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1 INTRODUCTION

v

MODELING. We deal with the modeling of multi-scales physical
phenomena described by a nonlinear hyperbolic system

U + 0, F(U)=0 withU e RY (1)

and especially want to design a numerical scheme in order to capture the
slowest scale and to filter the others.

EXAMPLES. Multi-scales phenomena encompass low Mach number
flows, low Froude number hydrodynamic motions, low (5-limit in magneto-
hydrodynamics, etc.

CLASSICAL NUMERICAL METHODS.

Implicit methods
X High CPU and memory costs
X lll-conditioned matrices

Explicit methods
X Restrictive stability conditions

AIMS OF THE NEW SCHEME.
v Unconditionally stable

‘Iarge time steps associated to the slowest scale might be used
v High-order in time and space
v" Without matrices inversion nor matrices storage
v" With non-cartesian grids

2 KINETIC REPRESENTATION

2.1 The kinetic BGK model

PREREQUISITE. At a mesoscopic scale, the Boltzmann equation
on the particules distribution function f models gas dynamics

transport part collision part

/o \ /o —\

6Iff<t7x7 U) + vaiUf(t?xa U) — Q(f))
with QQ(f) a collision operator often chosen of BGK type Q(f) = %(feq—f).

\The collision is thus a relaxation towards an equilibrium state <.

KEY POINT [AN99]. As a generalisation, the hyperbolic system (1) is
approximated by a kinetic BGK model (2)

Orf(t,z,v) +v0rf(t,z,v) = é(feq —f). (2

Under some consistency conditions on the moments of 4, kinetic BGK
model (2) converges asymptotically to the hyperbolic system (1).

2.2 Starting point : the Lattice-Boltzmann method

IDEA. It is a discrete version of the Boltzmann continuous equation.

-
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DISCRETIZATION : D;Q,.

Discrete framework
v Finite set of velocities
V={\, ..., \g}
v’ Distribution vector f

| such that f;(¢t,z) = f(t,z,)))
X Space lattice x € L
X Time step At

| such that # + At € £, Vo € L
v Choice of a discrete f¢1

‘submitted to discrete consistency

Splitting algorithm

v’ collision step :

fi @t z) = f3(¢,2) + w(f;" — fi(t, 2))

with w € [0, 2| the relaxation parameter

X exact transport :

f](t + At,xz) = f}k(t, xr — )\jAt)

‘conditions on its moments

Remark. X Particles are required to move exactly on the lattice
‘WhiCh imposes a CFL type condition and a cartesian grid.
v Hereinafter, we want to design a scheme with only v items

‘to get rid of the previous restrictions.

VECTORIAL SCHEME. We will focus on a specific kinetic scheme
called "vectorial” which consists of repeating a 1D representation for each
component of U: [D;Q " .

3 NUMERICAL SCHEME

/

VELOCITIES. Add a central/zero velocity to mimic and to better
treat the steady or quasi steady scale of the hyperbolic system (1).

V={0_ 21} (3)

EQUILIBRIUM [Bou03]. Suppose that we could split F' (U ) — \gU

into two parts (abusively called " positive” and " negative” parts)

the flux vector splitting : F (U) — \oU = F (U) + Fy(U).

The consistency conditions on the moments of f¢! together with this
flux vector splitting enable to construct the equilibrium f¢4 :

| .fe—q<U) — _(AO _1 )\_)FO_<U)7
o) - - ( ) __F, ) ) )
FUU) = )

SPLITTING ALGORITHM First order in time:

D1Q3]".
T(ﬁt) o R(At,1) or second order in time: T(%) o R(At, %) o T(%)
wit

(v Semi-Lagrangian transport step: T'(At)

fi (¢, @) =Iag (f]' (¢, @ — AAL))

’ with Ia, the interpolation operator associated to the semi-lagrangian method
v/ 0-scheme relaxation step: R(At,0)

fn+1 . f>|< B feq . fn+1

= +(1—9)f6q_f*

At £ £
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’ rewritten as "7 (t, 2) = £ (t,2) + w(fUU) — f*(t,z)), with w = ﬁ

4 PROPERTIES

J

CONSISTENCY LEMMA. The numerical scheme [DQ3]" with ve-
locities (3) and equilibrium (4) admits the following PDE limit

U + 0, F(U) — (l _ %) At 9, (DU)OU) + O(AL)

W
with the following diffusion term

DU) = \MOFT(U) + A\_0F; (U) + \OF(U)— | 0F(U) |*.

v The diffusion depends on U

v" More parameters to tune.
‘Iess diffusive than with 2 velocities

STABILITY LEMMA. The numerical scheme [D;Qs]"" with veloci-
ties (3) and equilibrium (4) is

v entropy stable [Dub13] (for
the entropy 1) if

- the transport is exact

-w € (0,1]

- 0fY, (9f8q, (9fiq are
nonnegative matrices

- the flux vector splitting is
entropic

v linearly stable (for a linear
flux F) if
-w € (0,1]
land even w € [0, 2]
- 0f1, @fgq, Gfiq are

nonnegative matrices

5 NUMERICAL RESULTS

FLUX VECTOR SPLITTINGS. (tested on all examples)
v Rusanov splitting (A— < A\g =0 < A4)

_ FU) - )\ U
Fow) =2 P prw) -,
_|_ _

v Upwind splitting (A— < A\g < A1)
F()_<u) — ]lF’(u)<)\0<F<u) — Aou), FO+<u) — ]lF’(u)>>\0<F<u) — Aou)

FU)-\U
VY

O + Oy(a(x)u) =0

Parameters. a(z) = 1.0 + 0.0122, orders : 2 in time and 17 in space,
Az = 4.0.10"% and At = 0.1

5.1 Advection equation :

Rusanov splitting Upwind splitting

,./\/\/\
AV,

15 X 3

Y = {~1.5,0,1.5} and V = {0.5,1.0, 1.5}
5.2 Burgers equation : J,u + 0, (“;) — 0

Other splitting. Lax-Wendroff splitting (—A_ = A+ =\, A\g = 0)

u? u’ u? u’

_ - 1 B

Parameters. Az = 5.0.107% and At = 2.0.1073 (CFLfinte volume
= 10), orders : 1 in time and 11 in space

Shock wave uy > up

]
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Rarefaction wave uy < up

|

fol

, U pwi nd, Lax-Wend roff(a=1) - Lax-Wend ro;‘F(oz: 1‘.5)

Reference,

5.3 Low Mach Euler system

Other splittings. Lax-Wendroff splitting, AUSM splitting [LS93]
(Advection Upstream Splitting Method), Van-Leer splitting, etc.

OUR "LOW MACH” SPLITTING.

FEuIer(U) — Fﬂuid(Ul + Facoustic(U)

\ . 2/

~ AUSR/lrspIitting

Lax-Wendroff splitting

’existence of a entropy flux Coi w.r.t n

/

Discrete Kinetic Schemes for Systems of
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Acoustic wave. Ax = 0.001, orders : 1 in time and 11 in space
Previous splittings Our "low Mach” splitting

preye— T Frof ot using 132 e
“DATB Li_de0p002. Ldat using 1:2
Eroneriens Lt using 112

8 112 e ng 132
9 112 03 L bbpol dat” using 112 ——

Reference,

At = 0.005, At = 0.01
v' Material wave: well captured,
v Acoustic wave: less dissipated
v/ Same results with At five times
larger than previously

QReférenjce, Vajn-Léer,o
Osher, AUSM

| At = 0.002 I

Sod problem. Az = 5.0.107% and At = 0.002, orders : 2 in time and

1 in space
Various splittings

« and the "low Mach” splitting

n2ldat” usirg 1:2 :
Ipha2,dat" using 1:2

| Referenv;:e, , Va;-Leer,
Osher, "low Mach" (o = 1)

Reference, o= 1.2,

a=10,a=2, a=1+u
v/ o adds some numerical diffusion /
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