

Institut de Recherche Mathématique Avancée

A HIGH-ORDER UNCONDITIONALLY STABLE **RELAXATION SCHEME**

Clémentine Courtès, Emmanuel Franck IRMA, University of Strasbourg, FRANCE

INTRODUCTION

MODELING. We deal with the modeling of **multi-scales physical** phenomena described by a nonlinear hyperbolic system

 $\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = 0 \quad \text{with } \boldsymbol{U} \in \mathbb{R}^N$ (1)

and especially want to design a numerical scheme in order to capture the slowest scale and to filter the others.

NUMERICAL SCHEME 3

VELOCITIES. Add a **central/zero velocity** to mimic and to better treat the steady or quasi steady scale of the hyperbolic system (1).

 $\boldsymbol{\mathcal{V}} = \{\lambda_-, \lambda_0, \lambda_+\}^N.$ (3)

NUMERICAL RESULTS 5

FLUX VECTOR SPLITTINGS. (tested on all examples) ✓ Rusanov splitting $(\lambda_{-} < \lambda_{0} = 0 < \lambda_{+})$ $F_{0}^{-}(U) = -\lambda_{-} \frac{F(U) - \lambda_{+}U}{\lambda_{+} - \lambda_{-}}, F_{0}^{+}(U) = \lambda_{+} \frac{F(U) - \lambda_{-}U}{\lambda_{+} - \lambda_{-}}$ ✓ Upwind splitting $(\lambda_{-} < \lambda_{0} < \lambda_{+})$

 $F_0^{-}(u) = \mathbb{1}_{F'(u) < \lambda_0}(F(u) - \lambda_0 u), \ F_0^{+}(u) = \mathbb{1}_{F'(u) > \lambda_0}(F(u) - \lambda_0 u)$

Multi-scales phenomena encompass low Mach number **EXAMPLES**. flows, low Froude number hydrodynamic motions, low β -limit in magnetohydrodynamics, etc.

CLASSICAL NUMERICAL METHODS.

Explicit methods

X Restrictive stability conditions

Implicit methods X High CPU and memory costs X **X** Ill-conditioned matrices

AIMS OF THE NEW SCHEME.

✓ Unconditionally stable

large time steps associated to the slowest scale might be used

✓ High-order in time and space

✓ Without matrices inversion nor matrices storage

✓ With non-cartesian grids

KINETIC REPRESENTATION 2

The kinetic BGK model $\mathbf{2.1}$

PREREQUISITE. At a mesoscopic scale, the **Boltzmann equation** on the particules distribution function f models gas dynamics collision part transport part

EQUILIBRIUM [Bou03]. Suppose that we could split $F(U) - \lambda_0 U$ into two parts (abusively called "positive" and "negative" parts)

the flux vector splitting : $\boldsymbol{F}(\boldsymbol{U}) - \lambda_0 \boldsymbol{U} = \boldsymbol{F}_0^+(\boldsymbol{U}) + \boldsymbol{F}_0^-(\boldsymbol{U})$.

The consistency conditions on the moments of f^{eq} together with this flux vector splitting enable to construct the equilibrium f^{eq} :

 $\boldsymbol{f}_{-}^{eq}(\boldsymbol{U}) = -\frac{1}{(\lambda_0 - \lambda_-)} \boldsymbol{F}_{0}^{-}(\boldsymbol{U}),$ $\begin{cases} \boldsymbol{f}_{0}^{eq}(\boldsymbol{U}) = \boldsymbol{U} - \left(\frac{\boldsymbol{F}_{0}^{+}(\boldsymbol{U})}{(\lambda_{+} - \lambda_{0})} - \frac{\boldsymbol{F}_{0}^{-}(\boldsymbol{U})}{(\lambda_{0} - \lambda_{-})}\right), \quad (4) \\ \boldsymbol{f}_{+}^{eq}(\boldsymbol{U}) = \frac{1}{(\lambda_{+} - \lambda_{0})} \boldsymbol{F}_{0}^{+}(\boldsymbol{U}). \end{cases}$

SPLITTING ALGORITHM $[\mathbf{D}_1\mathbf{Q}_3]^N$. First order in time: $T(\Delta t) \circ R(\Delta t, 1)$ or second order in time: $T(\frac{\Delta t}{2}) \circ R(\Delta t, \frac{1}{2}) \circ T(\frac{\Delta t}{2})$ with

✓ Semi-Lagrangian transport step: $T(\Delta t)$ $f_i^*(t, x) = \mathbb{I}_{\Delta x} \left(f_i^n(t, x - \lambda_i \Delta t) \right)$ with $\mathbb{I}_{\Delta x}$ the interpolation operator associated to the semi-lagrangian method ✓ θ -scheme relaxation step: $R(\Delta t, \theta)$
$$\begin{split} \frac{\boldsymbol{f}^{n+1} - \boldsymbol{f}^*}{\Delta t} &= \theta \frac{\boldsymbol{f}^{eq} - \boldsymbol{f}^{n+1}}{\varepsilon} + (1 - \theta) \frac{\boldsymbol{f}^{eq} - \boldsymbol{f}^*}{\varepsilon} \\ \mid \text{rewritten as } \boldsymbol{f}^{n+1}(t, x) &= \boldsymbol{f}^*(t, x) + \omega (\boldsymbol{f}^{eq}(\boldsymbol{U}) - \boldsymbol{f}^*(t, x)), \text{ with } \omega = \frac{\Delta t}{\varepsilon + \theta \Delta t} \end{split}$$

Advection equation : $\partial_t u + \partial_x (a(x)u) = 0$ 5.1

Parameters. $a(x) = 1.0 + 0.01x^2$, orders : 2 in time and 17 in space, $\Delta x = 4.0.10^{-4}$ and $\Delta t = 0.1$

 $\partial_t f(t, x, v) + v \partial_x f(t, x, v) = Q(f),$

with Q(f) a collision operator often chosen of BGK type $Q(f) = \frac{1}{\epsilon}(f^{eq} - f)$. The collision is thus a relaxation towards an equilibrium state f^{eq} .

KEY POINT [AN99]. As a generalisation, the hyperbolic system (1) is approximated by a kinetic BGK model (2)

 $\partial_t f(t, x, v) + v \partial_x f(t, x, v) = \frac{1}{2} \left(f^{eq} - f \right).$ (2)

Under some consistency conditions on the moments of f^{eq} , kinetic BGK model (2) converges asymptotically to the hyperbolic system (1).

Starting point : the Lattice-Boltzmann method $\mathbf{2.2}$

IDEA. It is a discrete version of the Boltzmann continuous equation.

DISCRETIZATION : D_1Q_d .

Discrete framework	Splitting algorithm
 Finite set of velocities 	
$\mathcal{V} = \{\lambda_1,,\lambda_d\}$	✓ collision step :
 Distribution vector f 	$f_j^*(t,x) = f_j(t,x) + \omega(f_j^{eq} - f_j(t,x))$
such that $f_j(t,x) = f(t,x,\lambda_j)$	with $\omega \in [0,2]$ the relaxation parameter
$igstarrow$ Space lattice $x\in\mathcal{L}$	
$igstarrow$ Time step Δt	🗡 exact transport :
$ig $ such that $x+\lambda_i \Delta t \in \mathcal{L}$, $orall x \in \mathcal{L}$	$f_j(t + \Delta t, x) = f_j^*(t, x - \lambda_j \Delta t)$
 Choice of a discrete f^{eq} 	
submitted to discrete consistency	
conditions on its moments	

PROPERTIES

CONSISTENCY LEMMA. The numerical scheme $[D_1Q_3]^N$ with ve locities (3) and equilibrium (4) admits the following PDE limit $\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \left(\frac{1}{\omega} - \frac{1}{2}\right) \Delta t \ \partial_x \left(D(\boldsymbol{U})\partial_x \boldsymbol{U}\right) + O(\Delta t^2)$ with the following diffusion term

$D(\boldsymbol{U}) = \lambda_{+} \partial \boldsymbol{F}_{0}^{+}(\boldsymbol{U}) + \lambda_{-} \partial \boldsymbol{F}_{0}^{-}(\boldsymbol{U}) + \lambda_{0} \partial \boldsymbol{F}(\boldsymbol{U}) - |\partial \boldsymbol{F}(\boldsymbol{U})|^{2}.$

- \checkmark The diffusion depends on Uless diffusive than with 2 velocities
 - ✓ More parameters to tune.

STABILITY LEMMA. The numerical scheme $[D_1Q_3]^N$ with veloci ties (3) and equilibrium (4) is ✓ **linearly stable** (for a linear ✓ entropy stable [Dub13] (for

> flux F) if $-\omega \in [0,1]$ and even $\omega \in [0,2]$ - $\partial \boldsymbol{f}_{-}^{eq}$, $\partial \boldsymbol{f}_{0}^{eq}$, $\partial \boldsymbol{f}_{+}^{eq}$ are

nonnegative matrices

- the flux vector splitting is entropic

existence of a entropy flux ζ_0^{\pm} w.r.t η

References

the entropy η) if

 $-\omega \in [0,1]$

- the transport is exact

- $\partial m{f}_{-}^{eq}$, $\partial m{f}_{0}^{eq}$, $\partial m{f}_{+}^{eq}$ are

nonnegative matrices

[AN99] D.Aregba-Driollet and R.Natalini. *Discrete Kinetic Schemes for Systems of* Conservation Laws. Birkhäuser Basel, 1999. [Bou03] F.Bouchut. Entropy satisfying flux vector splittings and kinetic BGK models. Numer. Math., 94:623-672, 2003.

	Reference, Rusanov, Upwind, Lax-Wendroff($\alpha = 1$), Lax-Wendroff($\alpha = 1.5$ 5.3 Low Mach Euler system
e-	Other splittings. Lax-Wendroff splitting, AUSM splitting [LS9 (Advection Upstream Splitting Method), Van-Leer splitting, etc.
	$\begin{array}{l} \textbf{OUR "LOW MACH" SPLITTING.} \\ \textbf{\textit{F}}_{Euler}(\textbf{\textit{U}}) = \underbrace{\textbf{\textit{F}}_{fluid}(\textbf{\textit{U}})}_{Lax-Wendroff splitting} + \underbrace{\textbf{\textit{F}}_{acoustic}(\textbf{\textit{U}})}_{\sim AUSM splitting} \end{array}$
)	Acoustic wave. $\Delta x = 0.001$, orders : 1 in time and 11 in space Previous splittings Our "low Mach" splitting
;i-	
	Reference, Rusanov, Van-Leer, Osher, AUSMReference, $\Delta t = 0.002$, $\Delta t = 0.005$, $\Delta t = 0.01$
	 △t = 0.002 ✓ Material wave: well captured, ✓ Acoustic wave: less dissipated ✓ Same results with △t five times larger than previously
	Sod problem. $\Delta x = 5.0.10^{-4}$ and $\Delta t = 0.002$, orders : 2 in time as

1 in space Various splittings

lpha and the "low Mach" splitting

Remark. X Particles are required to move exactly on the lattice which imposes a CFL type condition and a cartesian grid. \checkmark Hereinafter, we want to design a scheme with only \checkmark items to **get rid of** the previous restrictions.

VECTORIAL SCHEME. We will focus on a specific kinetic scheme called "vectorial" which consists of repeating a 1D representation for each component of \boldsymbol{U} : $[\mathsf{D}_1\mathsf{Q}_d]^N$.

[Dub13] F.Dubois. Stable lattice Boltzmann schemes with a dual entropy approach for monodimensional nonlinear waves. *Computers and Mathematics with Applications*, 65(2):142–159, 2013.

[LS93] M.-S.Liou and C.J.Steffen. A New Flux Splitting Scheme. Journal of Computational Physics, 107(1):23–39, 1993.

XVII International Conference on Hyperbolic Problems Theory, Numerics, Applications

University Park, Pennsylvania, (USA), June 2018