathbb{Z}^2$$

with memory set $M = \{-1, 0, 1\}^2 \subset \mathbb{Z}^2$ and local defining map $\mu: A^M \to A$ given by

$$\mu(y) = \begin{cases}
1 & \text{if } \sum_{m \in M} y(m) = 3 \\
0 & \text{if } \sum_{m \in M} y(m) = 4 \text{ and } y((0, 0)) = 1 \\
0 & \text{otherwise}
\end{cases}$$

$\forall y \in A^M$.
Let $\tau: A^G \rightarrow A^G$ be a cellular automaton.

Definition
Two configurations $x_1, x_2 \in A^G$ are almost equal if they coincide outside of a finite subset of G.

Definition
Two configurations $x_1, x_2 \in A^G$ form a diamond for τ if $x_1 \neq x_2$; x_1 and x_2 are almost equal; $\tau(x_1) = \tau(x_2)$.

Definition
One says that τ is pre-injective if it has no diamonds.
Let $\tau : A^G \rightarrow A^G$ be a cellular automaton.
Let $\tau : A^G \to A^G$ be a cellular automaton.

Definition

Two configurations $x_1, x_2 \in A^G$ are **almost equal** if they coincide outside of a finite subset of G.

Definition

One says that τ is **pre-injective** if it has no diamonds.
Let $\tau : A^G \to A^G$ be a cellular automaton.

Definition

Two configurations $x_1, x_2 \in A^G$ are almost equal if they coincide outside of a finite subset of G.

Definition

Two configurations $x_1, x_2 \in A^G$ form a diamond for τ if

- $x_1 \neq x_2$;
- x_1 and x_2 are almost equal;
- $\tau(x_1) = \tau(x_2)$.
Let $\tau: A^G \rightarrow A^G$ be a cellular automaton.

Definition

Two configurations $x_1, x_2 \in A^G$ are **almost equal** if they coincide outside of a finite subset of G.

Definition

Two configurations $x_1, x_2 \in A^G$ form a **diamond** for τ if

- $x_1 \neq x_2$;
- x_1 and x_2 are almost equal;
- $\tau(x_1) = \tau(x_2)$.

Definition

One says that τ is **pre-injective** if it has no diamonds.
Example

Take \(G = \mathbb{Z}_2 \) and \(A = \{0, 1\} \).

Conway's Game of Life \(\tau \): \(A^G \rightarrow A^G \) is not pre-injective.

The configurations \(x_1, x_2 \in A^G \) defined by

\[
x_1(g) = 0 \quad \forall g \in G
\]

and

\[
x_2(0) = 1 \quad \text{and} \quad x_2(g) = 0 \quad \forall g \in G \setminus \{0\}
\]

form a diamond.
Diamonds and Pre-injectivity (continued)

Example

Take $G = \mathbb{Z}^2$ and $A = \{0, 1\}$. Conway’s Game of Life $\tau: A^G \to A^G$ is **not** pre-injective.

The configurations $x_1, x_2 \in A^G$ defined by

$$x_1(g) = 0 \quad \forall g \in G$$

and

$$x_2(0_G) = 1 \quad \text{and} \quad x_2(g) = 0 \quad \forall g \in G \setminus \{0_G\}$$

form a diamond.
Injectivity vs Pre-injectivity

Note that τ injective \Rightarrow τ pre-injective. The converse is false.

Example: Take $G = \mathbb{Z}$, $A = \{0, 1\} = \mathbb{Z}/2\mathbb{Z}$, and $\tau: A \times G \rightarrow A \times G$ given by $\tau(x)(g) = x(g) + x(g + 1)$ for all $x \in A \times G$, $g \in G$.

τ is a cellular automaton admitting $M = \{0, 1\} \subset G$ as a memory set.

τ is pre-injective.

τ is not injective (the two constant configurations have the same image).
Injectivity vs Pre-injectivity

Note that

\[\tau \text{ injective} \implies \tau \text{ pre-injective}. \]

Example

Take \(G = \mathbb{Z} \), \(A = \{0, 1\} = \mathbb{Z}/2\mathbb{Z} \), and \(\tau : A^G \rightarrow A^G \) given by

\[\tau(x)(g) = x(g) + x(g + 1) \quad \forall x \in A^G, g \in G. \]

\(\tau \) is a cellular automaton admitting \(M = \{0, 1\} \subset G \) as a memory set.

\(\tau \) is pre-injective.

\(\tau \) is not injective (the two constant configurations have the same image).
Injectivity vs Pre-injectivity

Note that

\[\tau \text{ injective } \implies \tau \text{ pre-injective}. \]

The converse is false.
Injectivity vs Pre-injectivity

Note that
\[\tau \text{ injective} \implies \tau \text{ pre-injective}. \]
The converse is false.

Example

Take \(G = \mathbb{Z}, \ A = \{0, 1\} = \mathbb{Z}/2\mathbb{Z} \), and \(\tau : A^G \to A^G \) given by
\[\tau(x)(g) = x(g) + x(g + 1) \quad \forall x \in A^G, g \in G. \]
\(\tau \) is a cellular automaton admitting \(M = \{0, 1\} \subset G \) as a memory set.
Injectivity vs Pre-injectivity

Note that \(\tau \) injective \(\Rightarrow \) \(\tau \) pre-injective.

The converse is false.

Example

Take \(G = \mathbb{Z} \), \(A = \{0, 1\} = \mathbb{Z}/2\mathbb{Z} \), and \(\tau : A^G \to A^G \) given by

\[
\tau(x)(g) = x(g) + x(g + 1) \quad \forall x \in A^G, g \in G.
\]

\(\tau \) is a cellular automaton admitting \(M = \{0, 1\} \subset G \) as a memory set. \(\tau \) is pre-injective.
Injectivity vs Pre-injectivity

Note that
\[\tau \text{ injective} \implies \tau \text{ pre-injective}. \]
The converse is false.

Example

Take \(G = \mathbb{Z}, \ A = \{0, 1\} = \mathbb{Z}/2\mathbb{Z} \), and \(\tau : A^G \to A^G \) given by
\[
\tau(x)(g) = x(g) + x(g + 1) \quad \forall x \in A^G, g \in G.
\]
\(\tau \) is a cellular automaton admitting \(M = \{0, 1\} \subset G \) as a memory set.
\(\tau \) is pre-injective.
\(\tau \) is not injective (the two constant configurations have the same image).
The GOE Theorem for \mathbb{Z}^d

The following theorem is due to Moore [Mo-1963] and Myhill [My-1963].

Theorem (GOE theorem)

Let $G = \mathbb{Z}^d$ and A a finite set. Let $\tau: A^G \rightarrow A^G$ be a cellular automaton. Then

\[\tau \text{ surjective} \iff \tau \text{ pre-injective.} \]

Moore's implication

Moore: \Rightarrow

Myhill: \Leftarrow

Example ($G = \mathbb{Z}^2$)

Conway's Game of Life is not pre-injective. Therefore it is not surjective by Moore's implication.
The GOE Theorem for \mathbb{Z}^d

The following theorem is due to Moore [Mo-1963] and Myhill [My-1963].
The GOE Theorem for \mathbb{Z}^d

The following theorem is due to Moore [Mo-1963] and Myhill [My-1963].

Theorem (GOE theorem)

Let $G = \mathbb{Z}^d$ and A a finite set. Let $\tau: A^G \to A^G$ be a cellular automaton. Then

τ surjective \iff τ pre-injective.
The GOE Theorem for \mathbb{Z}^d

The following theorem is due to Moore [Mo-1963] and Myhill [My-1963].

Theorem (GOE theorem)

Let $G = \mathbb{Z}^d$ and A a finite set. Let $\tau: A^G \to A^G$ be a cellular automaton. Then τ surjective \iff τ pre-injective.

- \implies is due to Moore,
- \iff is due to Myhill.
The GOE Theorem for \mathbb{Z}^d

The following theorem is due to Moore [Mo-1963] and Myhill [My-1963].

Theorem (GOE theorem)

Let $G = \mathbb{Z}^d$ and A a finite set. Let $\tau : A^G \to A^G$ be a cellular automaton. Then

τ surjective \iff τ pre-injective.

- \implies is due to Moore,
- \iff is due to Myhill.

Example ($G = \mathbb{Z}^2$)

Conway’s Game of Life is not pre-injective.
The GOE Theorem for \mathbb{Z}^d

The following theorem is due to Moore [Mo-1963] and Myhill [My-1963].

Theorem (GOE theorem)

Let $G = \mathbb{Z}^d$ and A a finite set. Let $\tau : A^G \rightarrow A^G$ be a cellular automaton. Then τ surjective $\iff \tau$ pre-injective.

- \implies is due to Moore,
- \iff is due to Myhill.

Example ($G = \mathbb{Z}^2$)

Conway’s Game of Life is not pre-injective.
Therefore it is not surjective by Moore’s implication.
The GOE theorem for Groups of Subexponential Growth

Schupp [S-1988] asked the following.

Question
Is the analogue of the Moore-Myhill theorem true exactly for virtually nilpotent groups?

Definition
A group G with finite generating set S has subexponential growth if
$$\lim_{n \to \infty} \frac{\log |B_n|}{n} = 0,$$
where B_n is a ball of radius n in the Cayley graph of (G, S) and $|\cdot|$ denotes cardinality.

Machı and Mignosi [MM-1993] proved that the GOE theorem remains valid when G is a f.g. group with subexponential growth.

Every f.g. virtually nilpotent group has subexponential growth but there are f.g. groups of subexponential growth that are not virtually nilpotent.
The first examples of such groups were given by Grigorchuk [Gri-1984].
The GOE theorem for Groups of Subexponential Growth

Schupp [S-1988] asked the following.
The GOE theorem for Groups of Subexponential Growth

Schupp [S-1988] asked the following.

Question

Is the analogue of the Moore-Myhill theorem true exactly for virtually nilpotent groups?
The GOE theorem for Groups of Subexponential Growth

Schupp [S-1988] asked the following.

Question

Is the analogue of the Moore-Myhill theorem true exactly for virtually nilpotent groups?

Definition

A group G with finite generating set S has subexponential growth if

$$\lim_{n \to \infty} \frac{\log |B_n|}{n} = 0,$$

where B_n is a ball of radius n in the Cayley graph of (G, S) and $|\cdot|$ denotes cardinality.
Schupp [S-1988] asked the following.

Question

Is the analogue of the Moore-Myhill theorem true exactly for virtually nilpotent groups?

Definition

A group G with finite generating set S has subexponential growth if

$$\lim_{n \to \infty} \frac{\log |B_n|}{n} = 0,$$

where B_n is a ball of radius n in the Cayley graph of (G, S) and $| \cdot |$ denotes cardinality.

Machì and Mignosi [MM-1993] proved that the GOE theorem remains valid when G is a f.g. group with subexponential growth.
Schupp [S-1988] asked the following.

Question

Is the analogue of the Moore-Myhill theorem true exactly for virtually nilpotent groups?

Definition

A group G with finite generating set S has **subexponential growth** if

$$\lim_{n \to \infty} \frac{\log |B_n|}{n} = 0,$$

where B_n is a ball of radius n in the Cayley graph of (G, S) and $| \cdot |$ denotes cardinality.

Machì and Mignosi [MM-1993] proved that the GOE theorem remains valid when G is a f.g. group with subexponential growth.

Every f.g. virtually nilpotent group has subexponential growth but there are f.g. groups of subexponential growth that are not virtually nilpotent.
Schupp [S-1988] asked the following.

Question

Is the analogue of the Moore-Myhill theorem true exactly for virtually nilpotent groups?

Definition

A group G with finite generating set S has *subexponential growth* if

$$
\lim_{n \to \infty} \frac{\log |B_n|}{n} = 0,
$$

where B_n is a ball of radius n in the Cayley graph of (G, S) and $|\cdot|$ denotes cardinality.

Machì and Mignosi [MM-1993] proved that the GOE theorem remains valid when G is a f.g. group with subexponential growth. Every f.g. virtually nilpotent group has subexponential growth but there are f.g. groups of subexponential growth that are not virtually nilpotent. The first examples of such groups were given by Grigorchuk [Gri-1984].
The GOE Theorem for Amenable Groups

Definition

A group G is amenable if there exists a finitely-additive invariant probability measure defined on the set of all subsets of G. All f.g. groups of subexponential growth, all solvable groups, all locally finite groups are amenable.

Ceccherini-Silberstein, Machì and Scarabotti [CMS-1999] proved that the GOE theorem remains valid for amenable groups.

Bartholdi [B-2010] proved that if G is a non-amenable group then G does not satisfy Moore’s implication, i.e., there exist a finite set A and a cellular automaton $\tau: A \rightarrow G$ that is surjective but not pre-injective.

Bartholdi and Kielak [BK-2016] proved that if G is a non-amenable group then G does not satisfy Myhill’s implication either, i.e., there exist a finite set A and a cellular automaton $\tau: A \rightarrow G$ that is pre-injective but not surjective.
A group G is amenable if there exists a finitely-additive invariant probability measure defined on the set of all subsets of G.

Bartholdi \cite{B-2010} proved that if G is a non-amenable group then G does not satisfy Moore's implication, i.e., there exist a finite set A and a cellular automaton $\tau: A \times G \to A \times G$ that is surjective but not pre-injective.

Bartholdi and Kielak \cite{BK-2016} proved that if G is a non-amenable group then G does not satisfy Myhill's implication either, i.e., there exist a finite set A and a cellular automaton $\tau: A \times G \to A \times G$ that is pre-injective but not surjective.
The GOE Theorem for Amenable Groups

Definition

A group G is **amenable** if there exists a finitely-additive invariant probability measure defined on the set of all subsets of G.

All f.g. groups of subexponential growth, all solvable groups, all locally finite groups are amenable.
Definition

A group G is amenable if there exists a finitely-additive invariant probability measure defined on the set of all subsets of G.

All f.g. groups of subexponential growth, all solvable groups, all locally finite groups are amenable. Ceccherini-Silberstein, Machì and Scarabotti [CMS-1999] proved that the GOE theorem remains valid for amenable groups.
A group G is amenable if there exists a finitely-additive invariant probability measure defined on the set of all subsets of G.

All f.g. groups of subexponential growth, all solvable groups, all locally finite groups are amenable.

Ceccherini-Silberstein, Machì and Scarabotti [CMS-1999] proved that the GOE theorem remains valid for amenable groups.

Bartholdi [B-2010] proved that if G is a non-amenable group then G does not satisfy Moore’s implication, i.e., there exist a finite set A and a cellular automaton $\tau : A^G \to A^G$ that is surjective but not pre-injective.
Definition

A group G is **amenable** if there exists a finitely-additive invariant probability measure defined on the set of all subsets of G.

All f.g. groups of subexponential growth, all solvable groups, all locally finite groups are amenable.

Ceccherini-Silberstein, Machì and Scarabotti [CMS-1999] proved that the GOE theorem remains valid for amenable groups.

Bartholdi [B-2010] proved that if G is a non-amenable group then G does not satisfy Moore’s implication, i.e., there exist a finite set A and a cellular automaton $\tau : A^G \to A^G$ that is surjective but not pre-injective.

Bartholdi and Kielak [BK-2016] proved that if G is a non-amenable group then G does not satisfy Myhill’s implication either, i.e., there exist a finite set A and a cellular automaton $\tau : A^G \to A^G$ that is pre-injective but not surjective.
What Gromov Said

Gromov [Gro-1999, p. 195] wrote:

"... the Garden of Eden theorem can be generalized to a suitable class of hyperbolic actions ..."
What Gromov Said

Gromov [Gro-1999, p. 195] wrote:

"... the Garden of Eden theorem can be generalized to a suitable class of hyperbolic actions ..."
Gromov [Gro-1999, p. 195] wrote:

“...the Garden of Eden theorem can be generalized to a suitable class of hyperbolic actions ...”
A dynamical system is a pair \((X,G)\), where \(X\) is a compact metrizable topological space, \(G\) is a countable group acting continuously on \(X\). The space \(X\) is called the phase space. If \(f: X \rightarrow X\) is a homeomorphism, the d.s. generated by \(f\) is the d.s. \((X,Z)\), where \(Z\) acts on \(X\) by \((n,x) \mapsto f^n(x)\) for all \(n \in Z\), \(x \in X\). This d.s. is also denoted \((X,f)\).
A dynamical system is a pair \((X, G)\), where

- \(X\) is a compact metrizable topological space,
A dynamical system is a pair \((X, G)\), where

- \(X\) is a compact metrizable topological space,
- \(G\) is a countable group acting continuously on \(X\).
A dynamical system is a pair \((X, G)\), where
- \(X\) is a compact metrizable topological space,
- \(G\) is a countable group acting continuously on \(X\).

The space \(X\) is called the phase space.
A dynamical system is a pair (X, G), where
- X is a compact metrizable topological space,
- G is a countable group acting continuously on X.

The space X is called the phase space.

If $f : X \to X$ is a homeomorphism, the d.s. generated by f is the d.s. (X, \mathbb{Z}), where \mathbb{Z} acts on X by

$$(n, x) \mapsto f^n(x) \quad \forall n \in \mathbb{Z}, x \in X.$$

This d.s. is also denoted (X, f).

Examples of Dynamical Systems

Example

Let A be a finite set and G a countable group. Equip A with its discrete topology and A^G with the product topology. Then the shift (A^G, G) is a d.s.

Example (Arnold's cat)

This is the d.s. (\mathbb{T}^2, f), where f is the automorphism of the 2-torus $\mathbb{T}^2 = \mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}$ given by $f(x) = (x_2 x_1 + x_2) \forall x = (x_1, x_2) \in \mathbb{T}^2$. Thus we have $f(x) = Ax$, where $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ is the cat matrix.
Example

Let \(A \) be a finite set and \(G \) a countable group.
Example

Let A be a finite set and G a countable group. Equip A with its discrete topology and A^G with the product topology.
Example

Let A be a finite set and G a countable group. Equip A with its discrete topology and A^G with the product topology. Then the shift (A^G, G) is a d.s.
Examples of Dynamical Systems

Example
Let A be a finite set and G a countable group. Equip A with its discrete topology and A^G with the product topology. Then the shift (A^G, G) is a d.s.

Example (Arnold’s cat)
This is the d.s. (\mathbb{T}^2, f), where f is the automorphism of the 2-torus $\mathbb{T}^2 = \mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}$ given by

$$f(x) = \begin{pmatrix} x_2 \\ x_1 + x_2 \end{pmatrix} \quad \forall x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{T}^2.$$
Examples of Dynamical Systems

Example

Let A be a finite set and G a countable group. Equip A with its discrete topology and A^G with the product topology. Then the shift (A^G, G) is a d.s.

Example (Arnold’s cat)

This is the d.s. (\mathbb{T}^2, f), where f is the automorphism of the 2-torus $\mathbb{T}^2 = \mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}$ given by

$$f(x) = \begin{pmatrix} x_2 \\ x_1 + x_2 \end{pmatrix} \quad \forall x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{T}^2.$$

Thus we have $f(x) = Ax$, where $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ is the cat matrix.
Let (X, G) be a dynamical system. Let d be a metric on X that is compatible with the topology.

Definition

Two points $x, y \in X$ are called homoclinic if

$$\lim_{g \to \infty} d(gx, gy) = 0,$$

i.e., for every $\varepsilon > 0$, there exists a finite subset $F \subset G$ such that

$$d(gx, gy) < \varepsilon \quad \forall g \in G \setminus F.$$
Let (X, G) be a dynamical system.
Let \((X, G)\) be a dynamical system. Let \(d\) be a metric on \(X\) that is compatible with the topology.

Homoclinicity is an equivalence relation on \(X\).

This relation does not depend on the choice of \(d\).
Let (X, G) be a dynamical system. Let d be a metric on X that is compatible with the topology.

Definition

Two points $x, y \in X$ are called homoclinic if

$$\lim_{g \to \infty} d(gx, gy) = 0,$$

i.e., for every $\varepsilon > 0$, there exists a finite subset $F \subset G$ such that $d(gx, gy) < \varepsilon \quad \forall g \in G \setminus F$. Homoclinicity is an equivalence relation on X. This relation does not depend on the choice of d.

Michel Coornaert (IRMA, Université de Strasbourg)
Homoclinicity

Let \((X, G)\) be a dynamical system. Let \(d\) be a metric on \(X\) that is compatible with the topology.

Definition

Two points \(x, y \in X\) are called **homoclinic** if

\[
\lim_{g \to \infty} d(gx, gy) = 0,
\]

i.e., for every \(\varepsilon > 0\), there exists a finite subset \(F \subset G\) such that

\[
d(gx, gy) < \varepsilon \quad \forall g \in G \setminus F.
\]
Homoclinicity

Let \((X, G)\) be a dynamical system. Let \(d\) be a metric on \(X\) that is compatible with the topology.

Definition

Two points \(x, y \in X\) are called **homoclinic** if

\[
\lim_{g \to \infty} d(gx, gy) = 0,
\]

i.e., for every \(\varepsilon > 0\), there exists a finite subset \(F \subset G\) such that

\[
d(gx, gy) < \varepsilon \quad \forall g \in G \setminus F.
\]

Homoclinicity is an equivalence relation on \(X\).
Let \((X, G)\) be a dynamical system. Let \(d\) be a metric on \(X\) that is compatible with the topology.

Definition

Two points \(x, y \in X\) are called **homoclinic** if

\[
\lim_{g \to \infty} d(gx, gy) = 0,
\]

i.e., for every \(\varepsilon > 0\), there exists a finite subset \(F \subset G\) such that

\[
d(gx, gy) < \varepsilon \quad \forall g \in G \setminus F.
\]

Homoclinicity is an equivalence relation on \(X\). This relation does not depend on the choice of \(d\).
Homoclinicity (continued)

Example

Let A be a finite set and G a countable group. Consider the shift (A, G). Two configurations $x, y \in A^G$ are homoclinic if and only if they are almost equal.

Example

Consider Arnold's cat (T^2, f). Equip $T^2 = \mathbb{R}^2 / \mathbb{Z}^2$ with its Euclidean structure. The homoclinicity class of a point $x \in T^2$ is $D \cap D'$, where D is the line passing through x whose slope is the golden mean $1 + \sqrt{5}/2 = 1.618...$ and D' is the line passing through x and orthogonal to D'. The slopes of D and D' are the eigenvalues of the cat matrix. Each homoclinicity class is countably-infinite and dense in T^2.
Example

Let A be a finite set and G a countable group.
Example

Let A be a finite set and G a countable group. Consider the shift (A^G, G). Two configurations $x, y \in A^G$ are homoclinic if and only if they are almost equal.

Example

Consider Arnold's cat (T^2, f). Equip $T^2 = \mathbb{R}^2 / \mathbb{Z}^2$ with its Euclidean structure. The homoclinicity class of a point $x \in T^2$ is $D \cap D'$, where D is the line passing through x whose slope is the golden mean $1 + \sqrt{5} = 1.618...$ and D' is the line passing through x and orthogonal to D'. The slopes of D and D' are the eigenvalues of the cat matrix. Each homoclinicity class is countably-infinite and dense in T^2.

Michel Coornaert (IRMA, Université de Strasbourg)
Example

Let A be a finite set and G a countable group. Consider the shift (A^G, G). Two configurations $x, y \in A^G$ are homoclinic if and only if they are almost equal.
Example

Let \(A \) be a finite set and \(G \) a countable group. Consider the shift \((A^G, G)\). Two configurations \(x, y \in A^G \) are homoclinic if and only if they are almost equal.

Example

Consider Arnold’s cat \((\mathbb{T}^2, f)\).
Example

Let A be a finite set and G a countable group. Consider the shift (A^G, G). Two configurations $x, y \in A^G$ are homoclinic if and only if they are almost equal.

Example

Consider Arnold’s cat (\mathbb{T}^2, f). Equip $\mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2$ with its Euclidean structure.
Homoclinicity (continued)

Example

Let A be a finite set and G a countable group. Consider the shift (A^G, G). Two configurations $x, y \in A^G$ are homoclinic if and only if they are almost equal.

Example

Consider Arnold’s cat (\mathbb{T}^2, f). Equip $\mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2$ with its Euclidean structure. The homoclinicity class of a point $x \in \mathbb{T}^2$ is $D \cap D'$, where D is the line passing through x whose slope is the golden mean $\frac{1 + \sqrt{5}}{2} = 1.618 \ldots$ and D' is the line passing through x and orthogonal to D'.
Example

Let A be a finite set and G a countable group. Consider the shift (A^G, G). Two configurations $x, y \in A^G$ are homoclinic if and only if they are almost equal.

Example

Consider Arnold’s cat (\mathbb{T}^2, f). Equip $\mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2$ with its Euclidean structure. The homoclinicity class of a point $x \in \mathbb{T}^2$ is $D \cap D'$, where D is the line passing through x whose slope is the golden mean $\frac{1 + \sqrt{5}}{2} = 1.618\ldots$ and D' is the line passing through x and orthogonal to D'. The slopes of D and D' are the eigenvalues of the cat matrix.
Homoclinicity (continued)

Example

Let A be a finite set and G a countable group. Consider the shift (A^G, G). Two configurations $x, y \in A^G$ are homoclinic if and only if they are almost equal.

Example

Consider Arnold’s cat (\mathbb{T}^2, f). Equip $\mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2$ with its Euclidean structure. The homoclinicity class of a point $x \in \mathbb{T}^2$ is $D \cap D'$, where D is the line passing through x whose slope is the golden mean $\frac{1 + \sqrt{5}}{2} = 1.618\ldots$ and D' is the line passing through x and orthogonal to D'. The slopes of D and D' are the eigenvalues of the cat matrix. Each homoclinicity class is countably-infinite and dense in \mathbb{T}^2.
Let \((X, G)\) be a dynamical system.

Definition

An endomorphism of the d.s. \((X, G)\) is a continuous map \(\tau: X \to X\) such that \(\tau\) commutes with the action of \(G\), that is, such that \(\tau(gx) = g\tau(x)\) for all \(g \in G\), \(x \in X\).

Example

Let \(A\) be a finite set and \(G\) a countable group. Then the endomorphisms of the shift \((A^G, G)\) are precisely the cellular automata \(\tau: A^G \to A^G\) (Curtis-Hedlund-Lyndon theorem).

Michel Coornaert (IRMA, Université de Strasbourg)

The Garden of Eden theorem

June 26, 2017 18 / 29
Endomorphisms of Dynamical Systems

Let \((X, G)\) be a dynamical system.
Let \((X, G)\) be a dynamical system.

Definition

An **endomorphism** of the d.s. \((X, G)\) is a continuous map \(\tau: X \to X\) such that \(\tau\) commutes with the action of \(G\), that is, such that

\[
\tau(gx) = g\tau(x) \quad \forall g \in G, x \in X.
\]
Let \((X, G)\) be a dynamical system.

Definition

An **endomorphism** of the d.s. \((X, G)\) is a continuous map \(\tau : X \to X\) such that \(\tau\) commutes with the action of \(G\), that is, such that

\[
\tau(gx) = g\tau(x) \quad \forall g \in G, x \in X.
\]

Example

Let \(A\) be a finite set and \(G\) a countable group.
Endomorphisms of Dynamical Systems

Let \((X, G)\) be a dynamical system.

Definition

An endomorphism of the d.s. \((X, G)\) is a continuous map \(\tau : X \to X\) such that \(\tau\) commutes with the action of \(G\), that is, such that

\[
\tau(gx) = g\tau(x) \quad \forall g \in G, x \in X.
\]

Example

Let \(A\) be a finite set and \(G\) a countable group. Then the endomorphisms of the shift \((A^G, G)\) are precisely the cellular automata \(\tau : A^G \to A^G\).
Endomorphisms of Dynamical Systems

Let \((X, G)\) be a dynamical system.

Definition

An endomorphism of the d.s. \((X, G)\) is a continuous map \(\tau: X \to X\) such that \(\tau\) commutes with the action of \(G\), that is, such that

\[
\tau(gx) = g\tau(x) \quad \forall g \in G, x \in X.
\]

Example

Let \(A\) be a finite set and \(G\) a countable group. Then the endomorphisms of the shift \((A^G, G)\) are precisely the cellular automata \(\tau: A^G \to A^G\) (Curtis-Hedlund-Lyndon theorem).
Let (X, G) be a dynamical system.

Definition
An endomorphism $\tau: X \to X$ of the d.s. (X, G) is called pre-injective if its restriction to each homoclinicity class is injective.

Example
For shift systems (A^G, G), the two definitions of pre-injectivity are equivalent.

Example
The group endomorphism $\tau: T^2 \to T^2$, given by $\tau(x) := 2x$ for all $x \in T^2$, is an endomorphism of Arnold’s cat (T^2, f).

The kernel of τ consists of four points: $\text{Ker}(\tau) = \{ (0,0), (\frac{1}{2}, 0), (0, \frac{1}{2}), (\frac{1}{2}, \frac{1}{2}) \}$.

The endomorphism τ is pre-injective but not injective.
Pre-injective Endomorphisms

Let (X, G) be a dynamical system.
Pre-injective Endomorphisms

Let \((X, G)\) be a dynamical system.

Definition

An endomorphism \(\tau: X \rightarrow X\) of the d.s. \((X, G)\) is called **pre-injective** if its restriction to each homoclinicity class is injective.

Example

For shift systems \((A, G)\), the two definitions of pre-injectivity are equivalent.

Example

The group endomorphism \(\tau: T^2 \rightarrow T^2\), given by \(\tau(x) := 2x\) for all \(x \in T^2\), is an endomorphism of Arnold’s cat \((T^2, f)\).

The kernel of \(\tau\) consists of four points:

\[
\text{Ker}(\tau) = \{ (0,0), (1/2,0), (0,1/2), (1/2,1/2) \}.
\]

The endomorphism \(\tau\) is pre-injective but not injective.
Pre-injective Endomorphisms

Let \((X, G)\) be a dynamical system.

Definition

An endomorphism \(\tau : X \to X\) of the d.s. \((X, G)\) is called pre-injective if its restriction to each homoclinicity class is injective.

Example

For shift systems \((A^G, G)\), the two definitions of pre-injectivity are equivalent.
Pre-injective Endomorphisms

Let \((X, G)\) be a dynamical system.

Definition

An endomorphism \(\tau: X \to X\) of the d.s. \((X, G)\) is called **pre-injective** if its restriction to each homoclinicity class is injective.

Example

For shift systems \((A^G, G)\), the two definitions of pre-injectivity are equivalent.

Example

The group endomorphism \(\tau: \mathbb{T}^2 \to \mathbb{T}^2\), given by \(\tau(x) := 2x\) for all \(x \in \mathbb{T}^2\), is an endomorphism of Arnold’s cat \((\mathbb{T}^2, f)\).
Pre-injective Endomorphisms

Let \((X, G)\) be a dynamical system.

Definition

An endomorphism \(\tau: X \to X\) of the d.s. \((X, G)\) is called pre-injective if its restriction to each homoclinicity class is injective.

Example

For shift systems \((A^G, G)\), the two definitions of pre-injectivity are equivalent.

Example

The group endomorphism \(\tau: \mathbb{T}^2 \to \mathbb{T}^2\), given by \(\tau(x) := 2x\) for all \(x \in \mathbb{T}^2\), is an endomorphism of Arnold's cat \((\mathbb{T}^2, f)\). The kernel of \(\tau\) consists of four points:

\[
\text{Ker}(\tau) = \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1/2 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1/2 \\ 1/2 \\ 1/2 \end{pmatrix}, \begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{pmatrix} \right\}.
\]
Pre-injective Endomorphisms

Let \((X, G)\) be a dynamical system.

Definition

An endomorphism \(\tau: X \rightarrow X\) of the d.s. \((X, G)\) is called **pre-injective** if its restriction to each homoclinicity class is injective.

Example

For shift systems \((A^G, G)\), the two definitions of pre-injectivity are equivalent.

Example

The group endomorphism \(\tau: \mathbb{T}^2 \rightarrow \mathbb{T}^2\), given by \(\tau(x) := 2x\) for all \(x \in \mathbb{T}^2\), is an endomorphism of Arnold's cat \((\mathbb{T}^2, f)\).

The kernel of \(\tau\) consists of four points:

\[
\text{Ker}(\tau) = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1/2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1/2 \end{pmatrix}, \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix} \right\}.
\]

The endomorphism \(\tau\) is pre-injective but not injective.
Let \((X, G)\) be a dynamical system.

Definition

One says that the d.s. \((X, G)\) satisfies the Garden of Eden theorem if every endomorphism \(\tau: X \to X\) of \((X, G)\) satisfies \(\tau\) surjective \(\iff\) \(\tau\) pre-injective.

Example

Arnold's cat \((T^2, f)\) satisfies the GOE theorem. Indeed, it is easy to show, using spectral analysis, that any endomorphism \(\tau\) of the cat is of the form \(\tau = m\text{Id} + nf\), for some \(m, n \in \mathbb{Z}\). With the exception of the 0-endomorphism, every endomorphism of the cat is both surjective and pre-injective.
Let (X, G) be a dynamical system.
Let \((X, G)\) be a dynamical system.

Definition

One says that the d.s. \((X, G)\) satisfies the Garden of Eden theorem if every endomorphism \(\tau : X \to X\) of \((X, G)\) satisfies

\[\tau \text{ surjective} \iff \tau \text{ pre-injective} .\]

Example

Arnold’s cat \((T^2, f)\) satisfies the GOE theorem. Indeed, it is easy to show, using spectral analysis, that any endomorphism \(\tau\) of the cat is of the form \(\tau = m \text{Id} + nf\), for some \(m, n \in \mathbb{Z}\). With the exception of the 0-endomorphism, every endomorphism of the cat is both surjective and pre-injective.
Let \((X, G)\) be a dynamical system.

Definition

One says that the d.s. \((X, G)\) satisfies the Garden of Eden theorem if every endomorphism \(\tau : X \to X\) of \((X, G)\) satisfies

\[
\tau \text{ surjective } \iff \tau \text{ pre-injective.}
\]
Let \((X, G)\) be a dynamical system.

Definition

One says that the d.s. \((X, G)\) satisfies the Garden of Eden theorem if every endomorphism \(\tau : X \to X\) of \((X, G)\) satisfies

\[
\tau \text{ surjective} \iff \tau \text{ pre-injective}.
\]

Example

Arnold’s cat \((\mathbb{T}^2, f)\) satisfies the GOE theorem.
Let \((X, G)\) be a dynamical system.

Definition

One says that the d.s. \((X, G)\) satisfies the **Garden of Eden theorem** if every endomorphism \(\tau : X \rightarrow X\) of \((X, G)\) satisfies

\[
\tau \text{ surjective } \iff \tau \text{ pre-injective}.
\]

Example

Arnold’s cat \((\mathbb{T}^2, f)\) satisfies the GOE theorem. Indeed, it is easy to show, using spectral analysis, that any endomorphism \(\tau\) of the cat is of the form \(\tau = m \text{Id} + nf\), for some \(m, n \in \mathbb{Z}\).
Let \((X, G)\) be a dynamical system.

Definition

One says that the d.s. \((X, G)\) satisfies the Garden of Eden theorem if every endomorphism \(\tau : X \to X\) of \((X, G)\) satisfies

\[\tau \text{ surjective} \iff \tau \text{ pre-injective}.\]

Example

Arnold’s cat \((\mathbb{T}^2, f)\) satisfies the GOE theorem. Indeed, it is easy to show, using spectral analysis, that any endomorphism \(\tau\) of the cat is of the form \(\tau = m \text{Id} + nf\), for some \(m, n \in \mathbb{Z}\). With the exception of the 0-endomorphism, every endomorphism of the cat is both surjective and pre-injective.
Anosov Diffeomorphisms

Let $f: M \to M$ be a diffeomorphism of a smooth compact manifold M. One says that f is Anosov if the tangent bundle TM of M continuously splits as a direct sum $TM = E_s \oplus E_u$ of two df-invariant subbundles E_s and E_u such that, with respect to some (or equivalently any) Riemannian metric on M, the differential df is exponentially contracting on E_s and exponentially expanding on E_u, i.e., there are constants $C > 0$ and $0 < \lambda < 1$ such that

$$\|df^n(v)\| \leq C \lambda^n \|v\|,$$

$$\|df^{-n}(w)\| \leq C \lambda^n \|w\|$$

for all $x \in M$, $v \in E_s(x)$, $w \in E_u(x)$, and $n \geq 0$.

Example
Arnold's cat is Anosov. If we identify the tangent space at $x \in T^2$ with \mathbb{R}^2, the two eigenlines of the cat matrix yield $E_u(x)$ and $E_s(x)$.Michel Coornaert (IRMA, Université de Strasbourg)
Anosov Diffeomorphisms

Let $f : M \to M$ be a diffeomorphism of a smooth compact manifold M.

Example: Arnold’s cat is Anosov.
Anosov Diffeomorphisms

Let \(f : M \to M \) be a diffeomorphism of a smooth compact manifold \(M \). One says that \(f \) is Anosov if the tangent bundle \(TM \) of \(M \) continuously splits as a direct sum \(TM = E_s \oplus E_u \) of two \(df \)-invariant subbundles \(E_s \) and \(E_u \) such that, with respect to some (or equivalently any) Riemannian metric on \(M \), the differential \(df \) is exponentially contracting on \(E_s \) and exponentially expanding on \(E_u \), i.e., there are constants \(C > 0 \) and \(0 < \lambda < 1 \) such that

- \(\| df^n(v) \| \leq C \lambda^n \| v \| \),
- \(\| df^{-n}(w) \| \leq C \lambda^n \| w \| \)

for all \(x \in M \), \(v \in E_s(x) \), \(w \in E_u(x) \), and \(n \geq 0 \).

Example
Arnold's cat is Anosov.
If we identify the tangent space at \(x \in T^2 \) with \(\mathbb{R}^2 \), the two eigenlines of the cat matrix yield \(E_u(x) \) and \(E_s(x) \).
Anosov Diffeomorphisms

Let $f : M \to M$ be a diffeomorphism of a smooth compact manifold M. One says that f is Anosov if the tangent bundle TM of M continuously splits as a direct sum $TM = E_s \oplus E_u$ of two df-invariant subbundles E_s and E_u such that, with respect to some (or equivalently any) Riemannian metric on M, the differential df is exponentially contracting on E_s and exponentially expanding on E_u, i.e., there are constants $C > 0$ and $0 < \lambda < 1$ such that

- $\|df^n(v)\| \leq C\lambda^n\|v\|$,
- $\|df^{-n}(w)\| \leq C\lambda^n\|w\|$

for all $x \in M$, $v \in E_s(x)$, $w \in E_u(x)$, and $n \geq 0$.

Example

Arnold’s cat is Anosov.
Let $f : M \to M$ be a diffeomorphism of a smooth compact manifold M. One says that f is Anosov if the tangent bundle TM of M continuously splits as a direct sum $TM = E_s \oplus E_u$ of two df-invariant subbundles E_s and E_u such that, with respect to some (or equivalently any) Riemannian metric on M, the differential df is exponentially contracting on E_s and exponentially expanding on E_u, i.e., there are constants $C > 0$ and $0 < \lambda < 1$ such that

- $\|df^n(v)\| \leq C\lambda^n\|v\|$,
- $\|df^{-n}(w)\| \leq C\lambda^n\|w\|$

for all $x \in M$, $v \in E_s(x)$, $w \in E_u(x)$, and $n \geq 0$.

Example

Arnold’s cat is Anosov. If we identify the tangent space at $x \in \mathbb{T}^2$ with \mathbb{R}^2, the two eigenlines of the cat matrix yield $E_u(x)$ and $E_s(x)$.

Arnold’s cat can be generalized as follows. Consider a matrix $A \in \text{GL}_n(\mathbb{Z})$ with no eigenvalue of modulus 1. Then the map $f : T^n \to T^n$ defined by $x \mapsto Ax$ is an Anosov diffeomorphism of the n-dimensional torus $T^n := \mathbb{R}^n / \mathbb{Z}^n$. One says that f is the hyperbolic toral automorphism associated with A.

Michel Coornaert (IRMA, Université de Strasbourg)
Example

Arnold’s cat can be generalized as follows.

Consider a matrix $A \in \text{GL}_n(\mathbb{Z})$ with no eigenvalue of modulus 1. Then the map

$$f : T^n \to T^n \times \mapsto Ax$$

is an Anosov diffeomorphism of the n-dimensional torus $T^n := \mathbb{R}^n / \mathbb{Z}^n$.

One says that f is the hyperbolic toral automorphism associated with A.

Michel Coornaert (IRMA, Université de Strasbourg)
Example

Arnold’s cat can be generalized as follows. Consider a matrix $A \in \text{GL}_n(\mathbb{Z})$ with no eigenvalue of modulus 1. Then the map

$$f : \mathbb{T}^n \rightarrow \mathbb{T}^n$$

$$x \mapsto Ax$$

is an Anosov diffeomorphism of the n-dimensional torus $\mathbb{T}^n := \mathbb{R}^n/\mathbb{Z}^n$.

Hyperbolic toral automorphisms
Example

Arnold’s cat can be generalized as follows.
Consider a matrix $A \in \text{GL}_n(\mathbb{Z})$ with no eigenvalue of modulus 1. Then the map

$$f : \mathbb{T}^n \to \mathbb{T}^n$$

$$x \mapsto Ax$$

is an Anosov diffeomorphism of the n-dimensional torus $\mathbb{T}^n := \mathbb{R}^n / \mathbb{Z}^n$. One says that f is the hyperbolic toral automorphism associated with A.
Theorem (CC-2016)

Let f be an Anosov diffeomorphism of the n-dimensional torus T^n. Then the d.s. (T^n, f) satisfies the GOE theorem.

The proof uses two classical results:

Result 1 (Franks [Fra-1970], Manning [Man-1974]) Every Anosov diffeomorphisms of T^n is topologically conjugate to a hyperbolic toral automorphism.

Result 2 (Walters [Wal-1968]) Every endomorphism of a hyperbolic toral automorphism on T^n is affine, i.e., of the form $x \mapsto Bx + c$, where B is an integral $n \times n$ matrix and $c \in T^n$.

Michel Coornaert (IRMA, Université de Strasbourg)
Theorem (CC-2016)

Let f be an Anosov diffeomorphism of the n-dimensional torus \mathbb{T}^n. Then the d.s. (\mathbb{T}^n, f) satisfies the GOE theorem.
A GOE Theorem for Anosov Diffeomorphisms on Tori

Theorem (CC-2016)

Let f be an Anosov diffeomorphism of the n-dimensional torus \mathbb{T}^n. Then the d.s. (\mathbb{T}^n, f) satisfies the GOE theorem.

The proof uses two classical results:
Theorem (CC-2016)

Let f be an Anosov diffeomorphism of the n-dimensional torus \mathbb{T}^n. Then the d.s. (\mathbb{T}^n, f) satisfies the GOE theorem.

The proof uses two classical results:

Result 1 (Franks [Fra-1970], Manning [Man-1974]) Every Anosov diffeomorphism of \mathbb{T}^n is topologically conjugate to a hyperbolic toral automorphism.
Theorem (CC-2016)

Let f be an Anosov diffeomorphism of the n-dimensional torus \mathbb{T}^n. Then the d.s. (\mathbb{T}^n, f) satisfies the GOE theorem.

The proof uses two classical results:

Result 1 (Franks [Fra-1970], Manning [Man-1974]) Every Anosov diffeomorphisms of \mathbb{T}^n is topologically conjugate to a hyperbolic toral automorphism.

Result 2 (Walters [Wal-1968]) Every endomorphism of a hyperbolic toral automorphism on \mathbb{T}^n is affine, i.e., of the form $x \mapsto Bx + c$, where B is an integral $n \times n$ matrix and $c \in \mathbb{T}^n$.
Let f be an Anosov diffeomorphism of a smooth compact manifold M. Does the dynamical system (M, f) satisfy the GOE theorem?

A homeomorphism f of a topological space X is topologically mixing if, given any two non-empty open subsets $U, V \subset X$, one has $U \cap f^n(V) \neq \emptyset$ for all but finitely many $n \in \mathbb{Z}$.

Theorem (CC-2015) Let f be a topologically mixing Anosov diffeomorphism of a smooth compact manifold M. Then (M, f) has the Myhill property, i.e., every pre-injective continuous map $\tau : M \to M$ commuting with f is surjective.

Remark All known examples of Anosov diffeomorphisms are topologically mixing.
Question

Let f be an Anosov diffeomorphism of a smooth compact manifold M.

Theorem (CC-2015)

Let f be a topologically mixing Anosov diffeomorphism of a smooth compact manifold M. Then (M, f) has the Myhill property, i.e., every pre-injective continuous map $\tau : M \rightarrow M$ commuting with f is surjective.

Remark

All known examples of Anosov diffeomorphisms are topologically mixing.
Question

Let f be an Anosov diffeomorphism of a smooth compact manifold M. Does the dynamical system (M, f) satisfy the GOE theorem?
Question

Let f be an Anosov diffeomorphism of a smooth compact manifold M. Does the dynamical system (M, f) satisfy the GOE theorem?

A homeomorphism f of a topological space X is **topologically mixing** if, given any two non-empty open subsets $U, V \subset X$, one has $U \cap f^n(V) \neq \emptyset$ for all but finitely many $n \in \mathbb{Z}$.

Question

Let f be an Anosov diffeomorphism of a smooth compact manifold M. Does the dynamical system (M, f) satisfy the GOE theorem?

A homeomorphism f of a topological space X is topologically mixing if, given any two non-empty open subsets $U, V \subset X$, one has $U \cap f^n(V) \neq \emptyset$ for all but finitely many $n \in \mathbb{Z}$.

Theorem (CC-2015)

Let f be a topologically mixing Anosov diffeomorphism of a smooth compact manifold M. Then (M, f) has the Myhill property, i.e., every pre-injective continuous map $\tau : M \to M$ commuting with f is surjective.
Question

Let f be an Anosov diffeomorphism of a smooth compact manifold M. Does the dynamical system (M, f) satisfy the GOE theorem?

A homeomorphism f of a topological space X is topologically mixing if, given any two non-empty open subsets $U, V \subset X$, one has $U \cap f^n(V) \neq \emptyset$ for all but finitely many $n \in \mathbb{Z}$.

Theorem (CC-2015)

Let f be a topologically mixing Anosov diffeomorphism of a smooth compact manifold M. Then (M, f) has the Myhill property, i.e., every pre-injective continuous map $\tau : M \to M$ commuting with f is surjective.

Remark

All known examples of Anosov diffeomorphisms are topologically mixing.
Algebraic Dynamical Systems

Definition
An algebraic dynamical system is a d.s. \((X, G)\), where \(X\) is a compact metrizable abelian topological group and \(G\) is a countable group acting on \(X\) by continuous group automorphisms.

Example
Let \(G\) be a countable group and \(A\) a c.m.a.t. group. Then \(AG\) is a c.m.a.t. group. The shift system \((AG, G)\) is an a.d.s.

Example
Arnold’s cat \((T^2, \mathbb{Z})\) is an a.d.s.
Definition

An algebraic dynamical system is a d.s. \((X, G)\),
Definition

An algebraic dynamical system is a d.s. \((X, G)\), where \(X\) is a compact metrizable abelian topological group and \(G\) is a countable group acting on \(X\) by continuous group automorphisms.
Definition

An algebraic dynamical system is a d.s. \((X, G)\), where \(X\) is a compact metrizable abelian topological group and \(G\) is a countable group acting on \(X\) by continuous group automorphisms.

Example

Let \(G\) be a countable group and \(A\) a c.m.a.t. group.
Definition

An **algebraic dynamical system** is a d.s. \((X, G)\), where \(X\) is a compact metrizable abelian topological group and \(G\) is a countable group acting on \(X\) by continuous group automorphisms.

Example

Let \(G\) be a countable group and \(A\) a c.m.a.t. group. Then \(A^G\) is a c.m.a.t. group.
Definition

An algebraic dynamical system is a d.s. \((X, G)\), where \(X\) is a compact metrizable abelian topological group and \(G\) is a countable group acting on \(X\) by continuous group automorphisms.

Example

Let \(G\) be a countable group and \(A\) a c.m.a.t. group. Then \(A^G\) is a c.m.a.t. group. The shift system \((A^G, G)\) is an a.d.s.
Definition

An algebraic dynamical system is a d.s. \((X, G)\), where \(X\) is a compact metrizable abelian topological group and \(G\) is a countable group acting on \(X\) by continuous group automorphisms.

Example

Let \(G\) be a countable group and \(A\) a c.m.a.t. group. Then \(A^G\) is a c.m.a.t. group. The shift system \((A^G, G)\) is an a.d.s.

Example

Arnold’s cat \((\mathbb{T}^2, \mathbb{Z})\) is an a.d.s.
Let G be a countable group and denote by $\mathbb{Z}[G]$ its integral group ring. If M is a countable left $\mathbb{Z}[G]$-module, then its Pontryagin dual \hat{M} (the character group of the additive group M) is a c.m.a.t. group. G acts on M and hence (by dualizing) on \hat{M} by continuous group automorphisms. (\hat{M}, G) is an a.d.s. Every a.d.s. can be obtained in this way (see [Sch-1995]).

In the case $M = \mathbb{Z}[G]/\mathbb{Z}[G]f$, where $f \in \mathbb{Z}[G]$, one writes $X_f := \hat{M}$ and one says that (X_f, G) is the principal a.d.s. associated with f.
Let G be a countable group and denote by $\mathbb{Z}[G]$ its integral group ring.
Let G be a countable group and denote by $\mathbb{Z}[G]$ its integral group ring. If M is a countable left $\mathbb{Z}[G]$-module, then its Pontryagin dual \hat{M} (the character group of the additive group M) is a c.m.a.t. group.
Let G be a countable group and denote by $\mathbb{Z}[G]$ its integral group ring. If M is a countable left $\mathbb{Z}[G]$-module, then its Pontryagin dual \hat{M} (the character group of the additive group M) is a c.m.a.t. group. G acts on M and hence (by dualizing) on \hat{M} by continuous group automorphisms.
Let G be a countable group and denote by $\mathbb{Z}[G]$ its integral group ring. If M is a countable left $\mathbb{Z}[G]$-module, then its Pontryagin dual \hat{M} (the character group of the additive group M) is a c.m.a.t. group. G acts on M and hence (by dualizing) on \hat{M} by continuous group automorphisms. (\hat{M}, G) is an a.d.s.
Let G be a countable group and denote by $\mathbb{Z}[G]$ its integral group ring. If M is a countable left $\mathbb{Z}[G]$-module, then its Pontryagin dual \hat{M} (the character group of the additive group M) is a c.m.a.t. group. G acts on M and hence (by dualizing) on \hat{M} by continuous group automorphisms. (\hat{M}, G) is an a.d.s. Every a.d.s. can be obtained in this way (see [Sch-1995]).
Let G be a countable group and denote by $\mathbb{Z}[G]$ its integral group ring. If M is a countable left $\mathbb{Z}[G]$-module, then its Pontryagin dual \hat{M} (the character group of the additive group M) is a c.m.a.t. group. G acts on M and hence (by dualizing) on \hat{M} by continuous group automorphisms. (\hat{M}, G) is an a.d.s.

Every a.d.s. can be obtained in this way (see [Sch-1995]).

In the case $M = \mathbb{Z}[G]/\mathbb{Z}[G]f$, where $f \in \mathbb{Z}[G]$, one writes $X_f := \hat{M}$ and one says that (X_f, G) is the principal a.d.s. associated with f.
A GOE Theorem for Principal Algebraic Dynamical Systems

Let G be a countable abelian group (e.g. $G = \mathbb{Z}^d$). Let $f \in \mathbb{Z}[G]$ such that f is invertible in $\ell_1(G)$ and Xf is connected. Then the p.a.d.s. (Xf, G) satisfies the GOE theorem.

The fact that $f \in \mathbb{Z}[G]$ is invertible in $\ell_1(G)$ is equivalent to the expansiveness of (Xf, G).

A sufficient condition for $f \in \mathbb{Z}[G]$ to be invertible in $\ell_1(G)$ is that f is lopsided, i.e., there exists $g_0 \in G$ such that $|f(g_0)| \geq \sum_{g \neq g_0} |f(g)|$.

Michel Coornaert (IRMA, Université de Strasbourg)
Theorem (CC-2017)

Let G be a countable abelian group (e.g. $G = \mathbb{Z}^d$).
Theorem (CC-2017)

Let G be a countable abelian group (e.g. $G = \mathbb{Z}^d$). Let $f \in \mathbb{Z}[G]$ such that f is invertible in $\ell^1(G)$ and X_f is connected.
Theorem (CC-2017)

Let G be a countable abelian group (e.g. $G = \mathbb{Z}^d$). Let $f \in \mathbb{Z}[G]$ such that f is invertible in $\ell^1(G)$ and X_f is connected. Then the p.a.d.s. (X_f, G) satisfies the GOE theorem.
A GOE Theorem for Principal Algebraic Dynamical Systems

Theorem (CC-2017)

Let G be a countable abelian group (e.g. $G = \mathbb{Z}^d$). Let $f \in \mathbb{Z}[G]$ such that f is invertible in $\ell^1(G)$ and X_f is connected. Then the p.a.d.s. (X_f, G) satisfies the GOE theorem.

The fact that $f \in \mathbb{Z}[G]$ is invertible in $\ell^1(G)$ is equivalent to the expansiveness of (X_f, G).
Theorem (CC-2017)

Let G be a countable abelian group (e.g. $G = \mathbb{Z}^d$). Let $f \in \mathbb{Z}[G]$ such that f is invertible in $\ell^1(G)$ and X_f is connected. Then the p.a.d.s. (X_f, G) satisfies the GOE theorem.

The fact that $f \in \mathbb{Z}[G]$ is invertible in $\ell^1(G)$ is equivalent to the expansiveness of (X_f, G). A sufficient condition for $f \in \mathbb{Z}[G]$ to be invertible in $\ell^1(G)$ is that f is lopsided, i.e., there exists $g_0 \in G$ such that

$$|f(g_0)| \geq \sum_{g \neq g_0} |f(g)|.$$
References

References (continued)

