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1 INTRODUCTION

3 PROOFS 4 NUMERICAL RESULTS
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EQUATION. We focus on the numerical analysis of the initial value /
Q : i Hmer Yol nitial Vet DEFINITION. The numerical rate of convergence is com-
problem on Korteweg-de Vries equation =

. log(Ey) — log (Ey)
log(2)

numerical solution with J spa-
numerical one with 2J spatial meshes.

3.1 Consistency error
DEFINITION. The consistency error is defined as

puted with the relation with

{ Opult, z) + ult, ©)0pu(t, ) + Ou(t,z) = 0, in [0,T] x R,
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2 :
; tial meshes and a
c"Ax .
. age o 2 D+D_ (uA)j :
AIM. We want to quantify the rate of convergence by a unified
method which takes into account the two antagonist effects : the

formation of a shock wave due to the Burgers non-linear term u0,u and
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Lemma 1. If At < Az, n > 0 and ug € HO(R), there exists a J Az

)

2
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the dispersive oscillation wave due to the linear Airy term agu.

NUMERICAL SCHEME. We study the general class of Rusanov 6-

finite difference scheme
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At g | TV =0 =
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FIGURE : Discretisation

c"At = Ax and 6 =1 in [HKR15].

r; = JjAx

PARTICULAR CASE.

function h (depending on ug and T') which controls the consistency error

Su En 2 < h(T, ||lu 3 u 6 Ax.
S €8l < RO lollygin gy, 1ol s(e)

3.2 Stability

7

CONVERGENCE ERROR. We define

n+1 _
with up(t,7) = xixg Jin [ uls, y)dsdy:

2 MAIN RESULTS

r

Theorem 1. [CLR16] : Assume ug € HO(R) for the Sobolev
regularity of the initial data, the Rusanov constant ¢" be such as
| (wa)™ ||gc < €™ and the Courant-Friedrichs-Lewy condition :

for 0 € [0,1]\ {%}

At(1 —20) < 2% and At < A,

for 6 = %,
k"At = Az, with 7 < 2

ono

then there exists a constant I independent of At and Ax such as

sup ||e"||;z < TAw. (2)
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Theorem 2. [CLR16] : Assume ug € H™(R) with m > 3, the
Rusanov constant ¢ be such as || (ua)" ||gc < €™ and the Courant-
Friedrichs-Lewy condition

for 6 = %,
K"At = A, with 7+ <

for 0 € [0,1]\ {%}

1
At(1 —20) < 2% and At < A,

oo

then there exist constants I'; independent of At and Az such as

min(m,6)
sup ||e"[|pz < T1Az 6,
n€[0,N]

sup ||en||£zA < I‘zAwlzTZm.
ne[0,N]
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A" | < []Ae"|

.Prope!rty 1. The convergence error satisfies the following KQA—stabiIity
inequality

tn—l—l

1+01At+02/ |0,u(s, )||Leds | +]]€"|CsAt+Cy|| Dy (€)™ ]

tn

+C5[| Dy DD ()" [| + C6l| D (e)" || + C7|| D1 D- (e)" || + Csl|D+.D ()" [], (5)

2
with [[.]| the [|.[|¢3-norm, e [[e"|[%, = 33jez A (eg) and A the
operator defined by A = I+0AtD . D, D_ with I the identity operator.

REMARK. The constants C; depend only on At, Ax and ug. How-
ever, C'y depends also on ||e"|| .

Property 2. The CFL condition implies C{4,5,6,7,8} < 0.

‘ by induction I the existence of v € [0 %[

such as ||e"||ypx < A23™7 in order to control Co in (5).

STEP 2. We need to control ft'?:ﬂ ||Ozu(s,.)||pds in order to
apply Gronwall lemma. In [KPV91], this term is upper bounded as soon

as ug € H%_FW(R) with > 0.

3.3 Convergence
STEP 1. We suppose

STEP 3.

Gronwall lemma and the consistency error imply

|Ae"|| 2 < Az,
A

STEP 4. We need return to ||€n||£2A thanks to HeanzA < HA@"HWA
and verify the induction hypothesis at rank n + 1.

3.4 For a less smooth initial data

METHOD. We regularize the initial data thanks to a convolution
product with mollifiers (905)5 ) Let us denote by
>

— u the exact solution from wug,

— 10 the exact one from ug = U * 905,

— (vn) ~_ the numerical solution from ug
J1

J

REMARK. Therefore, we use the triangle inequality to upper bound
Il < llua — bl + ud — o™l = [o] + [8].
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FIGURE : Numerical results for a theoretical rate of 0.66667

IMPROVEMENTS

J

CONJECTURED RATE 1. We suppose that the restriction 3 <
m < 6 comes only from a computational difficulty (linked to our induction
hypothesis) so that the rate % should be valid even for % <m<3.

uo € H*([0, L])

error in

(0,7, (A(Z))

numerical x10° nhumerical slope= 0.33806
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Lemma 2. If ug € H”, with m > % then there exists a function

G such as [a] < G (T, ||| 0" ||uo||gm(r) with n > 0

H3+"(R))
such as m > %—Fn.

Lemma 3. If m > 2 (cf. STEP 2) and 555 < x= (cf. STEP 4),
then Theorem 1 implies [3] < I‘(S%Tﬁ.

KEY POINT. We have to find the optimal ¢ such as

(. Az
0 :56—m’

der th traint ! < !
under the constrain .
\ o6—m — Ax?

— If% < m < 3, the constraint is binding (§ = Aw#)
—if 3 <m <6, the optimal 0 is 0 = Azc%.
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FIGURE : Numerical result for a conjectured rate of 0.33333

CONJECTURED RATE 2.

In addition, we suppose that the lower

bound % < m could be stamped out by the use of [CKS+03]

instead of [KPV91].
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