
SOLITON RESOLUTION FOR EQUIVARIANT WAVE MAPS TO
THE SPHERE

RAPHAËL CÔTE

We consider finite energy corotationnal wave maps ψ : Rt× [0,+∞)r → R solution
to ∂ttψ − ∂rrψ −

1

r
∂rψ +

f(ψ)

r2
= 0

(ψ, ∂tψ)|t=0 = (ψ0, ψ1)
with f = gg′,(WM)

where g : R→ R is a C 3 function. For a function ~φ = (φ0, φ1), define the energy

E(~φ) :=

∫ ∞
0

(
|φ1(r)|2 + |∂rφ0(r)|2 +

|g(φ0(r))|2

r2

)
rdr.

At least formally, a wave map ~ψ = (ψ, ∂tψ) preserves the energy. If ~φ has finite
energy, then φ continuous and bounded, and has well defined limits at 0 and +∞,
which cancel g: we denote them φ(0) and φ(∞). If ~φ is a wave map, these limits do
not depend on time. This motivates the introduction of the set where g vanishes

V := {` ∈ R | g(`) = 0}.

Also, let

G(x) :=

∫ x

0

|g(y)|dy.

Our goal in this paper is to obtain a similar classification for wave maps of arbitrarily
large energy, that is to relax the bound on the energy, inspired by the works of
Duyckaerts Kenig and Merle [7, 8, 9, 10] in the context of the 3D Ḣ1-critical wave
equation. It extends previous works [14, 2, 4, 5].
We provide a description of a wave map into decoupled profiles, a so called soliton
resolution. It turns out that these profiles are harmonic maps and linear scattering
terms. Recall that a harmonic map is a solution Q of finite energy of

∂rrQ+
1

r
∂rQ =

f(Q)

r2
.

(Hence (Q, 0) is a finite energy stationary wave map).
On the other hand, given ` ∈ V , we define the linearized wave map flow around `:

∂ttφ− ∂rrφ−
1

r
∂rφ+

g′(`)2

r2
φ = 0.(LW`)

We make the following assumptions on the metric g:
(A1) G(x)→ ±∞ as x→ ±∞.
(A2) V is discrete,
(A3) For all ` ∈ V , g′(`) ∈ {−1, 1}.
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(A1) and (A2) are natural non degeneracy assumptions. (A3) captures the case of
g = sin which correspond to wave maps with target manifold S2. We also have a
weaker result under the relaxed assumption
(A3’) For all ` ∈ V , g′(`) ∈ {−2,−1, 1, 2},

which encompasses the 4D radial Yang-Mills equation as well.
We work in the functional space H × L2 defined by the norm

‖φ0‖2H :=

∫ ∞
0

(
|∂rφ0(r)|2 +

|φ0(r)|2

r2

)
rdr.

Theorem 1. We make assumptions (A1)-(A2)-(A3’).
Let ~ψ(t) be a finite energy wave map. Then there exist a sequence of time tn ↑
T+(~ψ), an integer J > 0, J sequences of scales λJ,n � · · · � λ2,n � λ1,n and J
harmonic maps Q1, . . . , QJ

~ψ(tn) =

J∑
j=1

(Qj (·/λj,n)−Qj(∞), 0) + ~φn +~bn.(0.1)

where ~bn vanishes in the following sense: for any sequence λn > 0, and A > 0

‖bn,0‖H(tn/A6r6Aλn) → 0,

(so that ‖bn,0‖L∞ → 0) and ‖bn,1‖L2 → 0; and φn is as follows:

(1) If T+(~ψ) < +∞, then J > 1, λ1,n � T+(~ψ) − tn and there exists a fixed
function ~φ of finite energy such that

~φn = ~φ.

(2) If T+(~ψ) = +∞, denote ` = ψ(∞), there exists a solution ~φL(t) ∈ C (R, H×
L2) to the linear wave equation (LW`) such that

~φn = (`, 0) + ~φL(tn).

If we furthermore assume (A3), then (in both cases)

‖~bn‖H×L2 → 0 as n→ +∞.

The first step in the proof is to choose a sequence of time tn → T+(~ψ) on which
the space-time kinetic energy inside the light cone vanishes. This is a reformulation
that the averaged kinetic energy inside the light cone vanishes, which is well known.

The second step is concerned with sequences of wave maps whose space-time kinetic
energy vanishes. Up to a subsequence, one can construct a bubble decomposition
i.e extract the harmonic maps, up to an error which tends to 0 in L∞. This result
does not make use of assumption (A3) or (A3’), but only (A1) and (A2).

The bound on the error is insufficient to capture the linear scattering term. However,
when this bubble decomposition is combined with the concentration-compactness
procedure developed in [12, 13] via linear profile decompositions introduced [1], we
manage to derive a sharp scattering theorem below the threshold in L∞. As linear
scattering is involved, we do need assumption (A3’) here. This result has its own
interest, and as a consequence, we can extract the scattering term (for all times,
not merely a sequence) in the global case. In an analogous way, we can define the
regular part ~φ in the blow up case.

Finally, we revisit the bubble decomposition to prove that the remainder vanishes
in the energy space. We rely on channels of energy of the linear problem, a method
first introduced by Duyckaerts Kenig and Merle [7, 8, 9, 10] in the context of the 3D
nonlinear wave equation. Here we strongly rely on assumption (A3) which makes
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the linear problem conjugated to the 4D linear wave equation, and on [6] which
proves the existence of channels of energy in that case.

Many open problems remain: the first one being to obtain a soliton resolution for all
times and not merely a sequence of times. Also one should consider the Yang-Mills
case. Finally, the possibilities for the behavior of λj,n are not well understood, and
in fact, constructing a solution where J > 2 is a challenging open question.
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