

ERROR ESTIMATES OF A FINITE DIFFERENCE SCHEME FOR THE KORTEWEG-DE VRIES EQUATION

<u>Clémentine Courtès</u>, Frédéric Lagoutière, Frédéric Rousset Université Paris-Sud, Laboratoire de Mathématiques, 91405 Orsay, FRANCE

1 INTRODUCTION

EQUATION. We focus on the numerical analysis of the initial value problem on Korteweg-de Vries equation

 $\begin{cases} \partial_t u(t,x) + u(t,x)\partial_x u(t,x) + \partial_x^3 u(t,x) = 0, \text{ in } [0,T] \times \mathbb{R}, \\ u_{|_{t=0}} = u_0, \text{ in } \mathbb{R}. \end{cases}$ (1)

3 PROOFS

3.1 Consistency error DEFINITION. The consistency error is defined as

 $\epsilon_{j}^{n} = \frac{(u_{\Delta})_{j}^{n+1} - (u_{\Delta})_{j}^{n}}{\Delta t} + D\left(\frac{u_{\Delta}^{2}}{2}\right)_{j}^{n} + \theta D_{+} D_{-} (u_{\Delta})_{j}^{n+1} + (1-\theta)D_{+} D_{+} D_{-} (u_{\Delta})_{j}^{n} - \frac{c^{n}\Delta x}{2}D_{+} D_{-} (u_{\Delta})_{j}^{n}$

4 NUMERICAL RESULTS

DEFINITION. The numerical rate of convergence is com-

the difference between a numerical solution with

r = -

AIM. We want to quantify the rate of convergence by a unified **method** which takes into account the **two antagonist effects** : the formation of a shock wave due to the Burgers non-linear term $u\partial_x u$ and the dispersive oscillation wave due to the linear Airy term $\partial_x^3 u$.

NUMERICAL SCHEME. We study the general class of **Rusanov** θ -**finite difference scheme**

Lemma 1. If $\Delta t \lesssim \Delta x$, $\eta > 0$ and $u_0 \in \mathbb{H}^6(\mathbb{R})$, there exists a function h (depending on u_0 and T) which controls the consistency error $\sup_{n \in [0,N]} \epsilon^n _{\ell^2_\Delta} \le h(T, u_0 _{\mathbb{H}^3 + \eta}(\mathbb{R}), u_0 _{\mathbb{H}^6}(\mathbb{R}))\Delta x.$ 3.2 Stability Property 1. The convergence error satisfies the following ℓ^2_Δ -stability inequality $ \mathcal{A}e^{n+1} \le \mathcal{A}e^n \left[1 + C_1\Delta t + C_2 \int_{t^n}^{t^{n+1}} \partial_x u(s, .) _{\mathbb{L}^\infty} ds\right] + \epsilon^n C_3\Delta t + C_4 D_+(e)^n + C_5 D_+D_+D(e)^n + C_6 D(e)^n + C_7 D_+D(e)^n + C_8 D_+D(e)^n , (5)$ with $. $ the $. _{\ell^2_\Delta}$ -norm, <i>i.e</i> $ e^n _{\ell^2_\Delta}^2 = \sum_{j \in \mathbb{Z}} \Delta x \left(e_j^n\right)^2$ and \mathcal{A} the operator defined by $\mathcal{A} = I + \theta \Delta t D_+ D_+ D$ with I the identity operator. REMARK. The constants C_i depend only on Δt , Δx and u_0 . However, C_2 depends also on $ e^n _{\ell^\infty}$. Property 2. The CFL condition implies $C_{\{4,5,6,7,8\}} \le 0$.	$ -\frac{c^n \Delta x}{2} D_+ D \left(u_\Delta\right)_j^n . $	
$\begin{split} \sup_{n \in [0,N]} \epsilon^{n} _{\ell^{2}_{\Delta}} &\leq h(T, u_{0} _{\mathbb{H}^{3}+\eta}(\mathbb{R}), u_{0} _{\mathbb{H}^{6}(\mathbb{R})})\Delta x. \\ \textbf{3.2 Stability} \\ \textbf{Property 1. The convergence error satisfies the following } \ell^{2}_{\Delta} - \text{stability inequality} \\ \mathcal{A}e^{n+1} &\leq \mathcal{A}e^{n} \left[1 + C_{1}\Delta t + C_{2} \int_{\ell^{n}}^{\ell^{n+1}} \partial_{x}u(s,.) _{\mathbb{L}^{\infty}} ds \right] + \epsilon^{n} C_{3}\Delta t + C_{4} D_{+}(e)^{n} \\ &+ C_{5} D_{+}D_{+}D_{-}(e)^{n} + C_{6} D(e)^{n} + C_{7} D_{+}D_{-}(e)^{n} + C_{8} D_{+}D(e)^{n} , (5) \\ \text{with } . \text{ the } . _{\ell^{2}_{\Delta}} - \text{norm, } i.e \; e^{n} ^{2}_{\ell^{2}_{\Delta}} = \sum_{j \in \mathbb{Z}} \Delta x \left(e^{n}_{j}\right)^{2} \text{ and } \mathcal{A} \text{ the operator defined by } \mathcal{A} = I + \theta \Delta t D_{+} D_{+} D_{-} \text{ with } I \text{ the identity operator.} \\ \textbf{REMARK. The constants } C_{i} \text{ depend only on } \Delta t, \; \Delta x \text{ and } u_{0}. \text{ However, } C_{2} \text{ depends also on } e^{n} _{\ell^{\infty}}. \\ \textbf{Property 2. The CFL condition implies } C_{\{4,5,6,7,8\}} \leq 0. \end{split}$	Lemma 1. If $\Delta t \leq \Delta x$, $\eta > 0$ and $u_0 \in \mathbb{H}^6(\mathbb{R})$, there exists function h (depending on u_0 and T) which controls the consistency er	ror
3.2 Stability Property 1. The convergence error satisfies the following ℓ_{Δ}^2 -stability inequality $ \mathcal{A}e^{n+1} \leq \mathcal{A}e^n \left[1 + C_1\Delta t + C_2 \int_{\ell^n}^{\ell^{n+1}} \partial_x u(s,.) _{\mathbb{L}^{\infty}} ds \right] + \epsilon^n C_3\Delta t + C_4 D_+(e)^n $ $+ C_5 D_+D_+D(e)^n + C_6 D(e)^n + C_7 D_+D(e)^n + C_8 D_+D(e)^n , (5)$ with $. $ the $. _{\ell_{\Delta}^2}$ -norm, <i>i.e</i> $ e^n _{\ell_{\Delta}^2}^2 = \sum_{j \in \mathbb{Z}} \Delta x \left(e_j^n\right)^2$ and \mathcal{A} the operator defined by $\mathcal{A} = I + \theta \Delta t D_+ D_+ D$ with I the identity operator. REMARK. The constants C_i depend only on Δt , Δx and u_0 . How- ever, C_2 depends also on $ e^n _{\ell^{\infty}}$. Property 2. The CFL condition implies $C_{\{4,5,6,7,8\}} \leq 0$.	$\sup_{n\in \llbracket 0,N rbracket} \epsilon^n _{\ell^2_\Delta} \leq h(T, u_0 _{\mathbb{H}^{rac{3}{4}+\eta}(\mathbb{R})}, u_0 _{\mathbb{H}^6(\mathbb{R})})\Delta x.$	
Property 1. The convergence error satisfies the following ℓ_{Δ}^2 -stability inequality $ \mathcal{A}e^{n+1} \leq \mathcal{A}e^n \left[1 + C_1\Delta t + C_2\int_{t^n}^{t^{n+1}} \partial_x u(s,.) _{\mathbb{L}^{\infty}} ds\right] + \epsilon^n C_3\Delta t + C_4 D_+(e)^n + C_5 D_+D_+(e)^n + C_6 D(e)^n + C_7 D_+D(e)^n + C_8 D_+D(e)^n , (5)$ with $. $ the $. _{\ell_{\Delta}^2}$ -norm, <i>i.e</i> $ e^n _{\ell_{\Delta}^2}^2 = \sum_{j \in \mathbb{Z}} \Delta x \left(e_j^n\right)^2$ and \mathcal{A} the operator defined by $\mathcal{A} = I + \theta \Delta t D_+ D_+ D$ with I the identity operator. REMARK. The constants C_i depend only on Δt , Δx and u_0 . However, C_2 depends also on $ e^n _{\ell^{\infty}}$. Property 2. The CFL condition implies $C_{\{4,5,6,7,8\}} \leq 0$.	3.2 Stability	
REMARK. The constants C_i depend only on Δt , Δx and u_0 . How- ever, C_2 depends also on $ e^n _{\ell^{\infty}}$. Property 2. The CFL condition implies $C_{\{4,5,6,7,8\}} \leq 0$.	Property 1. The convergence error satisfies the following ℓ_{Δ}^2 -stabilitinequality $ \mathcal{A}e^{n+1} \leq \mathcal{A}e^n \left[1 + C_1\Delta t + C_2\int_{t^n}^{t^{n+1}} \partial_x u(s,.) _{\mathbb{L}^{\infty}} ds\right] + \epsilon^n C_3\Delta t + C_4 D_+(e^{n+1}) _{\mathcal{A}} + C_5 D_+D_+D(e)^n + C_6 D(e)^n + C_7 D_+D(e)^n + C_8 D_+D(e)^n ,$ with $. $ the $. _{\ell_{\Delta}^2}$ -norm, <i>i.e</i> $ e^n _{\ell_{\Delta}^2}^2 = \sum_{j\in\mathbb{Z}}\Delta x \left(e_j^n\right)^2$ and \mathcal{A} to operator defined by $\mathcal{A} = I + \theta\Delta t D_+ D_+ D$ with I the identity operator	ty) ⁿ (5) he r.
Property 2. The CFL condition implies $C_{\{4,5,6,7,8\}} \leq 0$.	REMARK. The constants C_i depend only on Δt , Δx and u_0 . How ever, C_2 depends also on $ e^n _{\ell^{\infty}}$.	W-
	Property 2. The CFL condition implies $C_{\{4,5,6,7,8\}} \leq 0$.	

3.3 Convergence STEP 1. We suppose by induction the existence of $\gamma \in [0, \frac{1}{2}[$ such as $||e^n||_{\ell^{\infty}} \leq \Delta x^{\frac{1}{2}-\gamma}$ in order to control C_2 in (5). **STEP 2.** We need to control $\int_{t_m}^{t_{m+1}} ||\partial_m u(s, \cdot)||_{L^{\infty}} ds$ in order to

numerical slope= 0.9955		oidal-wave	Cno	
10 ⁻³	numerical order	error in $\ell^{\infty}(0, T, \ell^2_{\Delta}(\mathbb{Z}))$	Δx	J
		$8.9875.10^{-4}$	$6.2500.10^{-4}$	1600
ي ت ت	0.9899	$4.5253.10^{-4}$	$3.1250.10^{-4}$	3200
	0.9994	$2.2636.10^{-4}$	$1.5625.10^{-4}$	6400
10 ⁻⁴	1.0034	$1.1292.10^{-4}$	$7.8125.10^{-5}$.2800
Δ X	0.9837	$5.7102.10^{-5}$	$3.9062.10^{-5}$	25600
tical rate of 1	a theore	ical results for	E : Numer	'IGUR
		$= \pi \pi^{\frac{9}{2}} ([0, \pi])$		
numerical clone- 0 7930		: III ² (U, L)	$u_0 \in$	

error in

 $\ell^{\infty}(0, T, \ell^2_{\Delta}(\mathbb{Z}))$

 $6.5105.10^{-3}$

 $3.9541.10^{-3}$

 $2.2620.10^{-3}$

 $1.3091.10^{-3}$

 $7.4923.10^{-4}$

 Δx

 $1.5625.10^{-2}$

1600 $3.1250.10^{-2}$

6400 | $7.8125.10^{-3}$

12800 $3.9063.10^{-3}$

25600 1.9531.10⁻³

3200

meshes and a numerical one with 2J

with the relation

puted

 $\log\left(E_{J}\right) - \log\left(E_{2J}\right)$

spatial

with

spa-

meshes.

FIGURE : Numerical results for a theoretical rate of 0.75

STEP 2. We need to control $\int_{t^n}^{t^{n+1}} \partial_x u(s,.) _{\mathbb{L}^{\infty}} ds$ in order to apply Grönwall lemma. In [KPV91], this term is upper bounded as soon					
as $u_0 \in \mathbb{H}^{\overline{4}+\eta}(\mathbb{R})$ with $\eta > 0$.					
STEP 3. Grönwall lemma and the consistency error imply					
$ \mathcal{A}e^n _{\ell^2_{\Lambda}} \leq \overline{\Gamma\Delta x}.$					
STEP 4. We need return to $ e^n _{\ell_{\Delta}^2}$ thanks to $ e^n _{\ell_{\Delta}^2} \leq \mathcal{A}e^n _{\ell_{\Delta}^2}$ and verify the induction hypothesis at rank $n + 1$.					
3.4 For a less smooth initial data					
METHOD. We regularize the initial data thanks to a convolution					
product with mollifiers $(\varphi^{\delta})_{\delta>0}$. Let us denote by					
– u the exact solution from u_0 ,					
– u^o the exact one from $u^o_0 = u_0 \star \varphi^o$,					
– $ig(v_j^nig)_{(j,n)}$ the numerical solution from u_0^δ .					
REMARK. Therefore, we use the triangle inequality to upper bound $ e^n _{\ell^2_{\Delta}} \leq u_{\Delta} - u^{\delta}_{\Delta} _{\ell^2_{\Delta}} + u^{\delta}_{\Delta} - v^n _{\ell^2_{\Delta}} := [\alpha] + [\beta].$					
Lemma 2. If $u_0 \in \mathbb{H}^m$, with $m > \frac{3}{4}$, then there exists a function					
$G ext{ such as } [oldsymbol{lpha}] \leq oldsymbol{G} \left(oldsymbol{T}, oldsymbol{u}_0 _{\mathbb{H}^{\frac{3}{4}+\eta}(\mathbb{R})} ight) \delta^{oldsymbol{m}} oldsymbol{u}_0 _{\mathbb{H}^{m}(\mathbb{R})} ext{ with } \eta > 0$					
such as $m \geq \frac{3}{4} + \eta$.					
Lemma 3. If $m > \frac{3}{4}$ (cf. STEP 2) and $\frac{1}{\delta^{6-m}} \leq \frac{1}{\Delta x^{\gamma}}$ (cf. STEP 4), then Theorem 1 implies $[\beta] \leq \Gamma \frac{\Delta x}{\delta^{6-m}}$.					

KEY POINT. We have to find the optimal δ such as

5 IMPROVEMENTS

CONJECTURED RATE 1. We suppose that the restriction $3 < m \le 6$ comes only from a computational difficulty (linked to our induction hypothesis) so that the rate $\frac{m}{6}$ should be valid even for $\frac{3}{4} < m \le 3$.

$u_0\in \mathbb{H}^2([0,L])$						
		error in	numerical			
J	Δx	$\ell^{\infty}(0,T,\ell^2_{\Delta}(\mathbb{Z}))$	order			
1600	$3.125.10^{-2}$	$6.6322.10^{-3}$				
3200	$1.5625.10^{-2}$	$5.2115.10^{-3}$	0.34779			
6400	$7.8125.10^{-3}$	$4.0950.10^{-3}$	0.34783			
12800	$3.9063.10^{-3}$	$3.2699.10^{-3}$	0.32461			
25600	$1.9531.10^{-3}$	$2.5937.10^{-3}$	0.33426			

FIGURE : Numerical result for a **conjectured rate of 0.33333**

CONJECTURED RATE 2. In addition, we suppose that the **lower bound** $\frac{3}{4} < m$ **could be stamped out** by the use of [CKS+03] instead of [KPV91].

$u_0\in$	nu		
	error in	numerical	10
Δx	$\ell^{\infty}(0,T,\ell^2_{\Delta}(\mathbb{Z}))$	order	2)
			1 ['] L'(0)
$1.5625.10^{-2}$	$1.0567.10^{-2}$		8 10- - L
$7.8125.10^{-3}$	$9.8843.10^{-3}$	0.0964	erro
$3.9063.10^{-3}$	$9.2992.10^{-3}$	0.0880	
$1.9531.10^{-3}$	$8.7490.10^{-3}$	0.0879	10 ⁻³

numerical slope= 0.087948 10^{-1} 10^{-2} 10^{-2} 10^{-2} 10^{-2} 10^{-2} 10^{-2} 10^{-2} 10^{-2}

FIGURE : Numerical results for a **conjectured rate of 0.08333**

References

3200

6400

12800

25600

[CLR16] C.Courtès, F.Lagoutière and F.Rousset. Rate of convergence for finite difference scheme on the Korteweg-de Vries equation. 2016.

 $\begin{cases} \delta^m = \frac{\Delta x}{\delta^{6-m}},\\ \text{ under the constraint } \frac{1}{\delta^{6-m}} \leq \frac{1}{\Delta x^{\gamma}}. \end{cases}$

- If $\frac{3}{4} < m < 3$, the constraint is binding $(\delta = \Delta x^{\frac{\gamma}{6-m}})$, - if $3 < m \leq 6$, the optimal δ is $\delta = \Delta x^{\frac{1}{6}}$.

[HKR15] H.Holden, U.Koley and N.H.Risebro. Convergence of a fully discrete finite difference scheme for the Korteweg-de Vries equation. *IMA Journal of Numerical Analysis*, 35(3):1047–1077, 2015.

[KPV91] C.E.Kenig, G.Ponce and L.Vega. Well-posedness of the initial value problem for the Korteweg-de Vries equation. *J. Amer. Math. Soc*, 4(2):323–347, 1991. [CKS+03] J.Colliander, M.Kell, G.Staffilani, H.Takaoka en T.Tao. Sharp global wellposedness for KdV and modified KdV on \mathbb{R} and \mathbb{T} . *J. Amer. Math. Soc*, 16:705–749, 2003.

XVI International Conference on Hyperbolic Problems Theory, Numerics, Applications

Aachen (Germany), August 2016