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1 INTRODUCTION

MODELING. We deal with the modeling of multi-scales physical
phenomena described by a nonlinear hyperbolic system

∂tU + ∂xF (U ) = 0 with U ∈ R
N (1)

and especially want to design a numerical scheme in order to capture the
slowest scale and to filter the others.

EXAMPLES. Multi-scales phenomena encompass low Mach number
flows, low Froude number hydrodynamic motions, low β-limit in magneto-
hydrodynamics, etc.

CLASSICAL NUMERICAL METHODS.

Explicit methods
✗ Restrictive stability conditions

Implicit methods
✗ High CPU and memory costs
✗ Ill-conditioned matrices

AIMS OF THE NEW SCHEME.

✓ Unconditionally stable
|large time steps associated to the slowest scale might be used

✓ High-order in time and space
✓ Without matrices inversion nor matrices storage
✓ With non-cartesian grids

2 KINETIC REPRESENTATION

2.1 The kinetic BGK model

PREREQUISITE. At a mesoscopic scale, the Boltzmann equation
on the particules distribution function f models gas dynamics

transport part
︷ ︸︸ ︷

collision part
︷ ︸︸ ︷

∂tf (t, x, v) + v∂xf (t, x, v) = Q(f ),

withQ(f ) a collision operator often chosen of BGK typeQ(f ) = 1
ε(f

eq−f).
|The collision is thus a relaxation towards an equilibrium state f eq.

KEY POINT [AN99]. As a generalisation, the hyperbolic system (1) is
approximated by a kinetic BGK model (2)

∂tf (t, x, v) + v∂xf (t, x, v) =
1

ε
(feq − f ). (2)

Under some consistency conditions on the moments of feq, kinetic BGK
model (2) converges asymptotically to the hyperbolic system (1).

2.2 Starting point : the Lattice-Boltzmann method

IDEA. It is a discrete version of the Boltzmann continuous equation.

DISCRETIZATION : D1Qd.

Discrete framework
✓ Finite set of velocities
V = {λ1, ..., λd}
✓ Distribution vector f

| such that fj(t, x) = f(t, x, λj)

✗ Space lattice x ∈ L
✗ Time step ∆t

| such that x + λi∆t ∈ L, ∀x ∈ L

✓ Choice of a discrete feq

|submitted to discrete consistency

|conditions on its moments

Splitting algorithm

✓ collision step :
f ∗
j (t, x) = fj(t, x) + ω(f eq

j − fj(t, x))

with ω ∈ [0, 2] the relaxation parameter

✗ exact transport :
fj(t + ∆t, x) = f∗j (t, x− λj∆t)

Remark. ✗ Particles are required to move exactly on the lattice
|which imposes a CFL type condition and a cartesian grid.

Remark. ✓ Hereinafter, we want to design a scheme with only ✓ items
|to get rid of the previous restrictions.

VECTORIAL SCHEME. We will focus on a specific kinetic scheme
called ”vectorial” which consists of repeating a 1D representation for each
component of U : [D1Qd]

N .

3 NUMERICAL SCHEME

VELOCITIES. Add a central/zero velocity to mimic and to better
treat the steady or quasi steady scale of the hyperbolic system (1).

V = {λ−, λ0, λ+}
N . (3)

EQUILIBRIUM [Bou03]. Suppose that we could split F (U )− λ0U

into two parts (abusively called ”positive” and ”negative” parts)

the flux vector splitting : F (U )− λ0U = F+
0 (U ) + F−

0 (U ) .

The consistency conditions on the moments of feq together with this
flux vector splitting enable to construct the equilibrium feq :







f
eq
− (U ) = −

1

(λ0 − λ−)
F−

0 (U ),

f
eq
0 (U ) = U −

(

F+
0 (U )

(λ+ − λ0)
−

F−
0 (U )

(λ0 − λ−)

)

,

f
eq
+ (U ) =

1

(λ+ − λ0)
F+

0 (U ).

(4)

SPLITTING ALGORITHM [D1Q3]
N . First order in time:

T (∆t) ◦R(∆t, 1) or second order in time: T (∆t
2 ) ◦R(∆t, 12) ◦ T (

∆t
2 )

with

✓ Semi-Lagrangian transport step: T (∆t)

f∗i (t, x) = I∆x (f
n
i (t, x− λi∆t))

| with I∆x the interpolation operator associated to the semi-lagrangian method

✓ θ-scheme relaxation step: R(∆t, θ)

fn+1 − f∗

∆t
= θ

feq − fn+1

ε
+ (1− θ)

feq − f∗

ε
| rewritten as fn+1(t, x) = f ∗(t, x) + ω(f eq(U )− f ∗(t, x)), with ω = ∆t

ε+θ∆t

4 PROPERTIES

CONSISTENCY LEMMA. The numerical scheme [D1Q3]
N with ve-

locities (3) and equilibrium (4) admits the following PDE limit

∂tU + ∂xF (U ) =

(
1

ω
−

1

2

)

∆t ∂x (D(U )∂xU ) +O(∆t2)

with the following diffusion term

D(U ) = λ+∂F
+
0 (U ) + λ−∂F

−
0 (U ) + λ0∂F (U )− | ∂F (U ) |2 .

✓ The diffusion depends on U

|less diffusive than with 2 velocities

✓ More parameters to tune.

STABILITY LEMMA. The numerical scheme [D1Q3]
N with veloci-

ties (3) and equilibrium (4) is

✓ entropy stable [Dub13] (for
the entropy η) if
- the transport is exact
- ω ∈ [0, 1]
- ∂f

eq
− , ∂f

eq
0 , ∂f

eq
+ are

nonnegative matrices
- the flux vector splitting is
entropic
|existence of a entropy flux ζ±0 w.r.t η

✓ linearly stable (for a linear
flux F ) if
- ω ∈ [0, 1]

|and even ω ∈ [0, 2]

- ∂f
eq
− , ∂f

eq
0 , ∂f

eq
+ are

nonnegative matrices
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5 NUMERICAL RESULTS

FLUX VECTOR SPLITTINGS. (tested on all examples)
✓ Rusanov splitting (λ− < λ0 = 0 < λ+)

F−
0 (U ) = −λ−

F (U )− λ+U

λ+ − λ−
, F+

0 (U ) = λ+
F (U )− λ−U

λ+ − λ−

✓ Upwind splitting (λ− < λ0 < λ+)

F−
0 (u) = 1F ′(u)<λ0

(F (u)− λ0u), F+
0 (u) = 1F ′(u)>λ0

(F (u)− λ0u)

5.1 Advection equation : ∂tu + ∂x(a(x)u) = 0

Parameters. a(x) = 1.0 + 0.01x2, orders : 2 in time and 17 in space,
∆x = 4.0.10−4 and ∆t = 0.1

Rusanov splitting Upwind splitting

V = {−1.5, 0, 1.5} and V = {0.5, 1.0, 1.5}

5.2 Burgers equation : ∂tu + ∂x

(
u2

2

)

= 0

Other splitting. Lax-Wendroff splitting (−λ− = λ+ = λ, λ0 = 0)

F−
0 (u) =

u2

4
− α

u3

6λ
, F+

0 (u) =
u2

4
+ α

u3

6λ

Parameters. ∆x = 5.0.10−4 and ∆t = 2.0.10−3 (CFLfinite volume
= 10), orders : 1 in time and 11 in space

Rarefaction wave uL < uR Shock wave uL > uR

Reference, Rusanov, Upwind, Lax-Wendroff(α=1), Lax-Wendroff(α=1.5)

5.3 Low Mach Euler system

Other splittings. Lax-Wendroff splitting, AUSM splitting [LS93]
(Advection Upstream Splitting Method), Van-Leer splitting, etc.

OUR ”LOW MACH” SPLITTING.

F Euler(U ) = F fluid(U )
︸ ︷︷ ︸

Lax-Wendroff splitting

+ F acoustic(U )
︸ ︷︷ ︸

∼ AUSM splitting

Acoustic wave. ∆x = 0.001, orders : 1 in time and 11 in space
Previous splittings

Reference, Rusanov, Van-Leer,
Osher, AUSM

∆t = 0.002

Our ”low Mach” splitting

Reference, ∆t = 0.002,
∆t = 0.005, ∆t = 0.01

✓ Material wave: well captured,
✓ Acoustic wave: less dissipated
✓ Same results with ∆t five times
larger than previously

Sod problem. ∆x = 5.0.10−4 and ∆t = 0.002, orders : 2 in time and
1 in space

Various splittings

Reference, Rusanov, Van-Leer,
Osher, ”low Mach” (α = 1)

α and the ”low Mach” splitting

Reference, α = 1, α = 1.2,
α = 1.5, α = 2, α = 1 + u

✓ α adds some numerical diffusion
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