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5 Back to the Ḣ1 × L2 critical wave equation: dimension 4 . . . . . . . . . . . . . 23

3 Blowup for the 1D semi linear wave equation 27
1 Blow up and blow up curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2 Description of the blow up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3 Construction of characteristic points . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 The Zakharov-Kuznetsov flow around solitons 37
1 Liouville theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2 Asymptotic stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3 Multi-solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Formation of Néel walls 45
1 A two-dimensional model for thin-film micromagnetism . . . . . . . . . . . . . 45
2 Compactness and optimality of Néel walls . . . . . . . . . . . . . . . . . . . . . 48
3 Formation of static Néel walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Index 53

Bibliography 55
References presented for the habilitation . . . . . . . . . . . . . . . . . . . . . . . . . 55
General references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

i





Introduction

L’objet de ce mémoire est de présenter quelques aspects de la dynamique des solutions
d’équations aux dérivées partielles dispersives. Le fil conducteur liant les différents

travaux exposés ici est l’étude des solitons. Ce sont des ondes progressives ou stationnaires,
des objets non linéaires qui préservent leur forme au cours du temps. Elles possèdent des
propriétés de rigidité remarquables, et jouent un rôle prééminent dans la description de
solutions génériques en temps long.

Ce mémoire débute en préambule par un rappel de quelques propriétés des solitons. On
profite de l’introduction de notations et de concepts utilisés dans toute la suite pour esquisser
la preuve de la stabilité orbitale des solitons, un résultat clé obtenu dans les années 80
indépendamment par Cazenave, Lions [28] et Weinstein [131]. On présente ici le point de
vue de Weinstein.

Le premier chapitre de ce mémoire est consacré à la construction de multi-solitons. Il s’agit
de solutions se comportant asymptotiquement comme une somme de solitons découplées.
Elles ont la particularité d’être non dispersives dans un certain sens: toute leur masse reste
concentrée localement dans des boules; on s’attend à ce qu’elles soient également rigides à
l’instar des solitons.
Les multi-solitons furent construits tout d’abord pour des équations intégrables, et notam-
ment pour l’équation de Korteweg-de Vries (KdV): il y a alors une formule explicite, et l’on
constate que dans ce cas, les multi-solitons se découplent en somme de solitons en t → +∞
et en t→ −∞ (les collisions sont élastiques).
Le premier cas de construction pour une équation non intégrale est dû à Merle [98] dans
le cas de l’équation de Schrödinger non linéaire (NLS) L2-critique; puis Martel [84] s’est
intéressé aux cas des équations de Korteweg-de Vries généralisées, suivi de plusieurs autres.
Notre principale contribution a été de construire des multi-solitons dans le cas L2 sur-critique
(le plus instable). Cette construction est suffisamment robuste pour s’adapter à de nom-
breuses équations: notamment (NLS), (gKdV), Klein-Gordon (cas de type ondes)... Nous
avons également étudié les ondes progressives basées sur des états excités, également insta-
bles.

Le deuxième chapitre rassemble un certain nombre de résultats concernant la décomposition
en solitons pour des équations de type ondes. La conjecture de décomposition en solitons
suggère que toute solution générique se décompose en temps long en une somme d’objets
non linéaires rigides découplé (typiquement, des solitons), et d’un objet purement dispersif
(typiquement linéaire).
Encore une fois, c’est dans le cas d’équations intégrables que les premières décomposi-
tions en solitons ont été obtenu, notamment pour les équations de Korteweg-de Vries et
de Korteweg-de Vries modifiée.
On présente dans ce chapitre la suite de travaux tout à fait remarquable due à Duyckaerts,
Kenig, Merle [40–45] concernant l’équation des ondes Ḣ1 × L2 critique, et en particulier le
cas 3d avec données radiales, où la conjecture est résolue.
Nous avons obtenu des versions d’une telle décomposition pour les wave maps équivariantes
à valeurs dans la sphère, ainsi que pour l’équation des ondes Ḣ1 × L2 critique radiale en
dimension 4. Ce chapitre débute par un rappel d’une construction centrale dans la preuve,
la décomposition en profile, qui fut introduite indépendamment par Bahouri, Gérard [18]
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et Merle, Vega [104]; et par l’étude de la répartition de l’énergie d’une solution radiale de
l’équation des ondes linéaire autour du cône de lumière: ce résultat, en sus de son rôle pour
la résolution en solitons, a son intérêt propre.

Le troisième chapitre est consacré à l’étude des solutions explosives pour les équations des
ondes semi-linéaires sous-conformes; on se consacre essentiellement à la dimension 1. Merle,
Zaag [106–108, 110] ont montré que les points d’explosion peuvent se classifier en deux
familles: l’espace se partitionne en points réguliers et singuliers, qui se caractérisent à la
fois du point de vue de la géométrie de la courbe au point considéré, et suivant le profil
à l’explosion de la solution. Il est tout à fait étonnant que les deux caractérisations définis-
sent la même partition. Une conséquence tout à fait frappante de l’analyse menée est que
l’ensemble des points singuliers est discret.
Notre contribution à ce sujet fut double. Nous avons précisé le profil explosif de la solution
en un point singulier, en exhibant une fonctionnelle de Lyapunov qui assure la convergence
de tous les paramètres de liberté. Et nous avons construit une solution possédant un point
singulier où le profil explosif est prescrit.

Dans le quatrième chapitre, nous étudions le flot de l’équation de Zakharov-Kuznetsov (ZK)
au voisinage d’un soliton. Nous montrons en particulier des théorèmes de rigidité de type
Liouville: si une solution qui reste proche pour tout temps du soliton ne disperse pas, alors
c’est le soliton. Ce résultat est essentiel dans la preuve de la stabilité asymptotique du soliton
L2 sous-critique, que nous montrons ensuite. Enfin nous étudions des propriétés similaires
pour les multi-solitons.
Nous retraçons ainsi dans le cas de (ZK) l’étude faite par Martel, Merle [86–88], associés à
Tsai [96] dans le cas de (gKdV). De tels résultats sont des problèmes ouverts importants pour
(NLS). L’étude de (ZK) constitue une extension de (gKdV) au cas de dimensions d’espace
supérieures d > 2, pour une équation qui présente, dans d − 1 directions, beaucoup de
similarités avec (NLS).

Le cinquième et dernier chapitre élargit notre champ de recherche: il est dédié à quelques
questions en micro-magnétisme. L’objet central ici est la paroi de Néel, un objet rigide qui ap-
paraît à la transition du spin + en spin − comme minimiseur d’une fonctionnelle d’énergie,
dans la limite où de petits paramètres tendent vers 0. Ces parois de Néel, de codimension
1, sont observées physiquement, et sont en compétition avec d’autres objets singuliers, les
vortex, de codimension 2, et d’énergie supérieure. Mathématiquement, l’une des difficultés
principale est la présence d’un terme non local dans l’énergie d’une magnétisation, qui rend
compte de l’effet du champ magnétique induit par les charges intérieures.
Dans un cas où les petits paramètres sont favorables à l’émergence de parois de Néel, nous
montrons effectivement un résultat de compacité pour les magnétisations et la convergence
vers une paroi de Néel, ainsi que leur optimalité. Ceci est inspiré par Ignat, Otto [65, 66].
Dans un second temps, nous étudions l’évolution des magnétisations suivant le modèle
de Landau-Lifshitz-Gilbert, qui est à la fois non-hamiltonien et non-dissipatif. Après avoir
construit des solutions faibles, nous montrons que, dans un régime physiquement pertinent,
les parois de Néel restent statiques.

∵

The purpose of this thesis is to present a few aspects of the dynamics of solutions of
dispersive partial differential equations. The connecting thread that runs through the

various works described below is the study of solitons. These are travelling or stationary
waves, non linear objects that preserve their shape along time. They enjoy remarkable rigidity
properties, and play a preeminent role in the long time description of generic solutions.

This thesis starts with a preamble recalling some properties of the solitons. We draw benefit
from the introduction of notations and concepts used throughout all the following to sketch
the proof of the orbital stability of solitons, a key result obtained in the 80s independently
by Cazenave, Lions [28] and Weinstein [131]. We present here the point of view of Weinstein.
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The first chapter of this memoir is devoted to the construction to multi-solitons. These are
solutions behaving asymptotically as a sum of decoupled solitons. They have special feature
of being non dispersive in some sense: all their mass remain concentrated in balls; one also
expect them to be rigid, as solitons are.
Multi-solitons were first constructed for integrable equations, and most notably of the Korteweg-
de Vries equation (KdV): in that case, there is an explicit formula, and one observe by in-
spection that multi-solitons decouple into a sum of solitons as t → +∞ and as t → −∞
(collisions are elastics).
The first case of construction for a non integrable equation is due to Merle [98] in the case of
the L2 critical non linear Schrödinger equation (NLS); after that, Martel [84] studied the case
of generalized Korteweg-de Vries equation (gKdV), followed by others.
Our main contribution was to construct multi-solitons in the L2 supercritical case (the most
unstable). This construction is sufficiently robust to adapt to various equations: in particular
(NLS), (gKdV), Klein-Gordon (wave type equation) . . . We also studied travelling wave based
on excited states, which are also unstable.

The second chapter gather various results regarding soliton decomposition for wave type
equations. The soliton resolution conjecture suggest that any generc solution decomposes
for large times into a sum of decoupled rigid nonlinear objects (typically solitons) and a
purely dispersive term (typically linear).
Once again, the first solitons decompositions were obtained in the setting of integrable equa-
tions, most notably for the Korteweg-de Vries and modified Korteweg-de Vries equations.
We present in this chapter the remarkable sequence of papers by Duyckaerts, Kenig, Merle
[40–45] regarding the Ḣ1 × L2 critical wave equation, in particular the 3d case with radial
data, where the conjecture is solved.
We obtained a version of such a decomposition for equivariant wave maps into the sphere,
and for the Ḣ1 × L2 critical wave equation in 4 dimension with radial data. This chapter
starts by recalling a central construction in the proof, the profile decomposition which was
introduced independently by Bahouri, Gérard [18] and Merle, Vega [104]; and by the study
of the energy partition of a radial solution of the linear wave equation around the light cone:
this last result, atop of its role for the soliton resolution, has its own interest.

The third chapter is devoted to the study of blow up solutions of the sub-conformal semi-
linear wave equation; we essentially concentrate on dimension 1. Merle, Zaag [106–108, 110]
proved that the blow up points can be divided in two families: regular and singular points,
which can be caracterized both by the geometry of the curve and by blow up profile of the
solution at the considered point. It is trully surprising that these two charaterizations define
the same partition. One striking consequence of the analysis which was carried out, is that
the set of singular points is discrete.
Our contribution on this topic is twofold. We precised the blow up behavior of the solution at
a singular point by exhibiting a Lyapunov functionnal which makes all degrees of freedom
converge. And we built a solution admitting a singular point with a prescribed blow up
profile.

In the fourth chapter, we study the flow of the Zakharov-Kuznetsov equation (ZK) in the
neighbourhood of a soliton. We show in particular Liouville type rigidity theorems: if a
solution remains for all times near the soliton and does not disperse, then it is the soliton.
This result is essential in the proof of the asymptotic stability of the L2 subcritical soliton,
which we prove next. We then study related properties for multi-solitons.
We thus retrace in the case of (ZK) the analysis conducted by Martel, Merle [86–88], together
with Tsai [96] for (gKdV). Such results are important open problems for (NLS). The study
carried out on (ZK) is an extension of (gKdV) to higher space dimensions d > 2, for an
equation which presents, in d− 1 directions, many similarities with (NLS).

The fifth and final chapter widen our research themes: it is dedicated to some questions
on micromagnetism. The central object here is Néel walls, a rigid object appearing at the
transition of spin + to spin -, in the limit when small parameters tend to 0. These Néel walls,
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of codimension 1, are physically observed, and in competition with other singular objects,
the vortices, which are of codimension 2, and of higher energy. One of the main mathematical
difficulties is the presence of a nonlocal term in the energy of a magnetization, which gives
account for the magnetic field induced by interior charges.
In the case when the regime of the small parameters is favorable to the emergence of Néel
walls, we show indeed a compactness result for the magnetizations and the convergence to
a Néel wall, along with its optimality. This is inspired by Ignat, Otto [65, 66]. In a second
step, we study the evolution of magnetizations under the Landau-Lifschitz-Gilbert model,
which is both non-hamiltonian and non-dissipative. After having constructed global weak
solutions, we shows that, in a physically relevant regime, Néel walls remain static.



Preamble: Orbital stability of
solitons

Solitons

Solitons are remarquable special solutions to various nonlinear focusing dispersive partial
differential equations. For these equations, two elements play a role in the long time

dynamics of solutions: the dispersive properties of the linear differential operator tend to
make the solution scatter, whereas the focusing nature of the nonlinearity, to the contrary,
tend to concentrate the solution. Solitons appear as a delicate equilibrium between these
two forces: they are nonlinear objects that keep their form along time, neither scattering of
concentrating.

Soliton also enjoy many outstanding properties when viewed as particular solutions of a
PDEs: for example stability and rigidity properties, and a prominent role in the long time
profile of general solutions, both blow up or global. The purpose of this preamble is to collect
some well known facts about solitons, culminating in a description of orbital stability. The
other features mentioned above will be studied in the following chapters.

Solitons are defined mathematically as travelling wave solutions. We will give two represen-
tative examples. First consider the generalized Korteweg-de Vries equation (gKdV){

∂tu + ∂x(∂xxu + f (u)) = 0,
u(t = 0, x) = u0(x),

(t, x) ∈ R×R. (gKdV)

The solitons form a 2 parameter family of travelling wave solution to (gKdV), denoted
Q[c0, x0] for (c0, x0) ∈ (0,+∞)×R, where

Q[c0, x0](t, x) := Qc0(x− x0 − c0t), (0.1)

and Qc0 ∈ H1 is a solution to the elliptic equation

−∆Qc0 + c0Qc0 = f (Qc0). (0.2)

In the pure power case f (u) = |u|p−1u, Qc can be deduced from Q1 via scaling and in one
space dimension, this last function is explicit:

Qc(x) = c
1

p−1 Q(
√

cx), where Q(x) = Q1(x) =

(
p + 1

2 cosh2( p−1
2 )

) 1
p−1

.

The existence of Qc, and its uniqueness up to translations, is guaranteed by the following
result. Let F be the standard integral of f :

F(s) :=
∫ s

0
f (σ)dσ. (0.3)

The assumptions we make regarding the nonlinearity f and speed c > 0 are the following

(A1) f is C 1, odd, and satisfies f (0) = f ′(0) = 0.

vii
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(A2) s 7→ F(s)− cs2/2 admits a smallest positive zero sc > 0 and f (sc)− csc > 0.

Observe that (A2) makes the nonlinearity focusing.

Proposition 0.1 (Berestycki, Lions [19, Theorem 5 and Remark 6.3]). Let a function f and c > 0
satisfy the assumption (A1).
Then there exists a non trivial solution Qc ∈ H1(R) to (0.2) if and only if f satisfies (A2). In that
case, Qc is C 2, unique up to translation, and can be chosen even and decreasing on [0,+∞), with
Qc(0) = sc; this implies Qc > 0. Furthermore, Qce

√
c|x| and |∂xQc|e

√
c|x| are bounded on R.

Our second example is the d dimensional nonlinear Schrödinger equation:{
i∂tu + ∆u− f (u) = 0,
u(t = 0, x) = u0(x),

(t, x) ∈ R×Rd, u(t, x) ∈ C. (NLS)

We will always assume that the nonlinearity f : C→ C is gauge invariant, that is

∀θ ∈ R, ρ > 0, f (ρeiθ) = f (ρ)eiθ .

Then we can formally compute that solitons of the form

Q[c0, γ0, v0, x0](t, x) = ei( 1
2 v0·x− 1

4 ‖v0‖2t+c0t+γ0)Qc0(x), (0.4)

with four parameters: phase γ0 ∈ R, speed v0 ∈ Rd, translation x0 ∈ Rd and frequency c0 >
0 are travelling wave solutions to (NLS) if and only if Qc0 is a solution to the d dimensional
elliptic equation

−∆Qc0 + c0Qc0 = f (Qc0). (0.5)

For such a solution Qc0 to exist in dimension d > 2, one need to assume (A1), (A2) and
a growth assumption that ensures the nonlinearity be Ḣ1 subcritical. However this growth
condition is not quite enough to study the flow of (NLS) around solitons. We need eigen-
functions for the linearized operator around Qc, which where studied in the (NLS) cases by
Weinstein [131], Grillakis [59] and Schlag [118]. We also need a strong knowledge of spec-
trum of linearized energy around Qc. In the case of a general nonlinearity f , these results
are open: this is why we stick to the pure power nonlinearity (this could be relaxed under a
suitable spectral assumption, see (0.10) below). Therefore, our assumption reads

(A3) f (u) = |u|p−1u, where 1 < p if d = 2, and 1 < p <
d + 2
d− 2

if d > 3.

We emphasize that in the Ḣ1 supercritical case (i.e. d > 3 and p >
d + 2
d− 2

), the elliptic equation

(0.5) admits no non trivial solution, due to Pohozahev identities, let alone that the Cauchy

problem for (NLS) is ill posed. In the Ḣ1 critical case p =
d + 2
d− 2

, the Cauchy problem for

(NLS) is well posed (see Cazenave, Weissler [29]), but solutions to (0.5) have only algebraic
decay (and the ground state is usually denoted W); see Chapter 2 for further details.

Proposition 0.2. Let d > 2, f (u) = |u|p−1u satisfy (A3) and c0 > 0.
There exist a positive solution Qc0 ∈ H1 to (0.5), unique up to translation, called the ground state:
it is also radial, and radially (exponentially) decreasing.

Before we turn to stability issue, let us recall a few important facts about (NLS) and (gKdV).
The Cauchy problem for both equations is well posed in H1; we refer to Kenig, Ponce, Vega
[70] (see also [69]) for (gKdV) and Ginibre, Velo [57] for (NLS). Both equations also admit
two conservation laws: an H1 solution u preserves the L2 mass and the energy

‖u(t)‖2
L2 = ‖u(0)‖2

L2 (L2mass) (0.6)

E(u(t)) =
∫ (1

2
|∇u(t, x)|2 − F(u(t, x))

)
dx = E(u(0)), (energy) (0.7)

At least formally, (gKdV) preserves the L1-mass
∫

u(t, x)dx, and (NLS) preserves the mo-

mentum P(u) = Im
∫

ū(t, x)∇u(t, x)dx.
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Orbital stability of solitons

The main matter of this preamble is to sketch the following orbital stability result. It was
obtained independently by Weinstein [130, 131] (via modulation) and Cazenave, Lions [28]
(via concentration-compactness); we also refer to Grillakis Shatah and Strauss [60] for an
abstract exposition of Weinstein’s method. This is the starting point of many of the dynamical
aspects developed in the subsequent chapters.

When considering the stability property of a soliton, one can not expect the usual stabil-
ity statement for dynamical systems to hold true: indeed if c0 and c1 are very close, then
Q[c0, 0](0) and Q[c1, 0](0) are very close solutions of (gKdV) at initial time, but they travel at
different speed and eventually decouple:

‖Q[c0, 0](t)−Q[c1, 0](t)‖L2 → ‖Q[c0, 0](t)‖L2 + ‖Q[c1, 0](t)‖L2 as t→ +∞.

However, the shape of each soliton is kept along time, so that up to a translation, they remain
close. This motivates the definition:

Definition 0.3. Let B be a Banach space and G be a group of symmetries acting on G. We say
that a solution u ∈ C ([0,+∞), B) to a partial differential equation (PDE), globally defined
for positive times, is G-orbitally stable (or simply orbitally stable if there is no ambiguity), if

∀ε > 0, ∃δ > 0, ‖v(0)− u(0)‖B 6 δ =⇒
(
∀t > 0, inf

g∈G
‖v(t)− g.u(t)‖B 6 ε

)
,

where v(t) is the solution to (PDE) with initial data v(0).
If this is not true, we say that u is orbitally unstable.

Usually G does not contain scaling. Observe that the definition implies that any initial data
close enough to u(0) yields a solution to (PDE) globally defined for positive times.

We can now state the orbital stability of the solitons, here in the case of (gKdV) (a similar
statement holds for (NLS)). Here G is simply R acting on H1 via space translations.

Theorem 0.4. Let c0 > 0 and assume that f satisfies (A1) and (A2) for all c in a neighbourhood of
c0.

1. If
d
dc
‖Qc‖L2 |c=c0 < 0, then Q[c0, 0] is orbitally stable.

2. If
d
dc
‖Qc‖L2 |c=c0 > 0, then Q[c0, 0] is orbitally unstable.

The critical case
d
dc
‖Qc‖L2 |c=c0 = 0 can be much more delicate, and usually the soliton

Q[c0, 0] is unstable in that case. For (gKdV), we refer to Martel, Merle [90] for the pure
power nonlinearity f (u) = u5. For (NLS), the simpler way to see this is a Virial identity
(leading to finite time blow up solution, but without any qualitative description of the blow
up).
Actually, the dynamics of the flow around a soliton were studied in great detail, leading to a
sharp description of the blow up. Although we won’t go further on that subject, let us refer
to the works by Martel, Merle [89, 92] and Martel, Merle, Raphael [93–95] for (gKdV), and
by Merle, Raphael [99–103] for (NLS).

Theorem 0.4 contains two statements. We will focus on the stability result. It is essentially a
static result, consequence of the variational properties of Qc, and the conservation of the two
conservations laws: L2 mass and energy.

Proposition 0.5. Qc minimizes the energy among function with a given L2-norm, more precisely, it
is a minimizer of the following elliptic problem:

inf{E(u) | ‖u‖L2 = ‖Qc‖L2}.
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Notice that∇E(Q) = −∆Q+ f (Q), so that via Lagrange multipliers, we recover the equation
for Qc (0.5). Introduce the Weinstein functional

Ec(u) = E(u) +
c
2
‖u‖2

L2 . (0.8)

Then Q[c0, x0] is a critical point of Ec0 : ∇Ec0(Q) = 0. And we have the expansion, for v ∈ H1

small

Ec0(Q[c0, x0](0) + v) = Ec0(Qc0) + 〈Lc0,x0 v, v〉+ O(‖v‖3
H1), (0.9)

where Lc0,x0 = d2Ec0(Q[c0, x0](0)) is the Hessian defined by

Lc0,x0 v = −∆v + f ′(Qc0(· − x0))v + cv.

As a Qc is minimizer, we also have to coercivity property:

Proposition 0.6 ([131]). Assume (A1), (A2), (A3). Then the following statements are equivalent

1.
d
dc
‖Qc‖2

L2 |c=c0 < 0.

2. there exists λ > 0 such that:

∀v ∈ H1, 〈Lc0 v, v〉 > λ‖v‖2
H1 −

1
λ

(
〈v|Qc0〉2 +

d

∑
i=1
〈v|∂xi Qc0〉2

)
. (0.10)

So we have d + 1 “bad” directions. We take care of the first d by modulation theory:

Proposition 0.7. There exist C, δ > 0 such that the following holds true. Let x0 ∈ Rd and v ∈ H1

such that ‖v‖H1 6 δ. Then there exists a unique x̃0 ∈ Rd, ‖x̃0 − x0‖ 6 C‖v‖H1 such that defining
ṽ by

Qc(· − x̃0) + ṽ = Qc(· − x0) + v,

there holds

〈ṽ|(∂xQc)(· − x̃0)〉 = 0. (0.11)

Furthermore, the map (x0, v) 7→ (x̃0, ṽ) is smooth.

This proposition follows from a suitable use of the implicit function theorem. The last bad
direction is dealt with the conservation of the L2 mass:

〈v|Qc〉 =
1
2

(
‖Qc + v‖2

L2 − ‖Qc‖2
L2 − ‖v‖2

L2

)
.

The proof goes then as follows. Let u(t) be a solution to (gKdV) such that

‖u(0)−Q[c0, x0]‖H1 6 δ.

Fix some large A, we work on a time interval I on which infx ‖u(t) − Q[c0, x]‖H1 6 Aδ
is small for all t ∈ I. A is only meant to allow the use of the modulation: we write
u(t) = Q[c0, x(t)] + v(t), where v(t) satisfies the orthogonality condition (0.11); also we
have ‖v(t)‖H1 = O(δ) is small. Due to the conservation of mass and energy, we have

‖v(t)‖2
H1 6

1
λ
〈Lc0,x(t)v, v〉 6 λ‖v‖2

H1 +
1

λ2 〈v|Q[c0, x(t)]〉2

6
1
λ

(
E(u(t))− E(Qc0) + O(‖v‖3

H1)
)
+

1
2λ2

(
(‖u(t)‖2

L2 − ‖Qc0‖2
L2)

2 + O(‖v‖3
L2)
)

6 C‖v(0)‖2
H1 + O(‖v‖3

H1) 6 Cδ2 + O(‖v‖3
H1).

As ‖v‖H1 = O(δ) is small, we infer ‖v(t)‖H1 6 Cδ, with C independent of A. A bootstrap
argument allows to conclude that v(t) remains small for all time, and then to conclude to
orbital stability.



CHAPTER 1
Multi-solitons

In this chapter we consider the following generalization of solitons, namely trains of soli-
tons or multi-solitons: these are solutions, defined for t large enough, and which decouple

as t → +∞ into a sum of weakly interacting solitons. The most natural way to ensure weak
interaction is to ask that the final solitons have distinct speeds.

A multi-soliton is then a solution U ∈ C ([T−(U),+∞), H1) to (gKdV) such that∥∥∥∥∥U(t)−
N

∑
j=1

Q[cj, xj](t)

∥∥∥∥∥
H1

→ 0 as t→ +∞, (1.1)

where N > 1, c1 < · · · < cN and x1, . . . , xn ∈ R are given parameters.
For other equations, multi-solitons are defined similarly, adapting the set of parameters to
the symmetries of the equation.

The relevance of studying multi-solitons is that they appear naturally when studying the
long time dynamics of dispersive equation, especially of view to the soliton resolution con-
jecture. Furthermore, multi-solitons enjoy remarquable dynamical properties. For example,
a multi-soliton U does not disperse, in the sense that in physical space, all the mass remains
in a fixed number of ball (moving with time, but not increasing in diameter). Also, in Fourier
space, there is no transfer of mass to high frequencies.

The assumptions (A1),(A2),(A3) on the nonlinearity refer to those introduced in the pream-
ble.

1 Construction of multi-solitons

We now present the construction of multi-solitons to various nonlinear (focusing) dispersive
equations admitting soliton solutions. Let us start with the case of (gKdV).

Multi-solitons for the generalized Korteweg-de Vries equation

Combining the proof of Martel [84, Theorem 1] in the L2 subcritical and critical cases, and
C., Martel, Merle [9, Theorem 1] in the L2 supercritical case, we claim the following existence
result of multi-soliton for (gKdV).

Theorem 1.1 (Multi-solitons for (gKdV)). Let f ∈ C 3 be convex on [0,+∞), and let 0 < c1 <
. . . < cN and x1, . . . , xN ∈ R be such that (A1) and (A2) hold for all c in a neighbourhood of
{c1, . . . , cn}.
There exist T0 ∈ R, C, σ0 > 0, and a solution U ∈ C ([T0, ∞), H1) to (gKdV) such that

∀t ∈ [T0, ∞),
∥∥∥U(t)−

N

∑
j=1

Q[cj, xj](t)
∥∥∥

H1
6 Ce−σ3/2

0 t.

1
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Let us first say a few words on the assumptions: the conditions on f ensure both local well-
posedness in H1 from [70] for (gKdV), and the existence of eigenvalues for the linearized
operator in the instable case from [116]. The condition that (A2) should hold for all c in a
neighbourhood of any cj allows to use modulation theory, which is a very efficient tool to
relate the nonlinear problem to the linearized flow.

Let us emphasize that the solitons Q[cj, xj] can actually be orbitally unstable. In the pure
power case f (u) = |u|p−1u, for p < 5 L2 subcritical case, solitons are stables. Seen from
one solitons, the others solitons appear as exponential perturbations: in the L2 subcritical
case, it seems reasonable to construct multi-solitons. In the L2 supercritical case, each soliton
is (linearly) unstable, and the perturbation, even exponentially small, could result in large
effects: the previous theorem ensures that there is a way to make these perturbations vanish
as t→ +∞, and is more surprising in this latter case. We will give more details on this when
classifying (gKdV) multi-solitons, in the next section.

The proof of this result is actually very robust, and can be applied to various equation
admitting solitons soution. From the techniques developped by Mizumachi [112], El Dika
[50] and El Dika and Martel [51] concerning the (BBM) equation

(u− uxx)t + (u + up)x = 0, (t, x) ∈ R×R, (BBM)

and from the construction of suitable eigenfunctions of the linearized equation by Pego and
Weinstein [116, page 74] one can also extend the results obtained in Theorem 1.1 to the (BBM)
equation for any p > 1.

Multi-solitons for the nonlinear Schrödinger equation

We can also extend the construction to the nonlinear Schrödinger equation (NLS).
Notice that the frequency c0 and the speed v0 of solitons are decoupled contrarily to (gKdV).
Hence the only dynamical assumption is that solitons have distinct speeds, so that their
interaction be exponentially decaying in time; but the frequency of distincts solitons could
be the same.

Once these observations are made, we are in a position to state the result concerning the
construction of multi-solitons for (NLS).

Theorem 1.2 (Multi-solitons for (NLS)). Let f (u) = |u|p−1u satisfy (A3).
Let N > 1 be an integer, and parameters c1, . . . , cN > 0, γ1, . . . , γN ∈ R, x1, . . . , xN ∈ Rd, and
v1, . . . , vN ∈ Rd be such that

∀j 6= k, vj 6= vk.

Then there exist T0 ∈ R, C, σ0 > 0, and a solution U ∈ C ([T0, ∞), H1) to (NLS) such that

∀t ∈ [T0, ∞),
∥∥∥U(t)−

N

∑
j=1

Q[cj, γj, vj, xj](t)
∥∥∥

H1
6 Ce−σ3/2

0 t.

The L2 critical case p = 1 +
4
d

was in fact the first setting where multisolitons where con-
structed by Merle [98]. More precisely, this celebrated result constructed solutions where
blow-up simultaneously occurs at N distinct points. This is in fact equivalent to the con-
struction of multi-solitons as described above, via the pseudo-conformal transform. The L2

sub-critical case p < 1 +
4
d

was treated by Martel and Merle [91], following the result by

Martel [84] on (gKdV). The remaining L2 supercritical case p > 1 +
4
d

(and Ḣ1 subcritical)
was done in C., Martel, Merle [9, Theorem 2]; its proof is completely similar to the one of
Theorem 1.1 for (gKdV).

A stricking property is that in dimension d > 2, there is not one but infinitely many solutions
(even up to the symmetries of the problem) to the elliptic equation (0.5) which we recall:

−∆Qc + cQc = f (Qc).
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We refer to Berestycki, Lions [19], Kwong [77], Gidas, Ni, Nirenberg [54], Serrin, Tang [119]
for the following proposition.

Proposition 1.3. A solution to (0.5) in H1(Rd) is called a bound state. There exist infinitely many
bound states (even after translation and rotations).
Furthermore, any bound state Φc0 is C 2 and exponentially decaying: for all c < c0, e

√
c|x||Φc0 | and

|∂xΦc0 |e
√

c|x| are bounded on Rd.

Bound states which are not the ground state are called excited states. The denomination
soliton is usually reserved for travelling wave solution of the form (0.4) based on the ground
state. When based on an excited state Φ (which can be complex valued), we will speak here
of excited soliton.

A subsequent question is wether one can achieve the same multi-soliton construction of with
excited state Φ instead of solitons.
It turns out that in case of an excited state Φ, the spectral properties of the linearized (NLS)
flow around Φ are not known well enough for a sharp construction. However, if the relative
speeds are sufficiently high, that is if the excited states decouple fast enough, we can close
the estimates and obtain a result.

Theorem 1.4 (Excited state multi-solitons, C., Le Coz [8]). Assume d > 2 and (A3).
Let N > 2 be an integer, and let parameters c1, . . . , cN > 0, γ1, . . . , γN ∈ R, x1, . . . , xN ∈ Rd, and
v1, . . . , vN ∈ Rd, and excited states Φc1 , . . . , ΦcN ∈ Ḣ1(Rd) with respective frequencies c1, . . . , cn
be given. Denote

Φj(t, x) = ei( 1
2 vj ·x− 1

4 ‖vj‖2t+cjt+γj)Φcj(x),

(this is an excited state of (NLS)), and

c∗ = min{cj | j = 1, . . . , N} and v∗ = min{|vj − vk| | j 6= k}.

Then there exist α = α(d, N) and v] = v](Φ1, . . . , ΦN) such that if v∗ > v]/α, the following holds.
There exist T0 ∈ R and a solution U ∈ C ([T0,+∞), H1(Rd, C)) of (NLS) such that we have

∀t > T0,
∥∥∥U(t)−

N

∑
j=1

Φj(t)
∥∥∥

H1
≤ e−αc

1
2∗ v∗t.

Multi-solitons for the nonlinear Klein-Gordon equation

We also consider multi-solitons for wave type equation. In this context, the natural nonlinear
objects are Lorentz boosts of stationary solutions. For the semi linear wave equation, sta-
tionary solutions have algebraic decay, and our method of proof can not apply as such (cf.
Chapter 2). Therefore, we rather focus on the nonlinear Klein-Gordon equation:{

∂ttu− ∆u− u− |u|p−1u = 0,
(u, ∂tu)(t = 0, x) = (u0(x), u1(x)),

(t, x) ∈ R×Rd. (KG)

Prescribing f to the above class of focusing nonlinearities (i.e. (A1) and (A2) if d = 1, and
(A3) if d > 2) ensures that the corresponding Cauchy problem for (KG) is locally well-posed
in Hs(Rd)× Hs−1(Rd), for any s > 1: we refer to Ginibre and Velo [58] and Nakamura and
Ozawa [114] (when d = 2) for more details.
Then (KG) admits a stationnary solution Q(t, x) = Q(x) which satisfies (0.5) with c0 = 1.
Since (KG) is invariant under Lorentz boosts, we can define a boosted ground state (a soliton
from now on) with relative velocity β ∈ Rd. More precisely, let β = (β1, . . . , βd) ∈ Rd, with
|β| < 1 (we denote | · | the euclidian norm on Rd), the corresponding Lorentz boost is given
by the (d + 1)× (d + 1) matrix

Λβ :=


γ −β1γ · · · βdγ

−β1γ
... Idd +

(γ− 1)
|β|2 ββT

−βdγ

 where γ :=
1√

1− |β|2
, (1.2)
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(ββT is the d× d rank 1 matrix with coefficient of index (i, j) βiβj). Then the boosted ground
state with velocity β0 ∈ Rd with |β0| < 1, and space translation x0 ∈ Rd is

Q[β0, x0](t, x) := Q
(

Λβ0

(
t

x− x0

))
. (1.3)

(It is a travelling wave with speed β0).

Theorem 1.5 (Multi-solitons for (KG), C., Muñoz [10]). Assume f satisfies (A). Let β1, β2, . . . , βN ∈
Rd be a set of distinct velocities

∀j 6= k, β j 6= βk, and |βk| < 1,

and x1, x2, . . . , xN ∈ Rd be shift parameters.
Then there exist a time T0 ∈ R, constants C > 0, and γ0 > 0, only depending on the sets (β j)j, (xj)j,
and a solution (U, ∂tU) ∈ C ([T0,+∞), H1(Rd) × L2(Rd)) of (KG), globally defined for forward
times and satisfying

∀t > T0,
∥∥∥(U, ∂tU)(t)−

N

∑
j=1

(Q[β j, xj], ∂tQ[β j, xj])(t)
∥∥∥

H1×L2
6 Ce−γ0t.

Although the nonlinear object Q under consideration is the same as for (NLS) for example,
the structure of the flow is different (recall that all solitons are unstable for (KG), irrespective
of the nonlinearity). Hence we need to work in a more general framework, the one given by
a matrix description of (KG). The main point of this result is to establish an adequate theory
for the linearized operator of the (KG) flow and of the coercivity properties of its conserved
quantities (energy and momentum).

As we saw, our method of proof applies essentially to any situation where the solitons decay
exponentially fast, i.e the Ḣ1 subcritical case. A nice open problem is to construct multi-
solitons for Ḣ1 critical equations as well, for example (NLS) or (NLW). The situation is then
notably different: Ḣ1 critical solitons decay only algebraically, and so interactions are much
more important.

Ideas of proof

For simplicity in the notations, we will focus on the construction of multi-solitons for (gKdV)
in the case of a pure power non-linearity f (u) = |u|p−1u, and use the notations of Theorem
1.1.
The crux of the argument is to construct a sequence Un(t) of solution to (gKdV) defined on
some interval [T0, Sn] where T0 does not depend on n and Sn → +∞ (Sn can in fact be any
such sequence), and such that the following uniform estimate holds: there exists a constant
C such that for all n,

∀t ∈ [T0, Sn],
∥∥∥Un(t)−

N

∑
j=1

Q[cj, xj](t)
∥∥∥

H1
6 Ceσ0t. (1.4)

Assume for now that such a sequence (Un)n is constructed. Notice that (Un(T0))n is bounded
in H1, so that, up to extraction, we can consider a weak limit U∗ of (Un(T0)).
Then define U(t) the solution to (gKdV) with initial data at time T0: U(T0) = U∗. Recall
that the flow of (gKdV) is continuous in the weak-H1 topology (as a consequence of well
posedness in Hs0 for some s0 < 1; observe that the problem is Ḣ1 subcritical). Therefore,
taking the weak limit in (1.4), we infer that T+(U) = +∞ and

∀t > T0,
∥∥∥U(t)−

N

∑
j=1

Q[cj, xj](t)
∥∥∥

H1
6 Ce−σ3/2

0 t.

U is hence the desired multi-soliton.
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We are now left with constructing the solution Un satisfying (1.4). Let us start with the L2

subcritical 1 < p < 5 case, where solitons are stable. In that case we define Un backward in
time, as the solution to (gKdV) with final data

Un(Sn) :=
N

∑
j=1

Q[cj, xj](Sn).

We work on the (maximal) interval of time [Tn, Sn] on which (1.4) holds true. For all t on this
interval, Un(t) is close to a sum of solitons, and we can modulate the parameter cj and xj to
obtain some orthogonality conditions on the remainder: more precisely, there exist unique
C 1 functions yj(t) such that

Un(t, x) =
N

∑
j=1

Q[cj, yj(t)](t, x) + η(t, x), such that
∫

η(t, x)∂x(Q[cj, yj(t)])(t, x)dx = 0,

(1.5)

for all j = 1, . . . , N. Modulation theory also provides bounds on η and the yj, in particular
we have

∀t ∈ [Tn, Sn], ‖η(t)‖H1 6 Ce−σ3/2
0 t. (1.6)

Observe that η(Sn) = 0. The point of the argument is that local quantities related to the mass
and energy around each soliton enjoy a monotonicity property. Denote

Mj(t) =
∫

Un(t, x)2 ϕj(t, x)dx where ϕj(t, x) = ψ

(
x−

cj+1 + cj−1

2
t
)
−ψ

(
x−

cj + cj−1

2
t
)

,

and ψ(y) = arg tanh(exp(−√σ0y)) is a suitable cut-off function such that ψ(y) → 0 as
y → +∞ and ψ(y) → 1 as y → −∞ with exponential rate. Then for σ0 small enough, one
has the backward (almost) monotonicity property

Mj(t)−Mj(Sn) > −Ce−3σ3/2
0 t.

The error term e−3σ3/2
0 t comes essentially from the interaction between solitons; observe that

it is super quadratic with respect to (1.6) One can similarly consider the energy related
quantity

Ej(t) :=
∫ (1

2
(∂xUn(t, x))2 − 1

p + 1
|Un(t, x)|p+1

)
ϕj(t, x)dx.

(One obtains the desired monotonicity on a sightly modified localized energy). By summa-
tion, a similar property holds for the following quantity, related to Weinstein’s functional
localized around each soliton:

W(t) :=
N

∑
j=1

1
c2

j

(
Ej(t) +

cj

2
Mj(t)

)
.

Now we can expand W(t) in terms of η: for this it is convenient to introduce the linear
operators

Lv = −∆v− f ′(Q)v + c, Lj(t)v = −∆v− f ′(Q[cj, yj(t)](t))v + cjv. (1.7)

Lj is simply L suitably rescaled and translated. The coefficient cj of Weinstein’s functional
makes the linear term vanish, so that for all t ∈ [Tn, Sn],

W(t) =
N

∑
j=1

1
c2

j

(
E(Q[cj, 0])) + cj‖Q[cj, 0‖2

L2

)
+

1
2

H(t) + O(‖η(t)‖3
H1) + O(e−3σ3/2

0 t), (1.8)

where H(t) =
N

∑
j=1

1
c2

j
Hj(t) and

Hj(t) =
∫

Lj(t)η(t, x)η(t, x)ϕj(t, x)dx.
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Now recall the coercivity of property of L (Q is a stable soliton): there exists λ0 > 0 such that

∀v ∈ H1, 〈Lv, v〉 > λ0‖v‖2
H1 −

1
λ0

(
〈v, ∂xQ〉2 + 〈v, Q〉2

)
. (1.9)

Scaling, translation and a usual localization argument yield an analogous result on Hj(t),
and by summation – recall that

〈
η(t), ∂xQ[cj, yj(t)](t)

〉
= 0, we get for some λ > 0 not

depending on n or t ∈ [Tn, Sn]:

H(t) > λ‖η(t)‖2
H1 −

1
λ

N

∑
j=1

〈
η(t), Q[cj, yj(t)](t)

〉2 .

Combining this with the monotonicity property on W(t), we deduce that

‖η(t)‖2
H1 6 C

N

∑
j=1

〈
η(t), Q[cj, yj(t)](t)

〉2
+ Ce−3σ3/2

0 t. (1.10)

Now, an important feature is that the variation of the scalar product in the previous estimate
is in fact quadratic in η, more precisely,∣∣∣∣ d

dt
〈
η(t), Q[cj, yj(t)](t)

〉∣∣∣∣ 6 C‖η‖2
H1 .

(The bound can be improved to an H1 norm localized around yj(t) + cjt, the center of mass
ofQ[cj, yj(t)](t)). We can integrate this on t ∈ [Tn, Sn], using the bound (1.6), and pluging it
in (1.10), we deduce:

∀t ∈ [Tn, Sn], ‖η(t)‖2
H1 6 Ce−3σ3/2

0 t.

With the bounds coming from modulation theory, a similar inequality is derived for |yj(t)−
xj − cjt|. In this way, we improved the estimate (1.6): therefore we can put in a place a
bootstrap scheme, and via a continuity argument, we conclude that Tn = T0, and that (1.4)
holds. This concludes the proof in the L2 subcritical case p < 5.

Observe that (1.4) is an extremely strong bootstrap hypothesis: in particular, exponential
decay is preserved by integration. This makes the scheme of proof very robust, and allows
to extend to (NLS) for example. For (gKdV) specifically, one develops the same bootstrap
argument under the much weaker assumption that the left hand side in (1.4) is bounded by
a small ε (uniformly in t). In particular, this shows that any (gKdV) multi-soliton converges
exponentially fast to its profile.
Also observe that we could have chosen any initial data Un(Sn) in a small neighbourhood of

∑N
j=1 Q[cj, xj](Sn) of size o(e−σ3/2

0 Sn): this also shows some robustness of the method, and a
stability property of multi-solitons in the L2-subcritical setting.

In the L2 critical case p = 5, the method of proof is the same, except that now the coercivity
property (1.9) fails, and should be replaced with

∀v ∈ H1, 〈Lv, v〉 > λ0‖v‖2
H1 −

1
λ0

(
〈v, ∂xQ〉2 +

〈
v, Q3

〉2
)

. (1.11)

The idea is then to modulate with respect to translations yj(t) ∼ xj + cjt and scaling γj(t) ∼
cj, so as to cancel both bad directions which appear in (1.11). The point now is that the
variation γ̇j of the modulated scaling parameter γj(t) is quadratic in η, because we are in the
L2 critical case. Therefore, one can close the blow up estimates as previously.

Let us consider the L2 critical case p > 5. Again, (1.9) fails; even worse, the linearized flow
around a soliton admits eigenvalues with non vanishing real part. More precisely, let U
be a solution close to the soliton Q[1, 0](t), and let ε = U(t)− Q[1, 0](t) be the error term
(unmodolated): then the equation on ε reads:

∂tε + ∂x(Lε) + O(ε2) = 0.
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In the L2-supercritical case ∂xL admits two smooth, exponentially decaying eigenfunctions
Y±:

∂xLY± = ±ε0Y±, ε0 > 0.

In fact, we will need to consider the adjoint operator L∂x, and for which one similarly ob-
serves that

Z± := LY±are eigenfunctions: L(∂xZ±) = ±ε0Z±.

The first task is to obtain a new coercivity property to make up for (1.9). From Sturm-
Liouville theory, one always has that

∀v ∈ H1, 〈Lv, v〉 > λ0‖v‖2
H1 −

1
λ0

(
〈v, ∂xQ〉2 +

〈
v, Q

p+1
2

〉2
)

,

but the last scalar product is not well behaved under the flow: this is why we have to relate
to Z±.

Proposition 1.6. Let p > 5. There exist λ0 > 0 such that

∀v ∈ H1, 〈Lv, v〉 > λ0‖v‖2
H1 −

1
λ0

(
〈v, ∂xQ〉2 +

〈
v, Z+

〉2
+
〈
v, Z−

〉2
)

. (1.12)

Our goal is still to construct Un backwards from Sn, and verifying (1.4). As in the L2 sub-
critical case, we will work with the error η as in (1.5). However, here, we need to avoid the
bad direction Z+: so instead of imposing a priori η(Sn) = 0, we allow η(Sn) to be chosen in
a small neighbourhood of Span(Z+

j (Sn), j) where Z+
j (t) is the eigenfunction of Lj(t)∂x with

positive eigenvalue.
More precisely, we define

a±j (t) :=
〈

η(t), Z±j (t)
〉

. (1.13)

By inverse mapping, if Sn is large enough, then for any a = (a1, . . . , aN) ∈ B(0, 1) in RN ,
there exists a unique final data Un(Sn) such that

η(Sn) = 0, and ∀j = 1, . . . , N, yj(Sn) = xj + cjSn, and (1.14)

∀j = 1, . . . , N, a−j (Sn) = 0 and a+j (Sn) = aje−3σ3/2
0 Sn/2. (1.15)

Our goal is to find, for each n, a suitable a.
The bootstrap assumption now has two scales, one for η and the yj and one for the aj,
which is stronger: for a ∈ B(0, 1), we consider the minimal time T−(a) > T0 such that for all
t ∈ [T−(a), Sn],

‖η(t)‖2
H1 6 e−2σ3/2

0 t,
N

∑
j=1
|yj(t)|2 6 e−2σ3/2

0 t 6 1, (1.16)

N

∑
j=1
|a+j (t)|

2 6 e−3σ3/2
0 t,

N

∑
j=1
|a+j (t)|

2 6 e−3σ3/2
0 t (1.17)

Observe that the constants are important, and we a priori allow T(a) = Sn. Nevertheless, our
goal it to find a such that T−(a) = T0.
We argue by contradiction and assume that for all a ∈ B(0, 1), T−(a) > T0. Then this means
that at least one of the inequalities in (1.16) is actually an equality at T−(a). Let a ∈ B(0, 1).
With the control provided by the bootstrap hypothesis and the coercivity (1.12), the same
argument as in the L2 subcritical case shows that

‖η(t)‖2
H1 +

N

∑
j=1
|yj(t)|2 6 Ce−3σ3/2

0 t.
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As we choose to compute the scalar product essentially with Z±, eigenfunction of the adjoint
L∂x of the linearized flow around Q, the linear term in the equation on aj is explicit (and is
aj itself): more precisely, it writes:∣∣∣ȧ±j (t)± e0c3/2

j a±j (t)
∣∣∣ 6 C‖η(t)‖2

H1 + Ce−3σ3/2
0 t. (1.18)

Integrating this shows first
N

∑
j=1
|a+j (t)|

2 6 Ce−4σ3/2
0 t.

Therefore, we must have the equality

N

∑
j=1
|a+j (T−(a))|

2 = e−3σ3/2
0 T−(a).

Now consider the map

Φ : B(0, 1) → SN−1

a 7→ e3σ3/2
0 T−(a)(a+1 , . . . , a+N)(T−(a)).

Using again (1.18), one sees that the flow is transverse at exit time T−(a): from there one
sees that Φ is continuous and that Φ|SN−1 = Id (the exit is instantaneous on the sphere). But
this contradicts Brouwer retractation theorem. Therefore, there exists a ∈ B(0, 1) such that
T−(a) = T0, and this provides a final data Un(Sn) such that (1.4) holds. The proof in the L2

supercritical case is complete.

2 Families of multi-solitons

Classification of (gKdV) multi-solitons

Once the question of the existence of multi-solitons is settled, the next problem is uniqueness.
For simplicity we will now focus on pure power nonlinearity f (u) = |u|p−1u in all the
following discussion.
This issue was answered by Martel [84] in the L2 critical and subcritical cases:

Theorem 1.7 (Martel [84]). Let f (u) = |u|p−1u where 1 < p 6 5, and an integer N > 1 and
parameters 0 < c1 < · · · < cN , x1, . . . , xN ∈ R be given.
Then the multi-soliton constructed in Theorem 1.1 is unique, i.e. there exists exactly one maximal
solution U ∈ C ((T−(U),+∞)) to (gKdV) such that

∥∥∥U(t)−
N

∑
j=1

Q[cj, γj, vj, xj](t)
∥∥∥

H1
→ 0 as t→ +∞. (1.19)

Due to Theorem 1.1, the convergence is in fact exponentially fast. This uniqueness result is
surprising as first sight, but is in fact intimately related to the variationnal properties of Q.
Denoting U the multi-soliton constructed in Theorem 1.1 (where convergence is exponential),
and V an other multi-soliton in the sense that (1.19) holds, one considers the difference
z(t) = V(t)−U(t). As z(t) is the difference of two solutions of (gKdV), it turns out that z(t)
satisfies an improved monotonicity property on an localized energy related quantity. After
controlling the remaining two bad directions (〈z, Q[cj, xj]〉 which has quadratic variation,
and the second – in the subcritical case 〈z, ∂xQ[cj, xj]〉 – via modulation), one obtains

‖z(t)‖H1 6 Ce−σ1t‖z(t)‖H1 + C‖z(t)‖2
H1 ,

for some σ1 > 0, and from there, z(t) = 0.

In the L2 supercritical case p > 5, multi-solitons are not unique anymore: Combet [33]
obtained a complete classification of multi-solitons in the L2 supercritical case. Using the
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unstable mode Y+ on each soliton, it is possible to construct an N-parameter family of
multi-solitons. Then by adapting the method to prove uniqueness in the L2 subcritical, one
can show that any multi-soliton must belong to the aformentioned family. These results are
summarized below.

Theorem 1.8 (Combet [33]). Let p > 5, and use the notations and results of Theorem 1.1: U(t)
denotes a multi-soliton of (gKdV). Then:

1. For all ~a = (a1, . . . , aN) ∈ RN , there exists a solution U~a ∈ C ((T−(U~a),+∞), H1) to
(gKdV), σ > 0 and C such that

∀K = 1, . . . , N, ∀t > T−(U~a)+ 1,
∥∥∥U~a(t)−U(t)−

N

∑
j=K

aje
−ejtY+[cj, xj](t)

∥∥∥
H1
6 Ce−(eK+σ)t.

In particular, if~a 6=~a′, U~a 6= U~a′ .

2. Conversely, if u ∈ C ((T−(u),+∞), H1) is a multi-soliton of (gKdV) i.e.

‖u(t)−U(t)‖H1 → 0 as t→ +∞,

then there exists~a ∈ RN such that u = U~a.

One could certainly obtain an analoguous result for general nonlinearity f satisfying the
conditions of Theorem 1.1: the family of multi-soliton is then parametrized by RK, where K
is the number of indices of unstable solitons, i.e. the indices j such that

d
dc
‖Qc‖L2 |c=cj > 0.

Non-uniqueness and instability of L2 supercritical (NLS) multi-solitons

For the nonlinear Schrödinger equation, Combet [32] was able to construct a similar N-

parameter family in the L2 supercritical case p > 1 +
4
d

(in 1 dimension).

Theorem 1.9 (Combet [32]). Let p ∈
(

1 +
d
4

,
d + 2
d− 2

)
, and use the notations and results of Theo-

rem 1.2: U(t) denotes a multi-soliton of (NLS).
Then for all ~a = (a1, . . . , aN) ∈ RN , there exist a solution U~a ∈ C ((T−(U~a),+∞), H1) to (NLS),
σ > 0 and C such that

∀K = 1, . . . , N, ∀t > T−(U~a) + 1,
∥∥∥U~a(t)−U(t)−

N

∑
j=K

aje
−ejtY+[cj, xj](t)

∥∥∥
H1
6 Ce−(eK+σ)t.

In particular, if~a 6=~a′, U~a 6= U~a′ .

The restriction to 1 space dimension is for technical reason only, most notably one needs
some regularity on the nonlinearity, which also has to be Ḣ1 sub-critical in some sense:
in high dimension, no pure power nonlinearity is allowed, only general nonlinearity f are
suitable. Then one has to study the eigenfunctions of the linearized operator (notably, expo-
nential decay), which was conducted in [8]. Under the assumptions in Theorem 1.10 below,
one could extend Theorem 1.9 to higher dimension.

The question of the classification of (NLS) multi-solitons as in the case of (gKdV) is a widely
open problem. Even in the L2 subcritical case, whether or not multi-solitons are unique
is a challenging open question. One crucial argument missing in the (NLS) context is the
monotonicity properties which underly all the study of the solitons for (gKdV).
Actually one can see the uniqueness of multi-soliton as a toy problem for several important
(and related) open questions: asymptotic stability (say locally in H1 without weights) of (NLS)
solitons, Liouville property of non dispersive solutions which remain close to a soliton (cf.
Chapter 4 for further detail), and stability of multi-solitons.
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One can argue in the same way for multi-solitons based on general bound states, under
the assumption that the flow of (at least) one the excited states has an eigenvalue off the
imaginary axis, i.e if Φ is a solution to (0.5), then

(A4) L = −i∆ + iω1 − id f (Φ) has an eigenvalue λ ∈ C with ρ := Re(λ) > 0.

This assumption is very natural if one expects a travelling wave based on Φ to be unstable.
Actually, (A4) holds for any real radial bound state in the L2-supercritical case (see [59]). For
excited states, (A4) is believed to hold for a wide class of non-linearities.

Theorem 1.10 (C., Le Coz [8]). Let d > 2, and f ∈ C ∞ satisfies (A1) and the first part of (A2),

and | f ′(s)| 6 C(1 + |s|p) for some p ∈
(

1,
d + 2
d− 2

)
. We use the notations and results of Theorem

1.4: U(t) denotes a multi-soliton of (NLS).
Assume that Φj satisfies (A4) for some j ∈ J1, nK (denote Lj and ρj the linearized flow and real part
of the eigenvalue respectively). Then there exists a function Y(t) such that eρjtY(t) is periodic and
non trivial (in fact ∂tY + LjY = 0), such that the following holds.
For all a ∈ R, there exists a solution Ua ∈ C ((T−(Ua,+∞)),+∞), H1(Rd)) to (NLS) such that

∀t > T0, ‖Ua(t)−U(t)− aY[cj, γj, vj, xj](t)‖H1(Rd) 6 Ce−2ρjt.

In particular, for a 6= b, Ua 6= Ub.

The main difficulty of this result is to construct a very good approximate solution to the
multi-soliton. Actually we build such a profile at arbitrary exponential order: this method is
inspired by [46–48]. One important issue, as mentioned above, is to have a good knowledge
of the eigenfunction of the linearized flow. Also, the fact that the eigenvalue may be complex
makes the construction of the profile more involved.

Up to making v](Φ1, . . . , ΦN) > 0 smaller, one has the same result with a family of K
parameters, where K is the number of bound state Φk such that (A4) holds true. However
the previous result is enough to prove nonlinear instability of the multi-soliton.

Corollary 1.11 (C., Le Coz [8]). Under the hypotheses of Theorem 1.10, the following instability
property holds. U(t) denotes the multi-soliton.
There exist ε > 0, In, Jn → +∞, and a sequence of solutions vn ∈ C ([In, Jn], H1(Rd)) to (NLS)
such that

1. for all σ > 0, ‖vn(In)−U(In)‖Hσ(Rd) → 0 as n→ +∞, and

2. inf
yj∈Rd ,ϑj∈R,

j=1,...,N

∥∥∥wn(Jn)−
N

∑
i=1

Φj(x− yj)e
i( 1

2 vj ·x+ϑj)
∥∥∥

L2(Rd)
> ε.

As mentioned above, this is a strong form of forward (orbital) instability (as Jn > In). Observe
that one way to interpret the non uniqueness results (Theorems 1.9 and 1.10) is to say that
there is backward instability (given directly by Ua for a 6= 0). Corollary 1.11 is different and
requires some further analysis.



CHAPTER 2
Soliton resolution for wave type

equations

In this chapter, we study the asymptotic behavior of solutions u without size restriction
or well prepared assumptions, near the final time of existence t → T+(u). We will speak

of global solution when T+(u) = +∞ and blow up solution when T+(u) < +∞, letting aside
the behavior at T(u).

One of the main conjectures in the field of dispersive equations, is that at least generically,
any initial data eventually decouples into a sum of solitons (in the sense of compact solution
modulo symmetries), and a (linear) scattering term. This is the so called soliton resolution
conjecture.

Some forms of this conjecture where proved in the case of integrable equations, most notably
(KdV) (cf. Schuur ) {

∂tu + ∂x(∂xxu + u2) = 0,
u(t = 0, x) = u0(x),

(t, x) ∈ R×R. (KdV)

and (mKdV) {
∂tu + ∂x(∂xxu + u3) = 0,
u(t = 0, x) = u0(x),

(t, x) ∈ R×R. (mKdV)

(cf. Eckhaus, Schuur [49], and Miura [111] for a survey). For example for (KdV), for any
generic solution u, there exists N solitons with scaling parameters c1, . . . , cN and translations
x1, . . . xN such that

‖u(t)−
n

∑
k=1

Qci (x− c1t− x1)‖L∞(x>−t1/3) → 0 quand t→ +∞. (2.1)

(Recall that (KdV) and (mKdV) are L2 subcritical and so any H1 solution is globally defined
on R). For (mKdV) a similar statement holds, which includes besides solitons another type
of nonlinear object, the breathers:

B(t, x) := 2
√

2∂x

(
arctan

(
β

α

sin(α(x + γt))
cosh(β(x + δt))

))
, (2.2)

where α, β ∈ R∗, γ := 3α2 − β2, and δ := α2 − 3β2.

(See Eckhaus, Schuur [49] for further details). Observe that breathers are spatially localized
solutions moving to the left, which is definitely not a sum of solitons and linear scattering
term.

11
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These results are a consequence of the inverse scattering method, and so rely in an essential
way on the integrability of the equations under consideration. It thus seems very unlikely to
be able to extend it to more general situations, even pertubative. Also, the stated result itself
misses some aspects of the annouced objective: the L∞ norm is not strong enough to give an
account for the linear term, indeed if v is a smooth solution of the linear Korteweg-de Vries
equation ∂tv + ∂xxxv = 0, then

‖v(t)‖L∞ 6 t−1/3‖v(0)‖L1 .

Actually the dispersion relation ω− 3k2 = 0 shows that the linear waves tend to move to the
left (with speed k2), which explains in part the space localization in the right hand side in the
convergence (2.1). This reinforces the idea that linear dispersion is hard to handle precisely.

On another side, the soliton resolution conjecture should be taken in a loose way, as such
a rigid decomposition should not hold for all solutions (one can think of excited states for
(NLS) in dimension d > 2). Thus the term “generic solution” should be made precise and
can not be avoided.

In this chapter, we present soliton resolution results for wave type equations. The reasons
for this choice will be made clearer in the proof, but let us underline here that one of the
main motivation is finite speed of propagation, which replaces the monotonicity properties of
(gKdV) type equations. The extension of these types of results to Schrödinger type equation
is wide open, and certainly extremely difficult.

1 Profile decomposition

An essential tool to study the long time dynamics is the (linear) profile decomposition,
introduced by Bahouri, Gérard [18] in the case of the 3 dimensional energy critical wave
equation, and independently by Merle, Vega [104] in the case of the 2 dimensional L2 critical
Schrödinger equation. As we will use it in the wave context, we present it here for the Ḣ1× L2

critical wave equation:{
∂ttu− ∆u− |u|4/(d−2)u = 0,
(u, ∂tu)(t = 0, x) = (u0(x), u1(x)),

(t, x) ∈ R×Rd, (cNLW)

and it linear counterpart:{
∂ttu− ∆u = 0,
(u, ∂tu)(t = 0, x) = (u0(x), u1(x)),

(t, x) ∈ R×Rd. (LW)

Notation 2.1. Let ~v = (v0, v1) : I ×Rd → R2 be a function of space and time, where I ⊂ R,
and (t0, x0, λ0) ∈ R×Rd × (0,+∞) are modulation parameters. Then we denote ~v[t0, x0, λ0]
function of space and time defined by

~v[t0, x0, λ0](t, x) :=

(
1

λd/2−1
0

v0

(
t− t0

λ0
,

x− x0

λ0

)
,

1

λd/2
0

v1

(
t− t0

λ0
,

x− x0

λ0

))
.

We can extend this notation to functions depending on space only by considering them as
constant in time.
We will also repetitively use the Strichartz space S, where for an interval of time I, we denote

S(I) = L
2(d+2)

d−2 (I, L
2(d+2)

d−2 (Rd)).

Theorem 2.2 (Bahouri, Gérard [18]). Let ~un = (un,0, un,1) be a sequence bounded in Ḣ1× L2. Up
to extracting a subsequence, there exist a sequence of linear profiles (~U j

L)j of Ḣ1 × L2 (solutions to
(LW)), and of time, shifts and scaling parameters

(tj,n, xj,n, λj,n) ∈ R×Rd × (0,+∞),
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and linear remainder term (~wJ
n)J,n (i.e. solutions to (LW)), such that the following decomposition

holds for all J, n > 1

~un =
J

∑
j=1

~U j
L[tj,n, xj,n, λj,n] + ~wJ

n (2.3)

where the remainder terms are asymptotically vanishing in the Strichartz space S

lim sup
n→+∞

‖wJ
n‖S(R) → 0 as J → +∞, (2.4)

and the modulation parameters are almost orthogonal, in the sense that for any j 6= k,

λj,n

λk,n
+

λk,n

λj,n
+
|xj,n − xk,n|

λj,n
+
|tj,n − tk,n|

λj,n
→ +∞ as n→ +∞. (2.5)

The profiles are obtained by weak limits. Denote ~uL,n the linear solution to (LW) with initial
data ~uL,n = ~un. The U j

L(0) are chosen among all Ḣ1 × L2 weak limits of ~uL,n up to modula-
tion, in decreasing order of Ḣ1 × L2 norm: for all j > 1,

~uL,n

[
−tj,n,−xj,n,

1
λj,n

]
(0) ⇀ ~U j

L(0) weakly in Ḣ1 × L2.

So that for all J > 1 and k 6 J

~wJ
n

[
−tj,n,−xj,n,

1
λj,n

]
(0) ⇀ 0 weakly in Ḣ1 × L2,

and the almost orthogonality condition is automatic. The heart of Theorem 2.2 is to estimate
the remainder term wJ

n in the Strichartz space (2.4): this is a consequence of a precised
Sobolev embedding, which describes the default of compactess in the Sobolev embedding

Ḣ1 → L
2d

d−2 in dimension d (we refer also to Brézis, Coron [24], and Gérard [53]).

Proposition 2.3 (Pythagorean expansion). For all J > 1,

‖~un‖2
Ḣ1×L2 =

J

∑
j=1
‖U j

L(0)‖
2
Ḣ1×L2 + ‖~wJ

n(0)‖2
Ḣ1×L2 + on(1).

Definition 2.4 (Non linear profile). Let ~UL be a linear solution to (LW), and ` ∈ [−∞,+∞].
The non linear profile associated to (~UL, `) is the unique nonlinear solution ~U(t) to (cNLW),
defined in a neighborhood of `, and such that

‖~U(t)− ~UL(t)‖Ḣ1×L2 → 0 as t→ `.

The interest of a profile decomposition for a sequence of initial data, related to the linear
equation (LW), comes from the fact one can evolve this decomposition by the nonlinear flow.
Here is the precise statement:

Proposition 2.5 (Non linear evolution). Let ~un be a sequence of nonlinear solutions to (cNLW).
Assume that the sequence of initial data ~un(0) is bounded in Ḣ1 × L2 and admits a linear profile
decomposition (~U j

L, (tj,n, xj,n, λj,n)n)j with remainder wJ
n, in the sense of Theorem 2.2. Let ~U j be the

nonlinear profiles associated to

(
~U j

L, lim
n
−

tj,n

λj,n

)
.

Finally, let sn > 0 be a sequence of times such that for all j > 1,

∀n,
sn − tj,n

λj,n
< T+(~U j) and lim sup

n→∞
‖U j‖

S
(
−tj,n
λj,n

,
sn−tj,n

λj,n

) < ∞.
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Then sn 6 T+(~un(t)) and
lim sup

n→∞
‖un‖S([0,sn)) < ∞.

Furthermore, the following decomposition into nonlinear profiles holds: for all J > 1,

∀t ∈ [0, sn], ~un(t) =
J

∑
j=1

~U j[tj,n, xj,n, λj,n](t) + ~wJ
n(t) +~r J

n(t), (2.6)

where the error~r J
n satisfies

lim sup
n→∞

(
‖r J

n‖S([0,sn)) + ‖~r
J
n‖L∞

t ([0,sn ];Ḣ1×L2)

)
→ 0 as J → +∞.

Of course, we have a similar result for negative times sn.

2 Linear energy outside the light cone

Before we state the soliton decomposition results, let us focus on an important feature of
the linear flow. It plays a fundamental role in the proof of the main results of this chapter
(essentially replacing monotonicity formulas), but has its own interest.
The question here is to understand where does the energy of a linear solution to the wave
equation lie for large times. A first answer is that the energy concentrates around the light
cone.

Theorem 2.6 ([7, 44]). Let ~u ∈ (Ḣ1 × L2)(Rd) be a radial linear solution to (LW). Then we have
the following vanishing of the energy away from the forward light-cone {|x| = t > 0}:

lim sup
t→+∞

‖∇t,xu(t, x)‖L2(||x|−t|>T) → 0 as T → +∞. (2.7)

Now, what will be of major importance is the refinement of this, namely does some energy
remain outside the light cone, or does all the energy eventually go inside?
The answer lies in the following theorem. Surprisingly enough, the asymptotic behavior de-
pends heavily on the parity of the dimension. To state it, we introduce the Hankel transform
H and the Hilbert transform H on the half-line (0, ∞):

(Hϕ)(ρ) :=
∫ ∞

0

ϕ(σ)

ρ + σ
dσ, and (H ϕ)(ρ) :=

∫ ∞

0

ϕ(σ)

ρ− σ
dσ (2.8)

where the second integral is to be taken in the principal value sense. Both these operators
are bounded and self-adjoint (anti-selfadjoint, respectively) on L2((0, ∞), dρ), with norm π.
Furthermore, H is a positive operator since it is of the form H = L 2 where L is the Laplace
transform:

L φ(ρ) =
∫ ∞

0
φ(σ)e−ρσdσ.

(See for example Lax [80, Section 16.3.3] for details). In even dimensions, we find the follow-
ing expression for the asymptotic exterior energy in terms of H and H . In the following of
this section, we slightly change our notation

〈 f , g〉 :=
∫ ∞

0
f (x)g(x) dx

for two functions f , g on the half-line (0, ∞).

Theorem 2.7 ([7]). Let d > 2 be an integer, there exists an explicit constant C(d) such that the
following holds. Let (u0, u1) ∈ (Ḣ1 × L2)(Rd) be radial. Denote û0 and û1 their Fourier transform
in Rd and ~u(t) the linear solution to (LW) with initial data ~u(0) = (u0, u1).

1. If d is odd, then

lim
t→±∞

C(d)‖∇t,xu(t, x)‖2
L2(|x|>|t|) =

π

2

∫
(ρ2|û0(ρ)|2 + |û1(ρ)|2)ρd−1 dρ

±
(
(−1)

d−1
2 Re〈H(ρ

d+1
2 û0), ρ

d−1
2 û1〉+ Re〈ρ

d+1
2 û0, H (ρ

d−1
2 û1)〉

)
. (2.9)
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2. If d is even, then

lim
t→±∞

C(d)‖∇t,xu(t, x)‖2
L2(|x|>|t|) =

π

2

∫
(ρ2|û0(ρ)|2 + |û1(ρ)|2)ρd−1 dρ

+
(−1)

d
2

2

(
〈H(ρ

d+1
2 û0), ρ

d+1
2 û0〉 − 〈H(ρ

d−1
2 û1), ρ

d−1
2 û1〉

)
± Re〈ρ

d+1
2 û0, H (ρ

d−1
2 û1)〉.

(2.10)

We now use the positivity of the Hankel transform H to derive the corollaries that we will
indeed use in the proof of the soliton decomposition. The first one is in the odd case, and
allows to recover the exterior energy estimates obtained by Duyckaerts, Kenig, Merle [44]
(see also [45, Proposition 2.7] for the non radial setting).

Corollary 2.8. Let d be an odd integer. Let ~u(t) ∈ C (R, Ḣ1 × L2) be a radial linear solution to
(LW) . Then one has either one of the following estimates:

∀t > 0, ‖∇t,xu(t, x)‖2
L2(|x|>|t|) >

1
2
‖∇t,xu(0, x)‖2

L2 ,

or ∀t 6 0, ‖∇t,xu(t, x)‖2
L2(|x|>|t|) >

1
2
‖∇t,xu(0, x)‖2

L2 .
(2.11)

In even dimension, results of the flavor of (2.11) can only hold if ~u(0) has a specific form,
depending on d mod 4.

Corollary 2.9. Let d > 2 be even. Let ~u(t) ∈ C (R, Ḣ1 × L2) be a radial linear solution to (LW).

1. If d ≡ 0 mod 4, and ∂tu(0) = 0, then

∀t > 0, ‖∇t,xu(t, x)‖2
L2(|x|>|t|) >

1
2
‖∇xu(0, x)‖2

L2 . (2.12)

2. If d ≡ 2 mod 4, and u(0) = 0, then

∀t > 0, ‖∇t,xu(t, x)‖2
L2(|x|>|t|) >

1
2
‖∂tu(0, x)‖2

L2 . (2.13)

The estimate actually fails when not in the right setting.

Corollary 2.10. 1. If d ≡ 0 mod 4, there exists a sequence ~un ∈ C (R, Ḣ1 × L2) of (radial)
linear solutions to (LW) such that un(0) = 0 and

lim
t→±∞

‖∇t,xun(t, x)‖2
L2(|x|>|t|) = o(‖∂tun(0)‖2

L2).

2. If d ≡ 2 mod 4, there exists a sequence ~vn ∈ C (R, Ḣ1 × L2) of (radial) linear solutions to
(LW) such that ∂tvn(0) = 0 and

lim
t→±∞

‖∇t,xvn(t, x)‖2
L2(|x|>|t|) = o(‖∇xvn(0)‖2

L2).

Note that the exterior energy is decreasing in |t|, so that the limit exists, and we are reduced
to compute them. In odd dimension, one can represent ~u explicit via the fundamental solu-
tion of the linear wave equation, and make use of the strong Huyghens principle to obtain
(2.11). In even dimension, this tool is no longer available; in any case, it seems unlikely that
one can compute the limits in (2.9)- (2.10) via a representation in the “physical space”.
This is why we employ the Fourier transform in this computation: the starting point is a
representation formula of u(t) through Bessel functions. More precisely let f̂ be the Fourier
transform in Rd:

f̂ (ξ) =
∫

Rd
e−ix·ξ f (x) dx, f (x) = (2π)−d

∫
Rd

eix·ξ f̂ (ξ) dξ.
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For radial functions, f̂ is again radial. Recall that

σ̂Sd−1(ξ) = (2π)
d
2 |ξ|−ν Jν(|ξ|), ν :=

d− 2
2
> 0,

where Jν is the Bessel function of the first type of order ν. It is characterized as being the
solution of

x2 J′′ν (x) + xJ′ν(x) + (x2 − ν2)Jν(x) = 0 (2.14)

which is regular at x = 0 (unique up to a multiplicative constant). The inversion formula
takes the form

f (r) = (2π)−
d
2

∫ ∞

0
f̂ (ρ)Jν(rρ)(rρ)−νρd−1 dρ.

The Plancherel identity takes the form ‖ f̂ ‖2
2 = (2π)d‖ f ‖2

2. The solution u(t) to the linear
equation (LW) is given by

u(t) = cos(t|∇|)u(0) + sin(t|∇|)
|∇| (∂tu)(0).

This means that

u(t, r) = (2π)−
d
2

∫ ∞

0

(
cos(tρ) f̂ (ρ) +

sin(tρ)
ρ

ĝ(ρ)
)

Jν(rρ)(rρ)−νρd−1 dρ, (2.15)

∂tu(t, r) = (2π)−
d
2

∫ ∞

0

(
− sin(tρ)ρ f̂ (ρ) + cos(tρ)ĝ(ρ)

)
Jν(rρ)(rρ)−νρd−1 dρ. (2.16)

We shall invoke the standard asymptotics for the Bessel functions, see [14],

Jν(x) =

√
2

πx
((1 + ω2(x)) cos(x− τ) + ω1(x) sin(x− τ)) ,

J′ν(x) =

√
2

πx
(ω̃1(x) cos(x− τ)− (1 + ω̃2(x)) sin(x− τ)) ,

(2.17)

with phase-shift τ = (d− 1)
π

4
, and with the bounds (for n > 0, x > 1)

|ω(n)
1 (x)|+ |ω̃(n)

1 (x)| 6 Cn x−1−n, |ω(n)
2 (x)|+ |ω̃(n)

2 (x)| 6 Cn x−2−n. (2.18)

Using the representations (2.15) and (2.16), we have explicit formulas for ‖∇x,tu(t)‖L2(|x|>|t|)
or the delayed quantity. Then we expand these formulas using the asymptotics of the Bessel
functions; for example, for even d, the leading term in the kinetic energy ‖∂tu(t)‖2

L2(r>|t|) is

∞∫
t

∞∫
0

∞∫
0

(− sin(tρ1)ρ1û0(ρ1) + cos(tρ1)û1(ρ1)) ·
(
− sin(tρ2)ρ2û0(ρ2) + cos(tρ2)û1(ρ2)

)
· cos(rρ1 − τ) cos(rρ2 − τ)(ρ1ρ2)

ν+ 1
2 dρ1dρ2 dr. (2.19)

In order to carry out the r integration, we use trigonometric formulas for expression of the
type cos(rρ1 − τ) cos(rρ2 − τ) and the relation∫ ∞

t
cos(ar)dr = πδ0(a)− sin(ta)

a
,

and we are with an integral in ρ1 and ρ2 made of terms of the type∫∫ sin(2t(ρ1 − ρ2))

ρ1 − ρ2
∂̂ru0(ρ1)û1(ρ2)dρ1dρ2,

or ∫∫ sin(2t(ρ1 + ρ2))

ρ1 + ρ2
∂̂ru0(ρ1)û1(ρ2)dρ1dρ2.

It remains to take the limit of these terms as t → ±∞ and we see the Hankel and Hilbert
transform appear. By a delicate inspection of all terms involved (and also of the remainder
terms that we neglected in the first place), we derive the desired expansion (2.10) as t→ +∞.
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3 The nonlinear wave equation in dimension 3

We will only consider radial data; in that case, there is no translation modulation and we de-
note r the (radial) space variable, and [λ0, t0] the modulation action. For the wave equations,
the profiles appearing in the decomposition are of two kinds: a regular part, essentially a
linear scattering term, and suitably rescaled stationnary solutions W ∈ Ḣ1 satisfying

∆W = W
4

d−2 , W > 0.

W is the unique radial solution, up to scaling and translation. In fact, it is explicit:

W(r) =
1(

1 + r2

d(d−2)

) d
2−1

. (2.20)

Observe that W /∈ L2 due to lack of decay at spatial infinity.
In this subsection, we consider here radial solutions to (cNLW) in 3 dimensions:

∂ttu− ∆u + u5 = 0.

For this specific equation, it is remarquable that a complete description is available.

Theorem 2.11 (Duyckaerts, Kenig, Merle [40]). Let ~u be a radial solution to (cNLW) in dimension
d = 3. Then one of the following alternatives hold:

1. Type I blow up. T+(~u) < +∞ and limt→T+(~u) ‖~u(t)‖Ḣ1×L2 = +∞.

2. Type II blow up. T+(~u) < +∞ and there exist ~v ∈ Ḣ1 × L2, an integer J > 1, and for all
j ∈ J1, JK, a signum ıj ∈ {±1} and continuous scaling functions λj : [0, T+(~u)) → (0,+∞)
such that, as t→ T+(~u),

λ1(t)� λ2(t)� · · · � λJ(t)� T+(~u)− t, (2.21)

~u(t) =
J

∑
j=1

W[λj(t)] +~v + oḢ1×L2(1). (2.22)

3. Type II global solutions. T+(~u) = +∞ and there exist a linear solution ~vL to (LW) bounded
in Ḣ1 × L2, an integer J > 1, and for all j ∈ J1, JK, a signum ij ∈ {±1} and continuous
scaling functions λj : [0, T+(~u))→ (0,+∞) such that, as t→ +∞,

λ1(t)� λ2(t)� · · · � λJ(t)� t, (2.23)

~u(t) =
J

∑
j=1

ijW[λj(t)] +~vL(t) + oḢ1×L2(1). (2.24)

Let us remark that in the case of type I blow up, the existence of the limit limt→T+(~u) ‖~u(t)‖Ḣ1×L2

(and not only of the lim sup) is non trivial; also, in that case a decomposition of the form
(2.22) can not hold, as it implies a type II bound. In the global case, ~u necessarily bounded
in Ḣ1 × L2, which is also a highly non trivial result.

The proof of such a result start with considering a profile decomposition for ~u(tn) where
tn → T+(~u) approaches the maximal time of definition of ~u, and to study the non linear
profiles associated to them, making use in particular of Proposition 2.5. It turns out that the
profiles appearing a solution enjoying specific compactness properties, and this motivates
the following definition.

Definition 2.12 (Compact solutions). A nonlinear solution ~u to (cNLW) is said to be compact
up to modulation if there exist functions (x, λ) : (T−(~u), T+(~u))→ Rd × (0,+∞) such that the
envelop

K[x, λ](~u) = {~u[0, x(t), λ(t)](t) | t ∈ (T−(~u), T+(~u))}

is relatively compact in Ḣ1 × L2.
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One of the main steps is therefore to classify compact solution. In the radial setting, only
W (and its orbit under the invariance of the equation) is compact. Let us emphasize that
compactness must hold at both ends of the interval of definition (T−(~u), T+(~u)); otherwise
others solutions are allowed (for example the solution W+, W− constructed and studied in
[47]).

Theorem 2.13 (Duyckaerts, Kenig, Merle [44]). If ~u is a radial solution to (cNLW) in dimension
d = 3 which is compact up to modulation, then either ~u = 0, or there exists ı0 ∈ {±1} and λ > 0
such that

~u(t) = ı0W[λ0].

Let us briefly we sketch in this paragraph the proof of Theorem 2.11, in the case of a global
solution ~u.
First, via a Virial type argument going back to Levine, it follows that the energy of ~u is
nonnegative and

lim inf
t→+∞

‖∇t,xu(t)‖2
L2 6 3E(~u).

In particular, there exists a sequence tn → +∞ such that ~u(tn) is bounded in Ḣ1 × L2.
Second, we extract the dispersion linear term, which lives essentially on the light cone and
this allows to describe the behaviour in this region and beyond:

Proposition 2.14. There exists a radial solution ~vL of (LW) such that

∀R ∈ R, lim
t→+∞

∫ +∞

t−R
|∇t,r(u− vL)(t, r)|2r2dr = 0. (2.25)

Observe that here the convergence hold as t → +∞, and not only on the subsequence tn.
This fact relies strongly on profile decomposition, finite speed of propagation, and the fact
the the linear energy concentrates around the light cone (i.e moves at maximal speed, see
Theorem 2.6), and it is a very robust property.
The key ingredient in the proof is the following nonlinear version of the channel of energy
method, which we discussed in a linear setting in the previous paragraph.

Proposition 2.15. Let u be a non-zero, radial solution of (cNLW) such that for all λ > 0 and all
signs ±, ~u± (W, 0)[λ] is not compactly supported. Then there exist constants R > 0, η > 0 and a
global, radial solution ~w of (cNLW), scattering in both time directions such that

∀r > R, ~w(0, r) = ~u(0, r),

and the following holds for all t > 0 or for all t 6 0:∫
r>R+|t|

|∇t,rw(t, r)|2r2dr > η. (2.26)

From there, it is possible to extract all profiles along a subsequence of times, and to show
that all profiles are stationnary, and that the error vanished in the energy space. It is the
content of the follwing proposition.

Proposition 2.16. Let tn → +∞ be such that ~u(tn) is bounded in Ḣ1 × L2, and ~vL be the linear
solution given by Proposition 2.15. Then, after extraction of a subsequence in n, there exist an integer
J > 0, J signum i1, . . . iJ ∈ {±1}, and J sequences (λj,n)n with 0 < λ1,n � · · · � λJ,n � tn such
that

~u(tn) = ~vL(tn) +
J

∑
j=1

ij(W, 0)[λj,n, 0] + oḢ1×L2(1).

We will now conclude of proof: the point is to show that for any sequence of times, the
above decomposition above holds for at least one subsequence. First we choose the scaling
parameter λj(t): define

Bj = (j− 1)‖∇W‖2
L2 +

∫ 1

0
|∇W|2.
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Then let λj(t) be such that
∫ +∞

λj(t)
|∇t,r(u − vL)(t, r)|2r2dr = Bj if ‖∇t,r(u − vL)(t)‖L2 > Bj,

and λj(t) = 0 otherwise. For any I = (i1, . . . , iJ) ∈ {±1}J , consider the set

AI,δ =

{
~w ∈ Ḣ1 × L2

∣∣∣∣∣ ∃λ1, . . . λJ ,
∥∥∥~w−~vL(t)−

J

∑
j=1

ij(W, 0)[λj, 0]
∥∥∥

Ḣ1×L2
6 δ

}
.

One checks that there exists δ > 0 such that for any I 6= I′, there holds dḢ1×L2(AI,δ, AI′ ,δ) > δ.
From Proposition 2.16, there exists I ∈ {±1}J and τn → +∞ such that for all n ∈ N,
~u(τn) ∈ AI,δ. Hence, letting

T = {t > 0|~u(t) ∈ AI,δ} ,

a continuity argument shows that T contains an interval of the form [t0,+∞), and from
there, the convergence of the decomposition (2.23).

4 Equivariant wave maps to the sphere S2

The wave map equation is a model for geometric wave equations. Let (M, g) be a Rie-
mannian manifold of dimension n, and R1+d be endowed with the Minkowski metric η =
diag(−1, 1, . . . , 1). Wave maps are defined as critical points of the Lagrangian

L (U, ∂U) =
1
2

∫
R1+d

ηαβ〈∂αU, ∂βU〉gdxdt.

In local coordinates, they satisfy the Euler-Lagrange system

∀k = 1, . . . , n, �Uk = −ηαβΓk
ij(U)∂αUi∂βU j, (2.27)

where Γk
ij are the Christoffel symbols on TM. By construction, wave maps preserve (at least

formally) the energy

E(U) =
∫
〈∂αU, ∂βU〉gdx.

They also enjoy the following scaling and translation invariance (almost as (NLW)):

~U[λ0, t0, x0](t, x) =
(

U
(

t− t0

λ0
,

x− x0

λ0

)
,

1
λ0

∂tU
(

t− t0

λ0
,

x− x0

λ0

))
.

We will mostly consider here wave maps with equivariant symmetry in dimension d = 2.
More precisely, we assume that M is a 2 dimensional surface of revolution with metric

ds2 = dρ2 + g(ρ)2dθ2,

where (ρ, θ) are the polar coordinates on M, and g ∈ C 3(R) (we keep the notation g as
all the information on the riemannian metric is encoded in the function g). We say that
U : R1+2 → M has equivariant symmetry if denoting (r, ω) the polar coordinates on R2, it
takes the form

U(t, r, ω) = (ψ(t, r), ω).

for some function ψ. System (2.27) then simplifies to the following equation on ψ :∂ttψ− ∂rrψ− 1
r

∂rψ +
f (ψ)
r2 = 0

(ψ, ∂tψ)|t=0 = (ψ0, ψ1)
where f = gg′. (WM)

The energy then takes the form E(~ψ) = E(~ψ; 0,+∞) where we introduce for convenience the
notation

E(~φ; A, B) :=
∫ B

A

(
|∂tφ(t, r)|2 + |∂rφ(t, r)|2 + |g(φ(t, r))|2

r2

)
rdr.

General wave map attracted a lot of attention since the early 90s. Of course, proofs in the
general case are much more technical than when symmetry is assumed: observe that there
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is no derivative in (WM) in contrast to (2.27). An important problem was to prove global
well posedness for small data in the critical Sobolev space Ḣd/2−1 × Ḣd/2. In the case with
symmetry, the result is due to Shatah and Tahvildar-Zadeh [120]: they rely on Strichartz
estimates boosted by radial Sobolev embedding. The first breakthrough for general data is
due to Tao [125, 126], when the target is the sphere N = Sd−1, and due to T; it was then
generalized by Tataru [128] to general targets.
Also it has been long understood that the geometry of the target M, plays a crucial role
in the long time behavior of wave maps. One way to summarize this idea is that a wave
map that blows up in finite time must bubble up a harmonic map at blow up time. This
result was first proved by Struwe [124] for wave map with symmetry, and later extended to
non symmetric data by Sterbenz and Tataru [122, 123] (see also the works by Tao [127] and
Krieger and Schlag [72] when the target is the hyperbolic space).

We will now concentrate on equivariant wave maps (WM), and to fix ideas, we focus on the
case of the sphere M = S2, that is

g = sin, f (ψ) =
sin(2ψ)

2
.

In a series of papers in collaboration with Merle, Kenig, Lawrie and Schlag [1, 3, 4, 6], we
ended in proving a soliton resolution along a sequence of times.
As in the (cNLW) context, the profiles appearing in the decomposition are of two kinds. The
first one is linear scattering term, solution to∂ttψ− ∂rrψ− 1

r
∂rψ− ψ

r2 = 0,

(ψ, ∂tψ)(t = 0, r) = (ψ0(r), ψ1(r)),
(t, r) ∈ R× [0,+∞). (2.28)

The energy space for (2.28) is

H × L2 =

{
(ψ0, ψ1)

∣∣∣∣ ∫ ∞

0

(
|ψ1(r)2 + (∂rψ0(r))2 +

ψ0(r)2

r2

)
rdr
}

.

Notice that (2.28) is the linear wave equation after a change of function: ~ψ solves (2.28) if and

only if ~ϕ(t, r) :=
1
r
~ψ(t, r) solves (LW) in 4 dimensions, and

‖~ψ‖H×L2 = ‖~ϕ‖Ḣ1×L2(r3dr).

The second kind of profiles is harmonic maps, i.e. stationnary solutions Q(r) to (WM):

∆Q =
f (Q)

r2 ,

and which are explicit in the case of target S2:

Qk,±(r) = kπ ± 2 arctan r.

Observe that Q is monotonic, and joins two consecutive zeros of g = sin (this fact is general
as shown in [35]). We are now in a position to state the result.

Theorem 2.17 ([1]). Let ~ψ(t) be a finite energy equivariant wave map to S2. Then there exist a
sequence of times tn ↑ T+(~ψ), an integer J > 0, J harmonic maps Q1, . . . , QJ such that

QJ(0) = ψ(0), Qj+1(∞) = Qj(0) for j = 1, . . . , J − 1,

and J sequences of scaling parameter λ1,n, . . . , λJ,n, such that one of the following hold.

1. Blow up wave map. T+(~ψ) < +∞. Denote ` = limt↑T+(~ψ) ψ(t, T+(~ψ)− t) (which is well

defined). Then J > 1 and there exists a function ~φ of finite energy, with Q1(∞) = φ(0) = `
such that

λ1,n � λ2,n � · · · � λJ,n � T+(~ψ)− tn, (2.29)

~ψ(tn) =
J

∑
j=1

(
Qj
(
·/λj,n

)
−Qj(∞), 0

)
+ ~φ + oH×L2(1). (2.30)
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2. Global wave map. T+(~ψ) = +∞. Denote ` = ψ(∞) = QJ(∞). Then there exists a solution
~φL(t) ∈ C (R, H × L2) to the linear solution (2.28) such that

λ1,n � λ2,n � · · · � λJ,n � tn, (2.31)

~ψ(tn) =
J

∑
j=1

(
Qj
(
·/λj,n

)
−Qj(∞), 0

)
+ (`, 0) + ~φL(tn) + oH×L2(1). (2.32)

Let us emphasize that the decomposition holds even if no bound is assumed as in the case
of the focusing wave equation (NLS) : indeed the energy here is made of positive terms and
provides a bound. However, and in spite of this bound, a wave map sampled (~ψ(tn))n has
no reason a priori to admit a linear profile decomposition as described in Theorem 2.2: this
sequence does not belong to the suitable functional space H× L2, actually no harmonic map
Q (except 0) belongs to H.

In view of the soliton decomposition for the 3d (NLW) for radial data, it would be nice to
extend the previous theorem in two directions. First, one should ask what happens for a
different target: in particular the case of g(r) = (1− r2) corresponds to the 4d (critical) radial
Yang-Mills equation. This target however corresponds roughly (around the stationnary wave
maps ~ψ = (±1, 0)) to the 6d wave equation: and the channel of energy for d ≡ 2 mod 4 is not
favorable, as we will see from the proof. The question whether this obstruction is technical
only or deeper is unclear, and in any case, an answer would be nice.
Second, one would of course want to obtain a decomposition which hold for all times and
not only a sequence of times. Again, the additionnal ingredient in for 3d (cNLW) is a refined
channel of energy, which is not available in the even dimensional case.

Ideas of proof

As seen above, we can not use the linear profile decomposition directly, and this turns out
to be where we concentrate our efforts: we will need to extract the harmonic maps Qj by
hands.
The first step is to carefully choose the sequence of times tn. This is done so that in an
averaged way ∂tψ(tn)→ 0 in L2. The crux of this argument is the vanishing of the energy in
the self-similar region.

Proposition 2.18. For all λ > 0,

lim sup
t→+∞

E(~ψ(t); λt, t− A)→ 0 as A→ +∞.

This ultimately relies on Virial identities, and was first derived by Christodoulou and Tahvildar-
Zadeh [30, 31] in a slightly weaker form, and by Shatah and Tahvildar-Zadeh [121] in the
blow up case; the above statement was actually proved in [4]. As a consequence,

Corollary 2.19. There exists a sequence tn ↑ +∞ such that

sup
s,0<s6tn/2

1
s

∫ tn+s

tn−s

∫ t/2

0
|∂tψ(t, r)|2rdrdt→ 0 as n→ +∞.

Morally speaking, it means that at all scales, ∂tψ(tn) vanishes in L2(rdrdt) in space and
time in the self similar region. This control of ∂tψ for wave type equations is one important
reason that allows the whole scheme of proof to work. For example there is no such control
for (NLS) or (gKdV).
As a consequence, at any scale, we can extract a weak limit out of ~ψ(tn), which must be
stationnary, i.e a harmonic map. Using an argument reminiscient of compactness of Paley-
Smale sequence for elliptic equations, the convergence is in fact strong locally. This allows
to extract from ~ψ(tn) all harmonic maps Qj, and will be left with an error vanishing at all
scales. To state the precise bubble decomposition that we obtain, define the wave map

~ψn = ~ψ[−tn, tn].
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Proposition 2.20. There exist an integer J > 0, J scales (λj,n)n verifying

0 < λJ,n � · · · � λ2,n � λ1,n � tn,

and J finite energy harmonic maps Qj such that, up to a subsequence σ,

~ψσ(n)(t)− (`, 0) =
J

∑
j=1

(
Qj(·/λj,n)−Qj(∞), 0

)
+~bn(t),

where~bn ∈ C ([−tn, tn], H × L2) satisfies the following convergences. For all A > 0,

1. (No energy at all scale) Let λn be a sequence such that 0 6 λn 6 tn/A. Then

sup
t∈[−Aλn ,Aλn ]

‖~bn(t)‖H×L2(λn/A6r6Aλn)
→ 0.

2. (No energy up to the last scale) If J > 1, then

sup
t∈[−AλJ,n ,AλJ,n ]

‖~bn(t)‖H×L2(r6AλJ,n)
→ 0 as n→ +∞.

If J = 0, then supt∈[−1/2,1/2] ‖~bn(t)‖H×L2(r6tn/2) → 0.

Also
J

∑
j=1

E(Qj, 0) 6 E(~ψ), and for all 1 6 j < J, Qj+1(∞) = Qj(0), and Q1(∞) = `.

The second step is to extract the linear term.

Proposition 2.21. Let ~ψ be a finite energy wave map such that T+(~ψ) = +∞. Denote kπ = ψ(∞)
(k ∈ Z). There exist a map ~φL solution to linear problem (2.28) and an increasing non-negative
continuous function α(t) such that α(t) = o(t) and

‖~ψ(t)− (kπ, 0)− ~φL(t)‖H×L2(r>α(t)) → 0 as t→ +∞.

This is proved in a similar fashion as for the nonlinear wave equation, relying heavily on
profile decomposition techniques. However, we don’t have an H × L2 bound yet, which is
the very first step. The key observation is that ψ(tn) → kπ in L∞(r > tn/2) irrespective of the
size of ~ψ. Then we can use the following important scattering result assuming an L∞ bound.

Theorem 2.22. Let ~ψ be a wave map such that ψ(∞) = kπ, for some k ∈ Z and that for some
c < π,

∀t ∈ [0, T+(~ψ)), ‖ψ(t)− kπ‖L∞ 6 c < π. (2.33)

Then T+(~ψ) = +∞ and ~ψ scatters at +∞, in the sense sense

‖ψ− kπ‖S([0,+∞)) < +∞.

(S = L5
t,r(drdt/r2) is the adequate Strichartz space in that context). It follows that there exists a

(unique) solution ~φL to (2.28) such that

‖~ψ(t)− (kπ, 0)− ~φL(t)‖H×L2 → 0 as t→ +∞.

As mentioned above, under (2.33), the energy provides a bound in H× L2. To prove Theorem
2.22, we are inspired by the concentration compactness method introduced by Merle, Kenig
[67, 68]. We argue by contradiction: if the result does not hold we consider the minimal
energy E0 such that it fails above the E0 energy threshold. Due to small data theory, E0 > 0.
Then we construct a minimal non scattering wave map ~ψ0, i.e E(~ψ0) = E0. For this, the main
point is to check that the limit of a minimizing sequence also satisfies (2.33): this is done by
refining the estimate on the remainder term of a linear profile decomposition. It this then
standard that ~ψ0 is compact up to modulation, and so is a harmonic map. With the L∞ bound
(2.33), we see that ~ψ0 = 0, and reach a contradiction.
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At this point, the error ~bn(t) is controlled in H × L2 outside the self-similar region and
beyond, and at all scale in the remaining cuspidal region. It remains to show that~bn(t) also
vanishes there, which is the third and last step:

‖~bn(0)‖H×L2(r6tn/2) → 0 as n→ +∞. (2.34)

The argument goes by contradiction. The key idea is to use that the free wave ~bn,L(t) with
initial data (bn(0), 0) actually maintains a fixed amount of energy outside the light cone; we
emphasize that ∂tbn,L(0) = 0: this fact comes from the vanishing of the kinetic energy for ~ψn
Corollary 2.19. This is where we use Corollary 2.9).

Indeed remark that if ~φ is a solution to the linear equation (2.28), then ~ϕ(t, r) =
1
r
~φ(t, r)

satisfies the 4d linear wave equation. This is because g′(`) ∈ {±1} for all ` ∈ R such that
g(`) = 0 (recall that we consider the case g = sin and ` ∈ πZ). More generally, solutions to
(2.28) are linked to solutions to the linear wave equation in dimension d = 2+ 2g′(`): we see
that if g′(`) were even integer, then d ≡ 2 mod 4, and the linear exterior energy (2.12) fails.
This is the only point in the proof which restrict us to g = sin.
Now, the linear exterior estimate (2.12), which is weaker that its odd counterpart (2.11), it is
still sufficient for our purpose, because we already know that ∂tbn,L(0) = 0. we can prove that
(2.12) forces ~ψ(tn) to concentrate energy on the boundary of the cone. For this, we proceed
in two steps for each profile, both requiring evolving a nonlinear profile decomposition
backwards in time. First, we show that the evolutions of~bn(t) and ~ψn(t) remain close on an
exterior region during a time-scale on which we can control the first profile (by means of
Proposition 2.5).
Then, we focus the analysis outside the light cone: we need to evolve the decomposition
past the time-scale on which we can control the first profile, but fortunately this large profile
does not contribute in this exterior region. In fact, we evolve the profile decomposition with
the first profile removed, exterior to the cone, up to the time scale of the second profile, and
infer that some energy remains outside he light cone. Arguing similarly for every profile, we
conclude that some energy remains outside the light cone for all times (in fact it concentrates
on the boundary). Unscaling this information, we see that ~ψ(tn) must concentrate some
energy in the self similar region, a contradiction with Proposition 2.18.
The proof of Theorem 2.17 is complete.

5 Back to the Ḣ1 × L2 critical wave equation: dimension 4

For the 4d energy critical wave equation, we do not quite go as far as for its 3d counterpart,
but obtain an analog of what we achieved for wave maps. This means that we need to assume
an extra Ḣ1 × L2 bound, i.e we consider type II solutions (which can be global or blow up),
and we obtain a decomposition along a subsequence of times.
Here is the precise statement. Observe that it is similar to an earlier result in 3d by Duy-
ckarets, Kenig, Merle [42].

Theorem 2.23 (C., Lawrie, Kenig, Schlag [5]). Let ~u be a type II radial solution to (cNLW) in
dimension d = 4, in the sense that

sup
t∈[0,T+(~u))

‖~u(t)‖Ḣ1×L2 < +∞. (2.35)

There exist an integer J > 0, and for all j ∈ J1, JK, a signum ij ∈ {±1}, J sequences of scaling
parameters λ1,n, . . . , λJ,n, and a sequence of times tn → T+(~u) such that one of the alternative holds:

1. Type II blow up. T+(~u) < +∞. There exists ~v ∈ Ḣ1 × L2, such that, as n→ +∞, we have

λ1,n � λ2,n � · · · � λJ,n � T+(~u)− tn, (2.36)

~u(tn) =
J

∑
j=1

ijW[λj,n] +~v + oḢ1×L2(1). (2.37)
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2. Type II global solutions. T+(~u) = +∞. There exists a linear solution ~vL ∈ C (R, Ḣ1 × L2)
to (LW) such that, as n→ +∞, we have

λ1,n � λ2,n � · · · � λJ,n � tn, (2.38)

~u(tn) =
J

∑
j=1

ijW[λj,n] +~vL(tn) + oḢ1×L2(1). (2.39)

While many of the techniques introduced by Duyckaerts, Kenig, Merle[42, 44, 45] in the 3d
case carry over to the even dimensional setting, several key elements of the argument are
quite different. In particular, the missing ingredients in even dimensions were:

(1) Exterior energy estimates for the underlying free radial wave equation.

(2) A proof that that the energy of a smooth solution cannot concentrate in the self-similar
region of the light-cone.

The first of these ingredients is discussed in section 2. We recall that that the crucial exterior
energy estimates established in [44, 45] are false in even dimensions, thus rendering the use
of the channel of energy method of [40, 42, 44, 45] in doubt for the case of even dimensions.
A priori, the 4d exterior energy estimate (2.12) is not enough for our purpose, because, in
contrast with the wave map case, we don’t know yet that the kinetic part of the error ∂tbn,L(0)
vanishes.
The second point, in the 3d case, also follows from dispersion property for a compactly
supported solution of (cNLW), without any smallness assumption on the solution, combined
with a profile decomposition. Again, all this relies on the channel of energy method and
ultimately on exterior energy estimates which are false in even dimension. In the case of
equivariant wave maps, (2) is well known (in the global case, this is Proposition (2.18)):
the classical arguments rely crucially on multiplier identities, the monotonicity of the local
energy, and on the positivity of the flux – both of which appear to be absent in the semilinear
wave equation set-up.

The main new ingredient in Theorem 2.23 is the proof of (2) for solutions to the 4d cNLW.
We need to proceed differently: in fact, we use a reduction to a 2d equation that bears many
similarities to a wave map type equation. This is the opposite of what is usually done (for
example in small data theory [6, 120] or the soliton resolution for wave maps Theorem 2.17),
when equivariant wave maps are transformed to look like an energy critical nonlinear wave
equation.
We first proceed to extract the linear scattering term (in the global case) or the regular part
of the solution (in the blow up case). Then, on the singular part of the solution, the crucial
monotonicity of the localized energy and the positivity of the flux are established in the
relevant self-similar region. One can then follow the classical techniques for wave maps to
prove (2) for radial solutions to 4d (cNLW). There is an interplay between this two properties,
which are joined together in a bootstrap argument. This proves (2) for the 4d Ḣ1× L2 critical
wave equation.
Once we have the vanishing of the energy in the self-similar region in hand, we can argue
as in the proof of Corollary 2.19 (proved as a consequence of Proposition 2.18, and deduce
a vanishing of the L2 norm of the time derivative of the singular part of the solution along
a sequence of times. Following the arguments the previous section; in particular, we recover
that the kinetic part of the error term vanishes. The 4d exterior energy estimate (2.12) is
therefore sufficient for our purposes, and we can conclude the proof in the wave map case
as in the previous section.

Again, as for wave maps, the result for 6d (cNLW) remains open, and one would like the
decomposition obtained to hold for all times. An extension which seems out of reach for now
is to get rid of the symmetry assumption. This would need in particular a better compre-
hension of the flow around any stationary solution: recall that these are not even classified
yet. However some progress has been made in this direction at least regarding the first, most
concentrated profile (see Duyckaerts, Kenig, Merle [43]).
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Another direction of research is the converse question: given a decomposition near the maxi-
mal time of existence, can one construct a solution which behaves in this prescribed way. This
question was studied rather extensively in the case of one nonlinear profile W (i.e. J = 1): we
refer to Krieger, Schlag, Tataru [74] (see also [73] in the wave map setting) and Donninger,
Krieger [39]. For several profiles, the question is widely open; [34, 36] tackled this question
for (gKdV).





CHAPTER 3
Blowup for the 1D semi linear

wave equation

We consider in this chapter the one-dimensional semilinear wave equation{
∂2

ttu = ∂2
xxu + |u|p−1u,

~u(0) = (u, ∂tu)(0) = (u0, u1),
(t, x) ∈ R1+1, u(x, t) ∈ R (NLW)

where p > 1. Our goal here is to study the blow up solutions of this equation and describe
their behavior at blow-up time.
The Cauchy problem for (NLW) is well posed locally in time in the uniformly local space
H1

loc,u × L2
loc,u defined by:

‖v‖2
L2

loc,u
= sup

a∈R

∫
|x−a|<1

|v(x)|2dx and ‖v‖2
H1

loc,u
= ‖v‖2

L2
loc,u

+ ‖∇v‖2
L2

loc,u
.

(we refer to Ginibre, Soffer, Velo [56], Lindblad, Sogge [83]). Also, these solutions preserve
the energy ∫ (1

2
|∂tu(t, x)|2 + 1

2
|∂xu(t, x)|2 − 1

p + 1
|u(t, x)|p+1

)
dx.

1 Blow up and blow up curve

As the equation has finite speed of propagation, a solution defined at some point (t0, x0) is
also defined on a backward light cone. Due to the local well posedness, (t0, x0) is a blow up
point if ~u concentrates some H1 × L1 norm inside the backward light cone

C (t0, x0, 1) = {(t, x) | t 6 t0, |x− x0| 6 t0 − t}

stemming from (t0, x0). From there, one can define the space time blow up set: this is a
1-Lispchitz curve (here light has speed 1).

Definition 3.1 (Alinhac [15]). Let ~u be an arbitrary blow up solution of (NLW). Then ~u is
defined on a maximal domain D(~u) ⊂ [0,+∞)×R, called the domain of influence of ~u, and

D(~u) = {(t, x) | 0 < t < T(x)},

where T is a 1-Lispchitz function. The curve Γ := {(T(x), x) | x ∈ R} is called the blow up
curve, and T+(~u) = infx∈R T(x) is the blow up time.

The first blow up criterion was derived by Levine [81]: if (u0, u1) ∈ H1 × L2(R) satisfies∫
R

(
1
2
|u1(x)|2 + 1

2
|∂xu0(x)|2 − 1

p + 1
|u0(x)|p+1

)
dx < 0, (3.1)

27



28 CHAPTER 3. BLOWUP FOR THE 1D SEMI LINEAR WAVE EQUATION

then the solution of (NLW) cannot be global in time. This is a standard Virial type argument,
where no description of the blow up is given. Our goal here is specifically to this.

In order to study the asymptotic behavior of u near a given (x0, T(x0)) ∈ Γ, it is convenient
to introduce similarity variables defined for all x0 ∈ R and T0 ∈ R by

wx0,T0(y, s) = (T0 − t)
2

p−1 u(x, t), y =
x− x0

T0 − t
, s = − log(T0 − t). (3.2)

If T0 = T(x0), we will simply write wx0 instead of wx0,T(x0)
. We emphasize that this change

of variable can be done (and is useful) even if T0 < T(x0).
The function w = wx0,T0 satisfies the following equation for all y ∈ (−1, 1) and s > − log T(x0):

∂2
s w = L w− 2(p + 1)

(p− 1)2 w + |w|p−1w− p + 3
p− 1

∂sw− 2y∂2
y,sw, (3.3)

where L w =
1
ρ

∂y(ρ(1− y2)∂yw) and ρ = (1− y2)
2

p−1 . (3.4)

We only look at w on the cylinder (s, y) ∈ − log T(x0)× (−1, 1), because this contains the
information in the backward light cone C (T0, x0), which is the only relevant. This equation
can be put in the following first order form:

∂s

(
w1
w2

)
=

 w2

L w1 −
2(p + 1)
(p− 1)2 w1 + |w1|p−1w1 −

p− 3
p− 1

w2 − 2y∂yw2

 . (3.5)

2 Description of the blow up

Let us fix from now on a blow up solution ~u to (NLW).
It turns out that the behavior of ~u (or ~w) at a blow up point is very different depending
on a geometric property of the blow up curve Γ near that point. This motivates the following
definition:

Definition 3.2. Let ~u be blow up solution to (NLW). A point x0 ∈ R is called regular or non-
characteristic if there exist δ0 ∈ (0, 1) and t0 < T(x0) such that ~u is defined on a splaying
cone C (T(x0), x0, 1 + δ0) ∩ {t > t0}, where

C (T(x0), x0, 1 + δ0) = {(t, x) | t < T(x0), |x− x0| 6 (1 + δ0)|T(x0)− t|}

is a cone with slope 1/(1+ δ0) smaller than 1 (and so contains the light cone stemming from
T(x0), x0).
If this is not the case, we say that x0 is characteristic or singular.
We denote by R the set of regular points, and by S the set of singular points.

In the remarquable sequence of papers [106–108, 110], Merle and Zaag gave an exhaustive
description of the geometry of the blow-up set on the one hand, and the asymptotic behavior
of solutions near the blow-up set on the other hand. With Zaag, we refined some of the
asymptotics in [13].

We now summarize these results. ~u has a very specific behaviour at all singular points
(T(x0), x0), x0 being regular or characteristic. The profiles appearing are explicit: for all
|d| < 1, we introduce the following stationary solutions of (3.3) (or solitons) defined by

κ(d, y) = κ0
(1− d2)

1
p−1

(1 + dy)
2

p−1
where κ0 =

(
2(p + 1)
(p− 1)2

) 1
p−1

and |y| < 1. (3.6)

Theorem 3.3 (Merle, Zaag [107]). Let x0 be a regular point.
There exist µ0 > 0 and C0 > 0 such that for all x0 ∈ R, there exist θ(x0) = ±1, d(x0) ∈ (−1, 1)
and s0(x0) > − log T(x0) such that for all s > s0:∥∥∥∥( wx0(s)

∂swx0(s)

)
− θ(x0)

(
κ(d(x0))

0

)∥∥∥∥
H

6 C0e−µ0(s−s0). (3.7)

Moreover, E(wx0(s))→ E(κ0) as s→ ∞.
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Observe that the profile is universal for regular points. For characteristic point, a similar
profile exist, except that it is now made of several κ(d).
Let us introduce

ζ̄i(s) = γi log s + ᾱi(p, k), γi =

(
i− (k + 1)

2

)
(p− 1)

2
(3.8)

where the sequence (ᾱi)i=1,...,k is uniquely determined by the fact that (ζ̄i(s))i=1,...,k is an
explicit solution with zero center of mass for the following ODE system:

1
c1

ζ̇i = e−
2

p−1 (ζi−ζi−1) − e−
2

p−1 (ζi+1−ζi), (3.9)

where c1 = c1(p) > 0 and ζ0(s) = ζk+1(s) := 0 (the only freedom of this ODE is the space
translation (ξ1(s), . . . , ξk(s)) 7→ ξ1(s)− a, . . . , ξk(s)− a)). c1 = c1(p) > 0 is a constant.

Theorem 3.4 (Merle, Zaag [106], refined in [13]). Let x0 be a characteristic point.
Then there exist ξ0(x0) ∈ R, an integer k(x0) > 2, and a sign ϑ ∈ {±1} such htat∥∥∥∥∥∥∥

(
wx0(s)

∂swx0(s)

)
− θ1

k(x0)

∑
i=1

(−1)i+1κ(di(s))

0


∥∥∥∥∥∥∥

H

→ 0 and E(wx0(s))→ k(x0)E(κ0) (3.10)

as s→ ∞, where
di(s) = − tanh ζi(s) and ζi(s) = ζ̄i(s) + ζ0, (3.11)

where ζ̄i(s) is introduced above in (3.8).

As one can see from (3.11) and (3.8), ζ0 is the center of mass of the ζi(s) for any s >
− log T(x0). As any point in R belongs to R or S , we infer that x0 ∈ S if and only if
k(x0) > 2; and x0 ∈ R if and only if k(x0) = 1.
Also, the rate of convergence in (3.10) is polynomial in s, in sharp contrast with (3.7) where
the rate is exponential.
Observe that the soliton’s signs are alternating; the left half of the soliton move left of the
center of mass, the right one goes to the right – if there is an odd number of them, one
remains in the middle.

As usual in blow-up problems, the geometrical features of the blow-up curve Γ are linked to
the parameters of the asymptotic behavior of the solution.
From these theorems (and actually from the proof of it), one obtains some geometric features
on the blow up curve Γ.

Theorem 3.5 (Merle, Zaag [110]). The set of regular points R is open, and the blow up time
x 7→ T(x) is a C 1 function on R.
If x0 ∈ R, then T′(x0) = d(x0) where d(x0) was introduced in Theorem 3.3.

We emphasize this stricking point that the derivative of T at x0 ∈ R is intimately linked to
the the blow up profile at x0.
This result was refined by Nouailli [115] who proved that T has even C 1,α regularity on R
for some α > 0. At characteristic points, the curve in fact makes a corner.

Theorem 3.6 (Merle, Zaag [108], refined in [13]). The set of characteristic points S is discrete.
Let x0 ∈ S . Then as x→ x0, x 6= x0, there hold

T(x) = T(x0)− |x− x0|+
γe2 sgn(x0−x)ζ0(x0)|x− x0|(1 + o(1))

| log |x− x0||
(k(x0)−1)(p−1)

2

, (3.12)

T′(x) = sgn(x0 − x)

1− γe2 sgn(x0−x)ζ0(x0)(1 + o(1))

| log |x− x0||
(k(x0)−1)(p−1)

2

 , (3.13)

as x→ x0, where γ = γ(p) > 0.
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Observe that the expansion on T′ (3.13) is simply the differentiation of the expansion in T
(3.12).
Unlike what one may think from less accurate estimates, we surprisingly see from the ex-
pansion (3.12) that the blow-up set is never symmetric with respect to a characteristic point
x0, except maybe when ζ0(x0) = 0.

The analysis developed here is rather robust, and can be extended to more general semi-
linear nonlinearities (with different result: for |u|p, there is no singular points). It can also
be extended to certain point to higher dimension: as long as the w remains near a κ(d) (see
Merle, Zaag [105, 109]). For radial data, the analysis goes through at least outside 0. For gen-
eral data, the situation is less clear, essentially because the stationary solutions (generalizing
the κ(d)) are not understood well enough.

Ideas of proofs

Although we presented the results describing the blow up on one side and the geometry of
of blow up curve on the other side, the proofs are much more intertwined: the description
of the blow up actually implies consequences on the blow up curve. Most of the analysis is
done in the similarity variable w(s, y), and then translated in the u(t, x) formulation when
stated in the theorems.

The energy space takes the following expression in the similarity variables:

H =

{
(q1, q2) | ‖(q1, q2)‖2

H :=
∫ 1

−1

(
q2

1 +
(
q′1
)2

(1− y2) + q2
2

)
ρdy < +∞

}
. (3.14)

And from the conservation of the energy, we obviously obtain a first bound:

∀s > 0, ‖(w, ∂sw)(s)‖H 6 C. (3.15)

The starting point of the analysis is that the equation for w (3.3) admits a Lyapunov func-
tional.

Proposition 3.7 (Antonini, Merle [17]). Let ~w = (w, ∂sw) ∈ C ([S0,+∞), H ) be a solution to
(3.3). Then the quantity

E(w(s)) =
∫ (1

2
(∂sw)2 +

1
2
(
∂yw

)2
(1− y2) +

(p + 1)
(p− 1)2 w2 − 1

p + 1
|w|p+1

)
ρ(y)dy (3.16)

is non-increasing in time. For s2 > s1,

E(w(s2))− E(w(s1)) = −
4

p− 1

∫ s2

s1

∫
|∂sw(s, y)|2(1− y2)

2
p−1−1dyds 6 0.

This provides both a bound on E and on ∂sw, and allows to derive a first coarse decomposi-
tion in solitons.

Proposition 3.8. Let x0 ∈ R. There exist an integer k(x0), k(x0) signum εi ∈ {±1}, and k(x0)
continuous functions di(s) (i = 1, . . . , k(x0)) such that∥∥∥∥∥

(
wx0,T(x0)

(s)
∂swx0,T(x0)

(s)

)
−

k(x0)

∑
i=1

εi

(
κ(di(s), ·)

0

)∥∥∥∥∥
H

→ 0 as s→ +∞, (3.17)

and, with ζi = arg tanh(di), ζi+1(s)− ζi(s)→ +∞.

To prove this, we use the bounds from the energy and Lyapunov functional to find local
limits: for some sequences sn → +∞, in the ξ = arg tanh(y) variable,

wx0,T(x0)
(ξ + ξn, s + sn)→ w∗ stationary solution, in H1

loc.
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Now, stationary solutions can easily be classified: they are exactly the κ(d, ·). In the (ζ, ξ) =
(arg tanh d, arg tanh y) variables, κ is actually the usual soliton of (NLS):

κ(ζ, ξ) =
1

cosh(ξ − ζ)
2

p−1
.

The fact that ζi+1(s)− ζi(s) → +∞ comes from the definition of a local limit. Notice that at
this point, we have no control on the signum εi or the number of solitons k(x0).

Let us now analyse non-characteristic points. If x0 ∈ R, using the splaying cone property
and a covering argument, one can get rid of the weight in the energy bound (3.15), so that
in fact:

‖(wx0,T(x0)
, ∂swx0,T(x0)

)‖H1×L2 6 C.

This implies that we in fact have a global limit instead of local limits: k(x0) = 1. Via modu-
lation, a linear version of the Lyapunov functional yields exponential convergence

∀s > s(x0),
∥∥∥∥( wx0,T(x0)

(s)
∂swx0,T(x0)

(s)

)
− ε(x0)

(
κ(T′(x0))

0

)∥∥∥∥
H

6 C0e−µ0(s−s0). (3.18)

This is because in the similarity variables, the problem is now parabolic in nature (as it can
been seen also through the existence of the Lyapunov functional (3.16)). It turns out that the
analysis here is stable: in fact, the soliton is an attractor and we have the following trapping
result.

Proposition 3.9 (Merle, Zaag [107, Theorem 3]). There exist δ0 > 0 and C0 > 0 such that if for
some x0 ∈ R, s0 > − log T(x0), ε ∈ {±1}, d ∈ (−1, 1) and δ ∈ (0, δ0], we have∥∥∥∥∥

(
wx0,T(x0)

(s0)

∂swx0,T(x0)
(s0)

)
− ε

(
κ(d)

0

)∥∥∥∥∥
H

6 δ,

then x0 ∈ R, T is differentiable at x0, and wx0,T(x0)
(s) → εκ(T′(x0)) as s → ∞. (The convergence

is in fact exponential).

As a consequence, the set R of non-characteristic points is open, and one can prove that T is
C 1 on R.

We now consider characteristic points. To make the decomposition (3.17) more precise, we
first need to introduce a self-similar version of the soliton κ(d). Define for ν > −1 + |d|,
κ∗(d, ν, y) = (κ∗1(d, ν, y), κ∗2(d, ν, y)), where

κ∗1(d, ν, y) = κ0
(1− d2)

1
p−1

(1 + dy + ν)
2

p−1
and κ∗2(d, ν, y) = ν∂νκ∗1(d, ν, y). (3.19)

Then for µ ∈ R, κ∗(d, µes, y) is solution of (3.5), and for µ = 0, we recover the usual κ(d).
For µ > 0, we have an heteroclinic solution, linking κ(d) (at s → −∞) to 0 (at s → +∞). If

µ < 0, it blows up at time s = ln
(
|d|−1

µ

)
. The point of introducing the κ∗ is that the extra

parameter ν can be modulated to allow an extra orthogonality condition. More precisely, we
can write a decomposition

(
wx0,T(x0)

(s)
∂swx0,T(x0)

(s)

)
= q(s) +

k(x0)

∑
i=1

(−1)jκ∗(di(s), νi(s)), ‖q(s)‖H → 0

with the coercivity property:

‖q(s)‖2
H 6 C

∫ 1

−1
((∂sq)(s, y)2 + (∂yq)(s, y)2(1− y2)− K(s, y)q(s, y)2)ρdy.
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This makes it possible to close the estimates on νi(s), di(s) = − tanh(ζi(s)) and q(s) as
follows

|ν̇i − νi|
1− d2

i
6 C(‖q‖2

H + J + ‖q‖H J̄) (3.20)∣∣∣∣ 1
c1(p)

ζ̇i −
(

e−
2

p−1 (ζi−ζi−1) − e−
2

p−1 (ζi+1−ζi)
)∣∣∣∣ 6 C(‖q‖2

H + (J + ‖q‖H ) J̄ + J1+δ) (3.21)

‖q(s)‖2
H 6 Ce−δ(s−s0)‖q(s0)‖2

H + CĴ(s)2 (3.22)

with ζi(s) = − arg tanh(di(s)), and the error terms:

J =
k(x0)

∑
i=2

e−
2

p−1 (ζi−ζi−1), J̄ =
k(x0)

∑
i=1

|νi|
1− d2

i
, Ĵ =

k(x0)

∑
i=2

e−
p̄

p−1 (ζi−ζi−1),

where p̄ = min(p, 2−) (and 2− is any number less that 2). The 3 estimates above are the
crucial bounds driving the dynamic.
The estimate (3.22) is extremely stable for the infinite dimensional parameter q. It turns out
that the unperturbed ODE derived from (3.20)-(3.21) actually has a global attractor, which is
νi = 0 and ζi = ζ̄i + ξ0 where ζ̄i was defined in (3.8) and ξ0 is the barycenter of the ζi(0).
Therefore, one can also prove convergence for the pertubed ODE (3.20)-(3.21) (with floating
barycenter ζ∞): as s→ +∞, we have the expansion

ζi =

(
i− k + 1

2

)
(p− 1)

2
ln s + ζ∞ + O(s1− p̄), J = O(s−2), and ‖q‖H ,

|νi|
1− d2

i
, Ĵ, J̄ = O(s− p̄).

(3.23)

This concludes the dynamical analysis at a characteristic point, and shows the convergence
(3.10) and (3.11). However at this point we could have k(x0) < 2.

It remains to derive the geometric properties on the blow up curve. The first observation is
that a decomposition on wx0,T(x0)

translates into a decomposition for x nearby x0 (at least
while the incoming light cones intersect): for example, assuming T(0) = 0 (by time transla-
tion), we have

wx,T(x)(y, s) = (1− (1− B)xes)
− 2

p−1 w0,0(Y, S),

Y =
y + xes

1− (1− B)xes , S = s− ln(1− (1− B)xes). (3.24)

Using this remark and the precise asymptotics (3.23), one can prove that the blow-up curve
is corner shaped at any characteristic point, that is the expansions (3.12) and (3.13) hold.
From there, S necessarily has empty interior. Indeed, if S contains compact interval, the
corner shape property of T at each x ∈ S implies that T cannot reach its minimum on this
interval, a contradiction with the continuity of T (T is 1-Lipshitz).

We are now in a position to prove that k(x0) > 2 for any x0 ∈ S . The key fact is that any
charateristic point x0 actually lies on the bounday ∂S (as S = ∂S ). For such a x0 on the
boundary, one can not have k(x0) = 0, due to energy trapping. But k(x0) = 1 is also not
possible, because otherwise x0 would not be characteristic. Hence k(x0) > 2. We emphasize
that this analysis can only be carried out because x0 lie on the boundary of S : it heavily
relies on stability property of regular points.

Finally if x0 ∈ S , one can again relate by (3.24) the decomposition of wx,T(x) to that of
wx0,T(x0)

for x nearby x0. It turns out that, say if x < x0, no solitons for wx,T(x) can travel to
the left: but this implies that there is no more than one soliton, i.e k(x) 6 1. From the previous
analysis, x is not characteristic, that is x ∈ R. Therefore, x0 is an isolated characteristic point.
This completes the proof of Theorems 3.4 and 3.6.
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3 Construction of characteristic points

Once the description at blow up of both regular and singular points is obtained, a natural
question is whether all cases of the classification can be achieved, or whether one can further
reduce the possible behaviors.

As far as non-characteristic points are concerned, the answer is easy. Indeed, any blow-up
solution has non-characteristic points (R is never empty), for example those constructed by
Levine’s criterion (3.1).
Regarding the asymptotic behavior, any profile given in (3.7) does occur. Indeed, note first
that for any d ∈ (−1, 1), the function

u(x, t) = (1− t)−
2

p−1 κ

(
d,

x
1− t

)
=

κ0(1− d2)
1

p−1

(1− t + dx)
2

p−1
(3.25)

is a particular solution to equation (NLW) defined for all (x, t) ∈ R2 such that 1− t+ dx > 0,
blowing up on the curve T(x) = 1 + dx and such that for any x0 ∈ R, T′(x0) = d and
wx0(y, s) = κ(d, y) = κ(T′(x0), y), and (3.7) is trivially true. However, the problem with this
solution is that it is not a solution of the Cauchy problem at t = 0, in the sense that it is
not even defined for all x ∈ R when t = 0. This is in fact not a problem thanks to the finite
speed of propagation. Indeed, performing a truncation of (3.25) at t = 0, the new solution
will coincide with (3.25) for all |x0| 6 R and t ∈ [0, T(x0)) for some R > 0, and (3.7) holds
for the new solution as well, for all |x0| < R.

Now, considering characteristic points, the answer is much more delicate. Unlike what was
commonly believed after the work of Caffarelli and Friedman [25, 26], Merle and Zaag
proved in [106] the existence of solutions of (NLW) admitting at least one characteristic point,
i.e. such that S 6= ∅. The idea was to construct an odd blow up solution. In that case, the
number of solitons appearing in the decomposition (3.10) at x0 = 0 has to be even: therefore
k(0) > 2, and 0 ∈ S . No other information was available. After this result, the following
question remained open :

Given an integer k > 2, is there a blow-up solution of equation (NLW) with a
characteristic point x0 such that the decomposition (3.10) holds with k solitons?

This is actually true, and is the content of the following theorem.

Theorem 3.10 (C, Zaag [13]). Let k > 2 be an integer and ζ0 ∈ R, there exists a blow-up solution
u(x, t) to equation (NLW) in H1

loc,u × L2
loc,u(R) with 0 ∈ S such that∥∥∥∥∥∥∥

(
w0(s)

∂sw0(s)

)
−

 k

∑
i=1

(−1)i+1κ(di(s))

0


∥∥∥∥∥∥∥

H

→ 0 as s→ ∞, (3.26)

with
di(s) = − tanh ζi(s), ζi(s) = ζ̄i(s) + ζ0 (3.27)

and ζ̄i(s) defined in (3.8).

Note from (3.27) and (3.8) that the barycenter of ζi(s) is fixed, in the sense that

∀s > − log T(0),
ζ1(s) + · · ·+ ζk(s)

k
=

ζ̄1(s) + · · ·+ ζ̄k(s)
k

+ ζ0 = ζ0. (3.28)

Observe that in this construction, we have much essentially no degree of freedom (once
given the number k > 2 of solitons), except for the barycenter ζ0, which acknowledges for
the translation invariance in the ODE system (3.9). This is in sharp contrast with the multi-
solitons constructed in Chapter 1, where each soliton was essentially independent of the
others (and even generated a 1 parameter family of multi-solitons in the unstable case); this
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constraint in the “asymptotic state” is of course due to the convergence (3.10), which reminds
us of the parabolic nature of the problem in similarity variable mentioned earlier (page 31).

One interesting question remaining after this is to determine a solution with a given discrete
characteristic set and given blow up times. If these points are sufficiently separated (or if the
blow up time is not prescribed), one can glue together the solutions constructed above and
make use of finite speed of propagation to conclude. In general however, the result is open.
In the same cloud of questions, one could ask about the construction of a solution to (NLW)
with a prescribed blowup curve.

Ideas of proof

The proof is reminiscent of the construction of multi-solitons seen in Chapter 1. However,
there is major difference here: we can not construct a solution backwards in the similarity
variable w. To fix notations, let 0 be the desired characteristic point, with blow up time
T(0) = 0. In view of constructing the characteristic blowup, assume that we are given a
final data wn(Sn) for some large Sn. This means in the original variable we have a final data
un(tn) defined on the slice x ∈ [−|tn|, |tn|] of the incoming light cone at 0 (tn ↑ 0). But this
data is only sufficient to define a solution to (NLW) on |x| 6 |tn − t|, which is much smaller
than the entire incoming light cone where we would like to define un (and the domain of
influence keeps decreasing as Sn → +∞, i.e. tn → 0).
Therefore, we can not argue backwards in time, we have to construct the solution foward
in time. This irreversibility constraint can be seen as another manifestation of the parabolic
nature of the problem in the similarity variables. It is this same parabolic flavored feature
which will save the day, under the form of an asymptotic stability property, as in the conver-
gence (3.10). Observe that as we work forward in time, we will not construct approximate
solutions, but directly a suitable one.

The main point of the proof is to construct a solution w ∈ C ([S0,+∞), H ) to (3.5) with k
solitons, irrespective of the barycenter. Up to choosing S0 large enough, we can assume w to
be very close for all times to the sum of k solitons, and in this case, the modulation ensures
that there is a one-to-one correspondence between w(s) and (q(s), (di(s))i, (νi(s))i). There-
fore, our goal is to find initial conditions (q(s0), (di(s0))i, (νi(s0))i) such that w is globally
defined on [S0,+∞) and

q(s)→ 0, di(s) ∼ d̄i(s) and νi(s)→ 0 as s→ +∞.

Let us recall the equations the dynamic (3.20)-(3.21)-(3.22) once again.
As mentioned above, q has an extremely strong decaying property. The perturbed system
for the ζi is also stable, although not asymptotically stable, due to the translation invariance.
To deal with this, consider the error ζi(s) := ξi(s)− ξ̄i(s), and the system of equation (3.21)
linearized around (ξ̄1, . . . , ξ̄k). Then up to a linear change of variable (independent of s)

represented by a square k× k matrix P and denoting φ(s) =

φ1
...

φk

 = P

ζ1
...

ζk

, this linearized

system writes

φ̇ = Mφ, where M satisfies (Mφ, φ) 6 −
k

∑
i=2

φ2
i , and M(1, 0, . . . , 0)T = 0. (3.29)

M has signature (0, k − 1), and the system in φ is stable. However the equation for νi (at
leading order ν̇i ∼ νi) is transversally unstable. For these directions, we will use a topolog-
ical argument which has the same flavor as when we constructed multi-solitons in the L2

supercritical case in chapter 1.

Define the rescaling Γs : (ν1, . . . , νk) 7→ (s−1/2−|γ1|ν1, . . . , s−1/2−|γk |νk) .
We consider solutions to (3.5), or more precisely, their modulation, defined as follows. Let
ν0 in the unit ball B of Rk. Define the rescaling ν(s0) = Γs0(ν0), where γi is defined in (3.8);
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and initial data whose modulation is

(0, (d̄i(s0))i, (νi(s0)i) that is (w, ∂sw)(s0) = 0 +
k

∑
i=1

κ∗(d̄i(s0), νi(s0)).

Then denote (q(s), ((di(s))i, (νi(s))i) the modulation of the evolution (w, ∂sw)(s) with the
initial conditions above at s = s0. The objects under consideration are

• the rescaled flow Φ : (s, ν0) 7→ Γ−1
s ((ν1(s), . . . , νk(s)), and

• the exit time s∗(ν0) = sup{s > s0| ∀τ ∈ [s0, s], Φ(τ, ν0) ∈ B}.

(Φ(·, ν) is defined at least on the interval [s0, s∗(ν)). Our goal is to find ν0 ∈ B such that
s∗(ν0) = +∞. For this, we argue by contradiction and assume that s∗(ν) < +∞ for all ν ∈ B.
Then the exit point is well defined: let

Ψ : B→ B, ν 7→ Φ(s(ν), ν).

By maximality of of the exit time, we have Ψ takes its value on the sphere Sk−1. Due to the
stability properties mentioned above, there exist C and η > 0 such that for all ν ∈ B and for
all s ∈ [s0, s∗(ν)],

s1/2+η‖q(s)‖H + sη
k

∑
j=2
|φi(s)|+ s1+η |φ̇1(s)| 6 C. (3.30)

(Recall φi was introduced in (3.29), and is directly linked to ζi and di). Observe that we have
no control on φ1 (as it accounts for space translations), only on its derivative; it however
ensures that sη

0 φ1(s) remains bounded. This is enough for our purposes: we already have the
leading order for ζi = ζ̄i + O(1), the φi only account for the second order.
By the transversality mentioned above, we see that Ψ is a continuous map on B, and that the
exit is instantaneous on the sphere: if ν ∈ Sk−1, then s∗(ν) = s0 and Ψ(ν) = ν.
We just constructed a continuous map Ψ : B → Sk−1 such that Ψ|Sk−1 = IdSk−1 : this con-
tradicts Brouwer’s theorem. Therefore, our assumption was wrong and there exists ν0 ∈ B

such that s∗(ν0) = +∞.

Now the estimates (3.30) still hold for Φ(s, ν0): this ensures that νi → 0, q → 0, φ1 con-
verges and for i > 2, φi → 0. This is enough to conclude to the existence of a solution
w] ∈ C ([s0,+∞), H ) satisfying the alternating k-soliton decomposition (3.26) and (3.27),
and barycenter |ζ0| 6 Cs−η

0 . From w], we define on (−1, 1):

u](0, x)|(−1,1) = w](x, s), ∂tu](x, 0)|(−1,1) = ∂sw](x, s0) +
2

p− 1
w](x, s0) + x∂yw](x, s0).

(An we extend it in a smooth way outside (−1, 1)). Then we check that the solution u] to
(NLW) is defined on the truncated cone {(t, x) | |x| 6 1− t, t > 0}, and that in this region,

u](x, t) = (1− t)−
2

p−1 w]

(
x

1− t
, s0 − ln(1− t)

)
.

Therefore, 0 is a characteristic point of u]. To fix the barycenter ξ0, it suffices to perform a
suitable Lorentz transform on u]. This completes the construction of a blow up solution with
prescribed characteristic point.





CHAPTER 4
The Zakharov-Kuznetsov flow

around solitons

In this chapter we are interested in studied some features of solutions to the (generalized)
Zakharov-Kuznetsov equation:{

∂tu + ∂x1(∆u + |u|p−1u) = 0,
u(t = 0, x) = u0(x),

(t, x) ∈ R×Rd, x = (x1, x2) ∈ R×Rd−1, (ZK)

where p ∈ N is such that 2 6 p < ∞ if d = 1, 2 and 2 6 p < 1 +
4

d− 2
if d > 3 (the equa-

tion is Ḣ1 subcritical). The original (ZK) equation, with p = 2 was introduced by Zakharov,
Kuznetsov [76] to describe the propagation of ionic-acoustic waves in uniformly magnetized
plasma in the two dimensional and three dimensional cases. Lannes, Linares, Saut [79] car-
ried out the derivation of (ZK) from the Euler-Poisson system with magnetic field in the long
wave limit; and Han-Kwan [62] derived the (ZK) equation from the Vlasov-Poisson system
in a combined cold ions and long wave limit.

Observe that when d = 1, (ZK) becomes simply the (gKdV) equation. In the x1 direction,
(ZK) bears indeed many similarities with (gKdV). On the other part, the symbol of the linear
part is iτ − iξ1|ξ ′|2, so that for fixed ξ1 (or fixed x1) we recover the one of (NLS). We can
summarize this by saying that the x1 direction is privileged, and in the d− 1 other directions
x2, the equation resembles (NLS).

The mass and energy, which are the same as for (NLS), are conserved at least formally by
the flow of (ZK):

M(u) = ‖u(t)‖2
L2 , (4.1)

E(u) =
∫ (1

2
|∇u(t, x)|2 − 1

p + 1
u(t, x)p+1

)
dx. (4.2)

The well-posedness theory for (ZK) has been extensively studied in the recent years. Let
us solely recall the best result available yet regarding local well posedness of the Cauchy
problem:

• In the two dimensional case, the problem is well posed in Hs(R2) for s >
1
2

, see Grün-
rock, Herr [61] and Molinet, Pilod [113] (we also refer to Faminskii [52] and Linares,
Pastor [82]).

• In the three dimensional case, the problem is well posed in Hs(R3) for s > 1, see
Ribaud and Vento [117]. Those solutions were extended globally in time in [113].

37
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Note however that it is still an open problem to obtain well-posedness for the original (ZK)
equation (with p = 2) in L2(R2) and in 3d, we miss the energy space H1(R3) (the energy
space).

The solitons of (ZK) are based on the same ground state Q as (NLS), ie the unique positive
solution in H1(Rd) to (0.5):

−∆Q + Q−Qp = 0,

and by scaling we have the expression ground state for any c0:

Qc0(x) := c
1

p−1
0 Q(

√
c0x).

Then given c0 > 0 and x0 ∈ Rd

Q[c0, x0](t, x) = Qc0(x1 − c0t− x0,1, x2 − x0,2)

is the soliton solution to (ZK).

(ZK) is L2 critical for p = 1 +
4
d

, L2 subcritical for p < 1 +
4
d

and L2 supercritical for

p > 1 +
4
d

. Now, in view of conservation of mass and energy, the analysis done in the

preamble applies, and de Bouard [23] proved that solitons are orbitally stable in the L2

subcritical case, and unstaible in the L2 supercritical case.

Our goal here is to prove results in the spirit of Martel, Merle [86–88, 90] for the (gKdV)
equation, namely rigidity theorems (of Liouville type) for non dispersive solution around
a solitons, asymptotic stability for a soliton, and stability of a sum of solitons. These ideas
where later implemented by Béthuel, Gravejat, Smets [21, 22] for the Gross-Pitaevskii equa-
tion in 1 space dimension

i∂tψ + ∆ψ + ψ(1− |ψ|2) = 0, |ψ(t, x)| → 1 as |x| → 1. (GP)

In the case of (GP), the conditions at infinity (and the induced change of functionnal setting)
make the equation share many similarities with (gKdV), although the initial equation is
(NLS).
We believe that (ZK) is the first two and higher dimensional model where asymptotic stabil-
ity of solitons is proved in the energy space, and with no nonstandard spectral assumptions.
It would be nice to extend these result to other dispersive equations, the first of which being
of course (NLS).

It turns out that a spectral property is central in all the discussion below, and involves the
spectrum of the linearized operator

L = −∆ + 1− pQp−1,

and the direction ΛQ, where Λ is the scaling operator

Λv =
d
dc

c
1

p−1 v(
√

c·)|c=1 = x · ∇v +
1

p− 1
v.

Spectral assumption: there exists λ > 0 such that

∀v ∈ H1, 〈Lv, v〉 > λ‖v‖2
H1 −

1
λ

(
〈v, λQ〉2 +

d

∑
i=1
〈v, ∂xi Q〉

2

)
. (4.3)

This spectral assumption is true in dimension d = 1, and has been numerically checked in a
strong way in dimension d = 2 for p = 2; it is unclear in dimension d = 3 for p = 2.

Our main assumption in this Chapter is the following is twofold:

(A) (d, p) is such that the spectral assumption (4.3) holds, and that the Cauchy problem for
(ZK) is well posed in H1 (locally in time).

From the discussion above, assumption (A) holds in particular for d = 2 and p = 2 i.e. for
the 2 dimensional original (ZK) equation.
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1 Liouville theorems

The main result of this section is a classification of solutions to (ZK) which remain close to a
soliton for all time, and does not disperse in the x1 direction in a sense made precise below.

Theorem 4.1 (Nonlinear Liouville property around Q). Assume that assumption (A) is true.
There exists ε0 > 0 such that the following holds. Let u ∈ C (R, H1(Rd)) be a solution of (ZK) such
that

1. u(t) remains close for all time to the soliton in the sense that for some function ρ(t) =
(ρ1(t), ρ2(t))

∀t ∈ R, ‖u(·+ ρ(t))−Q‖H1 6 ε0, (4.4)

2. u is L2 compact in the sense that

∀ε > 0, ∃A > 0 such that sup
t∈R

∫
|x1|>A

u2(x + ρ(t), t)dx 6 ε. (4.5)

Then u is a soliton, i.e there exist c0 > 0 (close to 1) and (ρ0,1, ρ0,2) ∈ R2 such that

∀(t, x1, x2) ∈ R3, u(t, x1, x2) = Qc0(x1 − c0t− ρ0,1, x2 − ρ0,2). (4.6)

In the case of the original (ZK) equation p = 2, in dimension 2, the solitons are H1 orbitally
stable due to the result of de Bouard [23]. Therefore in this case, Theorem 4.1 still holds true
if we relax assumption (4.4) to

‖u0 −Q‖H1 6 ε0. (4.7)

We see that the L2 compactness asssumption (4.5) once again singularized the x1 direction,
which is to be expected. Also there is one other compact object in the picture: the line solitons
of (gKdV) Q̄(t, x) = Q1d(x1 − t), where Q1d ∈ H1(R) solves −Q′′ + Q− Qp = 0. Of course,
this line soliton is not in H1(R), but we see that (4.5) also allows to set it aside.

Due to continuity of the flow, (4.5) holds when the supremum is taken over a compact
interval of time. In view of the local well posedness result, it is clear that a solution which
satisfies (4.4) on all its interval of definition (T−(u), T+(u)) is in fact defined globally for all
t ∈ R. Therefore, what only matter is the behaviour at t→ ±∞.
However, it is important to assume L2 compactness at both ends t → +∞ and t → −∞.
Indeed, in the L2 supercritical case, recall that there exists a family of solutions (Ua)a∈R to,
say, (gKdV) such that ‖Ua(t) − Q[1, 0](t)‖H1 → 0 as t → +∞. Any Ua thus satisfies the 1
dimensional equivalent of (4.5), but is not a soliton for a 6= 0.

Ideas of proof

The first step is to prove regularity and decay properties on compact solutions u.
As u remains close to Q, it enjoys some monotonicity properties: for example

Lemma 4.2. Let L > 0 and define the smooth cut-off ψM(y) = arg tanh(ey/L (for y ∈ R) and

It0,y0(t) =
∫

u(t, x)2ψM

(
x1 − ρ1(t0) +

1
2
(t− t0)− y0

)
dx.

Then for ε0 > 0 small enough and M large enough,

∀(t0, y0), ∀t 6 t0, It0,y0(t0)− It0,y0(t) 6 Ce−y0/M. (4.8)

(The proof consists in actually controlling the terms in the computation of the time derivative
of It0,y0 ). Pluging in the information of L2 compactness (4.5), one derives from there some
exponential decay∫

u(t0, x)2ψM(x1 − ρ1(t0)− y0)dx

+
∫ t0

−∞
(|∇u|2 + u2)(t, x)ψ′m

(
x1 − ρ1(t0) +

1
2
(t− t0)− y0

)
dxdt 6 Ce−y0/M.
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Observe the derivative on u in the space time integral: from there an induction argument (us-
ing also (4.5)) actually shows that u is smooth (bounded in C (R, Hk) for all k) and decaying
in the sense that for any multi-index α ∈Nd,

∫
(∂αu)(t0, x)2ψM(x1 − ρ1(t0)− y0)dx

+
∫ t0

−∞
(|∇∂αu|2 + (∂αu)2)(t, x)ψ′m

(
x1 − ρ1(t0) +

1
2
(t− t0)− y0

)
dxdt 6 Cαe−y0/M.

Then one can reformulate this decay in a more manageable way as follows: for any multi-
index α ∈Nd,

∀(t, x1) ∈ R2,
∫

x2

(∂αu)2(t, x1 + ρ1(t), x2 + ρ2(t))dx2 6 Cαe−σ|x1|. (4.9)

The proofs of the results above are done in an analoguous way as for (gKdV), with the
important technial proviso in the induction argument that H1 does not embed in L∞ anymore
in dimension d > 2: we have to rely on suitably localized Sobolev embedding (and Ḣ1

subcriticallity of the nonlinearity) to control the higher order and nonlinear terms.

Now that we gained regularity and decay on u we can start the dynamical analysis. As u(t)
remains close to the soliton, we work on the error term, in a perturbative setting: let us write
u(t) = Q[1, ρ(t)](t) + η(t), so that the equation on η writes

∂tη = ∂x1 Lη + O(‖η‖2 + |ρ̇− (1, 0 . . . , 0)|).

Most efforts are concentrated to understand the Liouville rigidity property at the linear level.
This is the content of the following statement.

Theorem 4.3 (Linear Liouville property around Q, C., Muñoz, Pilod, Simpson [11]). Assume
that the spectral assumption (4.3) holds. Let σ > 0 and η ∈ C ∞(R1+d) be a solution to

∂tη = ∂x1 Lη for (t, x) ∈ R×Rd, (4.10)

such that
∀(t, x1) ∈ R2,

∫
x2

η2(t, x1, x2)dx2 6 Ce−σ|x1|. (4.11)

Then, there exists a ∈ Rd such that

∀(t, x) ∈ R1+d, η(t, x) = a · ∇Q(x). (4.12)

Observe that the non dispersion bound (4.11) and the regularity of η is guaranteed by (4.9).
However one could weaken these assumptions and prove smoothness and decay as in the
nonlinear case.
The starting point to prove Theorem 4.3 is to consider a dual problem by defining

v = Lη − α0Q, where α0 =
〈η(0)|ΛQ〉
〈Q|ΛQ〉 .

Then v satisfies more orthogonality conditions: for all t ∈ R,

∀i = 1, . . . , d, 〈v(t) | ∂xi Q〉 = 0, 〈v | ΛQ〉 = 0. (4.13)

Also v satisfies (4.11). The crux of the argument derives from a Virial identity which we
describe now. Let φ ∈ C2(R) be an even positive function such that φ′ 6 0 on [0,+∞),

φ(x1) =

{
1 if |x1| 6 1,
e−|x1| if |x1| > 2

, and for all x1 ∈ R, (4.14)

e−|x1| 6 φ(x1) 6 3e−|x1|, |φ′(x1)| 6 Cφ(x1) and |φ′′(x1)| 6 Cφ(x1). (4.15)
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Then we define ϕ(x1) =
∫ x1

0
φ and the rescaling for A > 0

ϕA(x1) := Aϕ
( x

A

)
, φA(x1) = φ

( x
A

)
= ϕ′A(x1).

The crucial Virial estimate is the following bound from below:

− 1
2

d
dt

∫
ϕA(x1)v2(t, x)dx

>
∫

φA(x1)
(
(∂x1 v(t, x))2 + |∇v(t, x)|2 + v(t, x)2 − pQ(x)p−1v(t, x)2

)
dx . (4.16)

From the spectral assumption (4.3), standard localization arguments (and the orthogonality
conditions (4.13)) show that, if A is large enough

∀t,
∫

φA(x1)
(
|∇v(t, x)|2 + v(t, x)2 − pQ(x)p−1v(t, x)2

)
dx >

λ

2
‖v(t)‖2

H1 .

For this coercivity to hold, the introduction of the dual problem, which gives the orthogo-
nality conditions with ∂iQ, and the choice of the modulation parameter α0 are crucial.
In particular, after integrating (4.16), we get for any T−, T+ ∈ R, T− < T+,∫ T+

T−

∫
φA(x)v(t, x)2dxdt 6 C(A)(‖v(T+)‖2

L2 + ‖v(T−)‖2
L2 6 C(A). (4.17)

Therefore, letting T− → −∞ and T+ → +∞,∫ ∞

−∞

∫
φA(x)v(t, x)2dxdt < +∞,

and in particular there exist two sequences (t±n,A)n such that t±n,A → ±∞ and∫
φA(x)v(t±n,A, x)2dx → 0 as n→ +∞.

Here we used that v is defined globally on R. This is true for all A large enough: as v satisfies
the same exponential localization as η (see (4.11)), we infer that

‖v(t±n,A)‖L2 → 0 as n→ +∞.

Using again (4.17) with T− = t−n,A and T+ = t+n,A, we conclude that∫ ∞

−∞
φA(x)v(t, x)2dxdt = 0.

As a consequence, v ≡ 0, and then (4.12) follows easily.

To prove the nonlinear version of the Liouville theorem, we can not use its linear counterpart
as a black box, due to the rigid nature of the theorem. However, the method of proof is robust,
and carries over very well to the nonlinear case. The additional ingredient is the modulation
of the scaling to make up for α0 and recover all the orthogonality conditions (4.13). By a
careful inspection, we control all the nonlinear terms appearing in the Virial identity (4.16),
using in particular (4.9).

2 Asymptotic stability

With the nonlinear Liouville theorem in hand, we can prove that the solitary waves of the
ZK equation (ZK) are asymptotically stable.

Theorem 4.4 (Asymptotic stability). Assume that assumption (A) is true. There exists ε0 > 0
such that if u ∈ C(R, H1(Rd)) is a solution of (ZK) satisfying

∀t > 0, inf
y0∈ Rd

‖u(t)−Q(· − y0)‖H1 6 ε0, (4.18)
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then the following holds true. There exist two functions ρ ∈ C1(R, Rd) and c ∈ C1(R, R) such that

u(t)−Qc(t)(· − ρ(t))→ 0 in H1(x1 >
1
2

t) as t→ +∞. (4.19)

Let us start with a few remarks. First, the convergence in the asymptotic statement can not
hold in the whole space H1(Rd), because of conservation of mass and energy. There must
be some loss, which can be due to small (and slow) solitons, or to dispersion. One way to
get rid of them is to use weighted space; our analysis is here sharper, as we use local spaces
without weights.
Observe also that the orbital stability statement is somehow unrelated to the asymptotic
stability result stated above. Of course, in the L2 subcritical case, one could replace (4.18) with
a similar hypothesis for the solution at initial time t = 0 only (invoking orbital stability in this
case). However, theorem 4.4 holds true even in the L2 supercritical case (up to assumption
(A)), because it only considers solutions which we assume remain close to the soliton for all
times. The picture in the L2 supercritical is that there should exist a center stable manifold
of finite codimension (probably 1), on which one would observe asymptotic stability.

The proof of the asymptotic stability derives from the Liouvillle theorems, as in the case
of (gKdV) (for that equation, see [88, 90] for the asymptotic stability, and [85, 86] for the
Liouville theorems). The idea is to consider any sequence tn → +∞, a weak limit u∞ of
u(tn), and the nonlinear solution ũ with data ũ(0) = u∞. The main point of looking at
objects at infinity is that these enjoy more properties: in some sense this procedure allows to
eliminate dispersion. More precisely, as a consequence of monotonicity properties, ũ in fact
satisfies (4.5). From the Liouville theorems, ũ is a perfect soliton, and as the limit does not
depend on the sequence tn, we obtain a weak limit for all times.
Finally we need to recover strong local convergence. For this, we actually need a stronger
version of the monotonicity, with the cut-off function moving directions in a slighted opened
cone around the x1 direction: more precisely the quantity

Iy0,t0,θ0(t) =
∫

u(t, x)2ψM

(
x1 + θ0 · x2 − ρ1(t0) +

1
2
(t− t0)− y0

)
dx

(where θ0 ∈ Rd−1 is small) satisfies the same monotonicity bounds as (4.8), and one can
conclude from there.

No monotonicity property seems to hold for the x2 direction, mainly because of the conjec-
tured existence of trains of small solitons moving to the left in x1 but without restrictions on
the x2 coordinate. From the point of view associated to the x2 variable, such solutions repre-
sent movement of mass along the x2 direction without a privileged dynamics. In particular,
no asymptotic stability result is expected for a half-plane involving the x2 variable only. This
is the standard situation in many 2d models like (KP-I) and (NLS) equations. However, here
we are able to prove the asymptotic stability of (ZK) solitons because the (gKdV) dynamics
is exactly enough to control the movement of mass along the x2 direction.

3 Multi-solitons

Finally, as a consequence of the monotonicity properties associated to the linear part of the
dynamics (in particular Lemma 4.2), we are able to prove that decoupled solitons are stable
in the sense below. First let us make precise what decoupled mean in this context.

Definition 4.5. Let N > 2 be an integer and L > 0. Consider N solitons with scalings
c0

1, . . . , c0
N > 0 and centers ρ1,0, . . . , ρN,0 ∈ Rd, where ρj,0 = (ρ

j,0
1 , ρ

j,0
2 ). We say that these N

solitons are L-decoupled if

inf
{∣∣((c0

k − c0
j )t, 0, . . . , 0) + ρ0

k − ρ0
j
∣∣ | j 6= k, t > 0

}
> L, (4.20)

that is, the solitons centers remains separated by a distance of at least L for positive times.
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L decoupled solitons can be characterized by a condition on the initial data only, at least up
to a constant in L: indeed, one can check that if, for all j 6= k, we have either:

• |ρj,0
2 − ρk,0

2 | > L, or

• c0
k > c0

j and ρk,0
1 − ρ

j,0
1 > L,

then the N solitons are L decoupled.

Theorem 4.6 (Stability of the sum of N decoupled solitons). Assume d = 2. Consider a set of
N solitons of the form

Qc0
1
(x− ρ1,0), Qc0

2
(x− ρ2,0), . . . , Qc0

N
(x− ρN,0),

where each c0
j is a fixed positive scaling, c0

j 6= c0
k for all j 6= k, and ρj,0 = (ρ

j,0
1 , ρ

j,0
2 ) ∈ Rd. Assume

that the N solitons are L-decoupled, in the sense of Definition 4.5.
Then there are ε0 > 0, C0 > 0 and L0 > 0 depending on the previous parameters such that, for all
ε ∈ (0, ε0), and for every L > L0, the following holds. Suppose that u0 ∈ H1(Rd) satisfies

‖u0 −
N

∑
j=1

Qc0
j
(x− ρj,0)‖H1 < ε. (4.21)

Then there are γ1 > 0 fixed and ρj(t) ∈ Rd defined for all t > 0 such that u(t), solution of (ZK)
with initial data u(0) = u0 satisfies

sup
t>0
‖u(t)−

N

∑
j=1

Qc0
j
(x− ρj(t))‖H1(Rd) < C0(ε + e−γ1L). (4.22)

The proof of this result is obtained by adapting the ideas by Martel, Merle and Tsai [96]
for(gKdV) (which is 1D). Note that we do not need strictly well-prepared initial data as in
[96]: all we need is to ensure that the solitons do not collide for positive times, and the x2
variables give us some more room than in the (gKdV) case.

Let us give a very short account of the proof. First by continuity of the flow, we can in fact
assume that all solitons are well prepared, i.e. decoupled in the x1 variable and arranged by
increasing speed as x1 grows. Then the arguments are wrapped in a bootstrap: we consider
the maximal time [0, T∗) on which (4.22) holds. For any time t on this interval, we can
modulate the solution, decomposing

u(t) =
N

∑
j=1

Q[cj(t), ρj(t)](0)+ z(t), with 〈z, Q[cj(t), ρj(t)](0)〉 = 〈z, ∂xi Q[cj(t), ρj(t)](0)〉 = 0,

for all i = 1, . . . , d, j = 1, . . . , N (recall we are in the L2 subcritical setting).
Define the localized mass

Mj(t) =
∫

u(t, x)2ψM

(
x1 −

c0
j + c0

j−1

2
t

)
dx, where ψj(t, x1) = ψM

(
x1 −

c0
j + c0

j−1

2
t

)
.

A monotonicity result in the spirit of Lemma 4.2 yields

Mj(t)−Mj(0) 6 Ce−γ1L.

Also, we can expand Mj:

Mj(t) = ‖Q‖2
L2

N

∑
k=j

ck(t)
2

p−1−
d
2 +

∫
z(t, x)2ψj(t, x1)dx + O(e−2γ1t).
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Therefore, as we are in the L2 subcritical case,
2

p− 1
− d

2
> 1, so that we can linearize around

ck(0) and get for all j = 1, . . . , N

max

(
0,

N

∑
k=j

ck(t)− ck(0)

)
6 C‖z(0)‖2

H1 + Ce−γ1L.

(Here the implicit constant depend on the c0
j ). We can expand the energy in the same way:

using again that 〈z(t), Q[cj(t), ρj(t)](0)〉 = 0, we have

E(u(t)) = E(Q)
N

∑
j=1

cj(t)
2

p−1−
d
2−1

+ O(‖z‖2
H1).

Using conservation of the energy, we have obtained N + 1 constraints on the N scaling
parameters cj. By a convexity argument, we infer that the variation of each cj is quadratic in
z. This allows to close the bootstrap assumption and conclude that T∗ = +∞.



CHAPTER 5
Formation of Néel walls

This chapter studies some aspects of micromagnetism, more precisely, the formation of
two-dimensional ferromagnetic thin films allowing the occurrence and persistence of

special transition layers called Néel walls.

1 A two-dimensional model for thin-film micromagnetism

The micromagnetic energy

We consider here magnetization, which is a vector field

m : Ω→ S2, where Ω = (−1, 1)×T.

The coordinates on Ω are denoted x = (x1, x2), and we impose periodicity in the x2-direction
in order to rule out lateral surface charges. We denote the coordinates of m = (m1, m2, m3)
and it will be convenient to use the notation m′ = (m1, m2).
We will consider the following micromagnetic energy approximation in a thin-film regime
that is written in the absence of crystalline anisotropy and external magnetic fields (see e.g.
[37], [71]):

Eδ,ε(m) =
∫

Ω

(
|∇m|2 + 1

ε2 m2
3 +

1
δ
||∇|−1/2∇ ·m′|2

)
dx, (5.1)

where δ > 0 and ε = ε(δ) > 0 are two small parameters. To force the emergence of singular
patterns as ε, δ → 0, we consider magnetization m that connects two macroscopic directions
forming an angle, i.e., for a fixed m1,∞ ∈ [0, 1),

m(x1, x2) =

{
m−∞ for x1 = −1,
m+∞ for x1 = 1,

where m±∞ =

 m1,∞

±
√

1−m2
1,∞

0

 . (5.2)

The first term in (5.1) is called the exchange energy, while the other two terms stand for the
stray field energy created by the surface charges m3 at the top and bottom of the sample and
by the volume charges ∇ ·m′ in the interior of the sample.

Let us focus on the last term in (5.1) ||∇|−1/2∇ · m′|2. First let us give a precise definition
of it. For this, we introduce the functional calculus derived from the Laplace operator on Ω
with Dirichlet boundary conditions, as it fits the boundary conditions (5.2). More precisely,
for f ∈ H−1(Ω), we define g := (−∆)−1 f as the solution of{

−∆g = f in Ω,
g(x1, x2) = 0 on ∂Ω, i.e., for |x1| = 1, x2 ∈ T.

(5.3)

45
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Then (−∆)−1 is a bounded operator H−1(Ω)→ H1
0(Ω) and a compact self-adjoint operator

L2(Ω)→ L2(Ω). We can therefore construct a functional calculus based on it, and denote as
usual |∇|−2s :=

[
(−∆)−1]s for s ∈ R: this is makes the definition of the energy Eδ,ε(m) (5.1)

meaningful.
Let us now explain where the term ||∇|−1/2∇ ·m′|2 comes from. We introduce the stray field
h(m′) : R×T×R → R3 generated by the volume charges only, and defined as the unique
L2(R×T×R, R3) gradient field

h(m′) = ∇x,zU(m′) (5.4)

that is x2-periodic (the third variable is denoted z ∈ R), where U(m′) is the harmonic exten-
sion on Ω×R with Neumann data ∇m′ on Ω× {0} and Dirichlet boundary condition on
∂Ω×R: 

−∆x,zU(m′) = 0 in Ω×R

∂zU(m′) = ∇ ·m′ on Ω× {0}
U(m′) = 0 on ∂Ω×R.

(5.5)

Equivalently, U(m′) satisfies Maxwell’s static equation in the weak sense:

∀ζ ∈ D(R×T×R),
∫

Ω×R
∇x,zU(m′) · ∇x,zζdxdz =

∫
Ω

m′(x) · ∇ζ(x, 0)dx. (5.6)

In other words, h(m′) is the Helmholtz projection of the vector measure m′H 2xΩ×{0} onto
the L2(Ω×R)-space of gradient fields.
One can see (5.5) as an evolution equation in the z variable, involving the operator (−∆) of
the functional calculus introduced above (due to the boundary conditions). From the initial
condition at z = 0 and U(m′) ∈ H1(Ω×R), we obtain an explicit formulation for U(m′):

U(m′)(·, z) = −exp(−z|∇|)
|∇| (∇ ·m′).

Therefore
U(m′)(·, 0) = −|∇|−1(∇ ·m′).

We can now relate h(m′) to Eδ,ε(m). Indeed, by (5.6) and density,∫
Ω×R

|h(m′)|2dxdz =
∫

Ω×R
∇x,zU(m′)∇x,zU(m′)dxdz =

∫
Ω

m′(x) · ∇U(m′)(x, 0)dx

= −
∫

Ω
(∇ ·m′(x))U(m′)(x, 0)dx =

∫
Ω
(∇ ·m′)|∇|−1(∇ ·m′)dx

=
∫

Ω
||∇|−1/2∇ ·m′|2dx.

Hence, the last term in the energy (5.1) is simply the potential energy generated by the stray
field h(m′). We also refer to [64] for another presentation via Fourier Transform in the case
Ω = R×T.

Finally we introduce the operator

P(m′) := −∇|∇|−1∇ ·m′, (5.7)

which is bounded H1(Ω)→ L2(Ω), and the gradient of the energy Eδ,ε(m) is therefore given
by

∇Eδ,ε(m) = −2∆m +

(
−1

δ
P(m′),

2m3

ε2

)
. (5.8)

Observe that m : Ω → S2 has finite energy Eδ,ε(m) < +∞ if and only if m ∈ H1(Ω, S2). Of
course, an important (and interesting) mathematical feature is that Eδ,ε is a nonlocal energy,
due to the operator P .
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Néel walls and vortices

In this model, we expect two types of singular pattern: Néel walls and vortices (so-called
Bloch lines in the micromagnetic jargon). These patterns result from the competition between
the different contributions in the total energy Eδ(m) and the nonconvex constraint |m| = 1.

The Néel wall is a dominant transition layer in thin ferromagnetic films. It is characterized
by a one-dimensional in-plane rotation connecting two directions (5.2) of the magnetization.
More precisely, it is a one-dimensional transition m = (m1, m2) : [−1, 1]→ S1 that minimizes
the energy under the boundary constraint (5.2):

Eδ(m) =
∫

R

∣∣∣∣ dm
dx1

∣∣∣∣2 dx1 +
1
2δ

∫
R

∣∣∣∣ ∣∣∣∣ d
dx1

∣∣∣∣1/2

m1

∣∣∣∣2dx1.

It follows that the minimizer is a two length scale object: it has a small core with fast varying
rotation (transition of size O(δ)) and two logarithmically decaying tails (of length size O(1)).
The energetic cost (by unit length) of a Néel wall is given by

Eδ(Néel wall) =
π

2δ| log δ| (1−m1,∞)2(1 + o(1)) as δ→ 0. (5.9)

We refer to DeSimone, Kohn, Müller and Otto [38]) and Ignat [63] for more details.

A vortex point corresponds in our model to a topological singularity at the microscopic
level where the magnetization points out-of-plane. The prototype of a vortex configuration
is given by a vector field m : D→ S2 defined in a unit disk D that satisfies:

∇ ·m′ = 0 in D and m′(x) = x⊥ := (−x2, x1) on ∂D,

and minimizes the energy (5.1):

Eε(m) =
∫

D
|∇m|2 dx +

1
ε2

∫
D

m2
3 dx.

Since the magnetization turns in-plane at the boundary of the disk D (so that deg(m′, ∂D) =
1), a localized region is created, that is the core of the vortex of size O(ε), where the mag-
netization becomes indeed perpendicular to the horizontal plane. Observe that the reduced
energy Eδ controls the Ginzburg-Landau energy, i.e.,

Eε(m) > EGL,ε :=
∫

D

(
|∇m′|2 + 1

ε2 (1− |m
′|2)2

)
dx (5.10)

since |∇(m′, m3)|2 > |∇m′|2 and m2
3 > m4

3 = (1− |m′|2)2. Due to the similarity with vortex
points in Ginzburg-Landau type functionals, the energetic cost of a micromagnetic vortex is
given by

Eε(Vortex) = 2π| log ε|+ O(1).

(See e.g. the seminal book by Bethuel, Brezis and Hélein [20]).

Physically relevant regime requires δ→ 0; also we will focus on an energetic regime allowing
Néel walls, but excluding vortices. More precisely, we will assume that ε is related to δ as
follows:

δ→ 0 and ε = ε(δ)→ 0 such that
1

δ| log δ| = o (| log ε|) (5.11)

and we will consider families of magnetization {mδ}0<δ<1/2 satisfying the energy bound

sup
δ→0

δ| log δ|Eδ,ε(mδ) < +∞. (5.12)

In particular, (5.11) implies that the size ε of the vortex core is exponentially smaller than the

size of the Néel wall core δ, i.e., ε = O(e−
1

δ| log δ| ).
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2 Compactness and optimality of Néel walls

This section is devoted to the analysis of static magnetizations as the parameters δ, ε→ 0.

Compactness of Néel walls

The first result is that the energetic regime (5.12) is indeed favorable to the formation of Néel
walls: more precisely, we have the following compactness result.

Theorem 5.1 ([2, Theorem 1]). Let δ > 0 and ε(δ) > 0 satisfy the regime (5.11). Let mδ ∈
H1(Ω, S2) satisfies (5.2) and (5.12). Then {mδ}δ→0 is relatively compact in L2(Ω) and any limit
m : Ω→ S2 satisfies the constraints (5.2) and

|m′| = 1, m3 = 0, ∇ ·m′ = 0 in D ′(Ω).

This result and its proof are in the spirit of the compactness results of Ignat and Otto [65,
66]. The proof of compactness is based on an argument of approximating S2-valued magne-
tizations by S1-valued magnetizations having the same level of energy:

Proposition 5.2 ([2, Theorem 5]). Let β ∈ (0, 1). Let δ > 0 and ε(δ) > 0 satisfy the regime
(5.11) and let mδ = (m′δ, m3,δ) ∈ H1

loc(Ω, S2) satisfy (5.2) and (5.12). Then there exists an S1 valued
magnetization Mδ ∈ H1

loc(Ω, S1) that satisfies the boundary conditions (5.2) and

1. ‖Mδ −m′δ‖2
L2(Ω)

6 Cε2βEδ,ε(mδ) and ‖∇(Mδ −m′δ)‖2
L2(Ω)

6 CEδ,ε(mδ),

2. ‖|∇|−1/2∇ ·M− |∇|−1/2∇ ·m′‖2
L2(Ω)

6 CεβEδ,ε(mδ),

3. Eδ,ε(Mδ) 6 Eδ,ε(mδ)

1 +
(

C
δ| log δ|| log ε|

) 1
6
−.

( 1
6
−

is any fixed positive number less than 1
6 ). Moreover, for every full square T(x, r) centered at x of

side of length 2r with εβ/r → 0 as δ→ 0, we have

∫
T(x,r−2εβ)

|∇Mδ|2 dx 6

1 +
(

C
δ| log δ|| log ε|

) 1
6
− ∫

T(x,r)

(
|∇m′δ|2 +

1
ε2 m2

3,δ

)
dx. (5.13)

Proposition 5.2 is reminiscent of the argument developed by Ignat and Otto [65] with the
improvement given by 3., i.e., the approximating S1-map Mδ has lower energy than the S2-
map mδ (up to o(1) error).
Let us emphasize that such an approximation is possible due to our regime (5.11) and (5.12)
which excludes the existence of topological point defects.

To prove Proposition 5.2, we divide the rectangle [−1, 1]× [0, 1] by a square grid with cell of
size εβ. A key observation is that for any cell C of the grid, deg(m′, ∂C) = 0, and so we can
consider the minimizer u of the Ginzburg-Landau energy on C such that u = m′ on ∂C. Due
to the vanishing of the degree of m′ on ∂C, |u| > 1/2 on C, and we are entitled to define
M′ = u/|u| on C. Gluing this construction for all cells of the grid, we define a magnetization
M′: we check that it satisfies the conditions of Proposition 5.2.

Once this step is done, one can invoke the result [66, Theorem 4] by Ignat and Otto, which
gives the desired compactness on M′δ and therefore on mδ. The main point there is to show
that the constraint |M′δ| = 1 passes to the limit.

Optimality of the Néel wall

The second result is the optimality of the Néel wall, namely that the Néel wall is the unique
asymptotic minimizer of Eδ,ε over S2-magnetizations satisfying the boundary condition (5.2).
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For every magnetization m : Ω → S2, we associate the energy density µδ(m) as a non-
negative x2-periodic measure on Ω×R via

∀ζ = ζ(x, z) ∈ D(Ω×R), (5.14)∫
Ω×R

ζdµδ(m) :=
2
π

δ| log δ|
( ∫

Ω
ζ(x, 0)

(
|∇m|2 + 1

ε2 m2
3
)

dx +
1
δ

∫
Ω×R

ζ|h(m′)|2 dxdz
)

.

(We recall that the stray field h(m′) was defined in (5.4) and (5.5)-(5.6)). We now show that
the straight walls (5.16) are the unique minimizers of Eδ as δ → 0 in which case the energy
density µδ is concentrated on a straight line in x2-direction.

Theorem 5.3 ([2]). Let δ > 0 and ε(δ) > 0 satisfy the regime (5.11). Let mδ ∈ H1
loc(Ω, S2) satisfy

(5.2) and

lim sup
δ→0

δ| log δ|Eδ(mδ) ≤
π

2
(1−m1,∞)2. (5.15)

Then there exists a subsequence δn → 0 such that mδn → m∗ in L2(Ω) where m∗ is a straight wall
given by

m∗(x1, x2) =

{
m−∞ for x1 < x∗1 ,
m+∞ for x1 > x∗1 ,

for some x∗1 ∈ [−1, 1]. (5.16)

In this case, the measures defined at (5.14) concentrate on the line:

µδn(mδn) ⇀ (1−m1,∞)2 H 1x{x∗1} ×T× {0} ∗ −weakly in M (Ω×R).

The energy bound (5.15) is relevant for Néel walls in view of (5.9). Theorem 5.3 extends to S2-
valued magnetizations the similar result previously proved by Ignat and Otto [66] in the case
of S1-valued magnetizations (and so the proof is similar, with the additional approximation
argument allowed by Proposition 5.2 in hand). One way to reformulate it is as follows: let
mδ ∈ H1(Ω, S2) satisfy (5.2), then

lim inf
δ→0

δ| log δ|Eδ,ε(mδ) >
π

2
(1−m1,∞)2. (5.17)

3 Formation of static Néel walls

The Landau-Lifshitz-Gilbert equation

The dynamics in ferromagnetism is governed by a torque balance which gives rise to a
damped gyromagnetic precession of the magnetization around the effective field defined
through the micromagnetic energy. The resulting system is the Landau-Lifshitz-Gilbert (LLG)
equation written below, which is neither a Hamiltonian system nor a gradient flow.

More precisely, the dynamics of the state of a thin ferromagnetic sample is described by the
time-dependent magnetization

m = m(t, x) : [0,+∞)×Ω→ S2,

that solves the following equation:

∂tm + αm ∧ ∂tm + βm ∧∇Eδ,ε(m) + (v · ∇)m = m ∧ (v · ∇)m on [0,+∞)×Ω. (LLG)

Here, ∧ denotes the cross product in R3, while α > 0 is the Gilbert damping factor charac-
terizing the dissipation form of (LLG) and β > 0 is the gyromagnetic ratio characterizing the
precession. v : [0,+∞)×Ω → R2 represents the direction of an applied spin-polarized cur-
rent (by definition (v · ∇)m = v1∂1m + v2∂2m). This equation has been derived in a related
setting by Zhang, Li [132] and Thiaville, Nakatani, Miltat, Suzuki [129]; we refer to Gilbert
[55] and Landau, Lifshitz [78] for the original, simpler form of the equation, which does not
take into account the additional drift term v.
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We highlight that (5.11) and δ → 0 result in a loss of any uniform H1 bound. Although the
asymptotics of magnetization mδ solutions to various forms of (LLG) were studied (see
Capella, Melcher, Otto [27], Kurzke, Melcher, Moser [75], Melcher [97] for example) we must
stress out that the analysis carried out in those papers were simplified in two ways when
compared to our settings:

1. δ is kept fixed (and ε → 0), or even δ → +∞: in both cases the bound on the energy
does give an H1 bound. Let us also recall that physically relevant regimes require
δ→ 0.

2. The energy considered there does not have any nonlocal terms.

Our strategy relies on the fine qualitative behavior of the magnetization presented in Theo-
rems 5.1 and 5.3 above.

Global weak solutions to (LLG)

Before studying the asymptotics δ → 0, we must first construct global magnetizations mδ

solutions to (LLG). We consider initial data with finite energy at δ > 0 fixed. Naturally, we
understand that here the boundary condition (5.2) reads as

mδ(t, x1, x2) = m±∞ for x1 = ±1, x2 ∈ T.

Moreover these solutions have finite energy for all time t > 0. We insist on the fact that the
energy can possibly increase in time, unlike the case v = 0 which is dissipative.

Definition 5.4. We say that m is a global weak solution to (LLG) if

m ∈ L∞([0,+∞), H1(Ω, S2)) ∩ Ḣ1([0,+∞), L2(Ω)), (5.18)

and m solves the equation (LLG) in the distributional sense D ′((0,+∞)×Ω).

Observe that the regularity assumption (5.18) of this definition allows to make all terms in
the (LLG) meaningful in the distributionnal sense: this gives its relevance to the definition.
We construct global weak solutions for (LLG) in the following theorem.

Theorem 5.5 ([2, Theorem 3]). Let v ∈ L∞([0,+∞) × Ω, R2). Let δ ∈ (0, 1/2) be fixed and
m0 ∈ H1(Ω, S2) be an initial data.
Then there exists a global weak solution m to (LLG) (in the sense of the above definition), which
satisfies the boundary conditions

m(t, ·) ⇀ m0 in H1(Ω) as t→ 0, (5.19)

m(t, x1, x2) = m0(x1, x2) if x1 = ±1 and for every x2 ∈ T, t > 0. (5.20)

Furthermore m satisfies the following energy bound: for all t > 0,

Eδ,ε(m(t)) +
α

2β

∫ t

0
‖∂tm(s)‖2

L2(Ω)ds 6 Eδ,ε(m0) exp
(

4
αβ

∫ t

0
‖v(s)‖2

L∞(Ω)ds
)

. (5.21)

The proof of Theorem 5.5 takes its roots in [16] via a space discretization. To the best of
our knowledge however, there is no such result taking into account the non-local term P
in ∇Eδ,ε (see (5.8)). One needs to carry on the computations carefully, specially as it comes
together with the constraint of S2-valued map; the way we defined the operator P in (5.7),
done in a very symmetric way is crucial here.

Stationnary Néel walls

Let us now specify our set of assumptions for the dynamics in the asymptotics δ, ε(δ)→ 0:
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(A1) The regime (5.11) holds as δ → 0, that is
1

δ| log δ| = o(| log ε|), and the parameters α

and β satisfy

α = µε and β = o(ε
√

δ| log δ|) (5.22)

where µ > 0 is a fixed constant.

(A2) The initial data m0
δ ∈ H1(Ω, S2) satisfy the boundary condition (5.2) and the energy

bound (5.12) that is:
sup
δ→0

δ| log δ|Eδ,ε(m0
δ) < +∞.

(A3) The spin-polarized current satisfies

‖vδ‖2
L∞([0,+∞)×Ω) 6 αβ. (5.23)

In particular, we have vδ → 0 in L∞([0,+∞)×Ω).

Due to the energy estimate (5.21), the regime (A2) holds for all times t > 0 (with no uni-
formity in t though). In particular, Theorem 5.1 implies that for all t > 0, the magnetization
mδ(t) admits a subsequence converging in L2(Ω) to a limiting magnetization (m′(t), 0). Our
main result is that the subsequence does not depend on t, and that the limiting configuration
is stationary.

Theorem 5.6 ([2, Theorem 4]). Let {m0
δ}0<δ<1/2 be a family of initial data in H1(Ω, S2). Suppose

that the assumptions (A1), (A2) and (A3) above are satisfied. Let {mδ}0<δ<1/2 denote any family of
global weak solutions to (LLG) satisfying (5.19), (5.20) and the energy estimate (5.21).
Then there exist a subsequence δn → 0 and m = (m′, 0) ∈ L∞([0,+∞), L2(Ω)) with

∀t > 0, |m′(t)| = 1 and ∇ ·m′(t) = 0 in D ′(Ω),

and such that for all t > 0, mδn(t)→ m(t) in L2(Ω) as n→ ∞. Moreover, we have

∂tm′ = 0 in D ′([0,+∞)×Ω).

The proof combines a bound on ∂tm in L2
loc([0,+∞), H−1(Ω) (which is a consequence of the

energy bound and our choice of regime of the various parameters (A1)-(A2)-(A3)), and the
compactness result Theorem 5.1.
It follows immediately from Theorems 5.3 and 5.6 that for well-prepared initial data the
asymptotic magnetization is a static straight wall for all t > 0.

Corollary 5.7. We make the same assumptions and use the same notations as in Theorem 5.6, and
assume moreover that the initial data are well-prepared:

lim sup
δ→0

δ| log δ|Eδ(m0
δ) 6

π

2
(1−m1,∞)2.

Let δn → 0 and let x∗1 ∈ [−1, 1] be such that m0
δn
→ m∗ in L2(Ω), where m∗ is a straight wall

defined by (5.16). Then, for all t > 0, mδn(t)→ m∗ in L2(Ω).

After these results, a natural question concerns the interaction of several Néel walls, and
deriving a motion law for these. This requires to control the (LLG) on longer interval of
times (and to change suitably the regime (A1)), and therefore to understand its structure in
a deeper way: one should make use of physically relevant quantities such as the vorticity
ω = 〈m, ∂x1 m ∧ ∂x2 m〉.
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