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Abstract. It is shown that a finitely generated branch group has Serre’s prop-
erty (FA) if and only if it does not surject onto the infinite cyclic group or the
infinite dihedral group. An example of a finitely generated self-similar branch
group surjecting onto the infinite cyclic group is constructed.
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Introduction

The study of groups acting on trees is a central subject in geometric group the-
ory. The Bass-Serre theory establishes a dictionary between the geometric study
of groups acting on trees and the algebraic study of amalgams and HNN ex-
tensions. A central topic of investigation is the fixed point property for groups
acting on trees, introduced by J.-P. Serre in his book as the property (FA)[Ser80].
A fundamental result due to Tits states that a group without a free subgroup
on two generators which acts on a tree by automorphisms fixes either a vertex
or a point on the boundary or permutes a pair of points on the boundary; see
[Tit77, PV91]. The group SL(3,Z), and more generally, groups with Kazdhan’s
property (T), in particular lattices in higher rank Lie groups have the property
(FA) ([dIHV89, Mar91]). A natural problem is to understand the structure of the
class of (FA)-groups (the class of groups having the property (FA)). There is an
algebraic characterization of enumerable (FA)-groups, due to J.-P. Serre. ([Ser80],
Theorem 1.6.15, page 81).

An enumerable group has the property (FA) if and only if it satisfies the
following three conditions:
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(i) it is not an amalgam,

(ii) it is not indicable (i.e., admits no epimorphism onto Z),

(iii) it is finitely generated.
But even such a nice result does not clarify the structure of the class of (FA)-
groups, as the first of these properties is usually difficult to check.

The class of (FA)-groups contains the class of finite groups and is closed
under quotients. As every infinite finitely generated group surjects onto a just-
infinite group (i.e., an infinite group with all proper quotients finite) a natural
problem is to describe just infinite (FA)-groups.

In [Gri00] the class (JINF) of just infinite groups is divided in three subclasses:
the class (B) of branch groups, the class (HJINF) of finite extensions of finite
powers of hereditary just infinite groups and the class (S) of finite extensions of
finite powers of simple groups. For example, the group SL(3,Z) belongs to the class
(JINF); all infinite finitely generated simple torsion groups constructed in [O1'79)
are (FA)-groups and belong to the class (S).

A precise definition of a branch group is given in Section 1. Roughly speak-
ing a branch group is a group which acts faithfully and level transitively on a
spherically homogeneous rooted tree, and for which the structure of the lattice of
subnormal subgroups mimics the structure of the tree. Branch groups may enjoy
unusual properties. Among them one can find finitely generated infinite torsion
groups, groups of intermediate growth, amenable but not elementary amenable
groups and other surprising objects. Profinite branch groups are also related to
Galois theory and other topics in Number Theory [Bos00].

In this article we discuss fixed point properties for actions of branch groups on
Gromov hyperbolic spaces, in particular on R-trees, and apply Bass-Serre theory
to branch groups. Recall (see [Ser80]) that a group G is an amalgam (resp. an HNN
extension) if it can be written as a free product with amalgamation G = A ¢ B,
with C' # A, B (resp. G = Ax;c4-1—c). We say that this amalgam (resp. HNN
extension) is strict if the index of C' in A is at least 3 and the index of C' in B is
at least 2 (resp. the indexes of C' and C’ in A are at least 2).

One of the corollaries of Theorem 3 is:

Theorem 1. Let G be a finitely generated branch group. Then G is not a strict
amalgam or HNN. Therefore a branch group cannot be an amalgam unless it sur-
jects onto Doy It has Serre’s property (FA) if and only if it is not indicable and
has no epimorphism onto D, .

We say that a group is (FL) if it has no epimorphism onto Z or D.. A f.g.
group is (FL) if and only if it fixes a point whenever it acts isometrically on a line.

All proper quotients of branch groups are virtually abelian [Gri00]. A quotient
of a branch group may be infinite: the full automorphism group of the binary rooted
tree is a branch group and its abelianization is the infinite cartesian product of
copies of a group of order two. It is more difficult to construct examples of finitely
generated branch groups with infinite quotients (especially in the restricted setting
of self-similar groups). The corresponding question was open since 1997 when the
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second author introduced the notion of a branch group. Perhaps the main difficulty
was psychological, as he (and some other researches working in the area) was sure
that all finitely generated branch groups are just infinite. Now we know that this is
not correct and the second part of the paper (Section 3) is devoted to a construction
of an example of an indicable finitely generated branch group (thus providing an
example of a finitely generated branch group without the property (FA)). This
example is the first example of a finitely generated branch group defined by a
finite automaton that is not just infinite. Another example is related to Hanoi
Towers group on 3 pegs H (introduced in [GS06] and independently in [Nek05]).
Hanoi Towers group H is a 3-generated branch group [GS07] that has a subgroup
of index 4 (the Apollonian group) which is also a branch group and is indicable
(this is announced in[GNS06]). The group H itself is not indicable (it has finite
abelianization), but it surjects onto D, as was recently observed by Zoran Sunié.
Thus H is the first example of a finitely generated branch group defined by a finite
automaton that surjects onto D .

The example of an indicable branch group presented in this paper is an
elaboration of the 3-generated torsion 2-group G = (a,b, ¢, d) firstly constructed
in [Gri80a] and later studied in [Gri89, GM93, Gri98a, Gri99] and other papers
(see also the Chapter VIII of the book [dIH00] and the article [CSMSO01].

Let L be the group generated by the automaton defined in Figure 1.

Theorem 2. The group L is a branch, contracting group that surjects onto Z.

Starting from this example, a construction of a branch group surjecting onto
D has been proposed by Dan Segal. Let L be an indicable branch group and
l: L — 7Z an epimorphism. It is easy to see that the semi-direct product H =
Z/27 x (L x L) is branch. Furthermore, its surjects onto Do, = Z/27Z X Z by
the unique morphism !” whose restriction to Z/27Z is the identity and such that
V(g.h) = U(g) — U(h):

An interesting question is to understand which virtually abelian group can be
realized as a quotient of a finitely generated branch group. This question is closely
related to the problem of characterization of finitely generated branch groups hav-
ing the Furstenberg-Tychonoff fixed ray property (FT) [Gri98b]) (existence of an
invariant ray for actions on a convex cone with compact base). The problem of
indicability of branch groups is also related to the recent work of D.W. Morris [Mo]
who studied the action of an amenable group by homemorphisms on the line.

Acknowledgments. The authors are thankful to Zoran Suni¢ and Laurent Barthol-
di for valuable discussions, comments, and suggestions.

1. Basic definitions and some notation

Let T be a tree, G be a group acting on 7' (without inversion of edges) and T¢
the the set of fixed vertices of T'.
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Definition 1. A group G has the property (FA) if for every simplicial tree T on
which G acts simplicially and without inversion, T¢ # ().

The class of (FA)-groups possesses the following properties.

(i) The class of (FA)-groups is closed under taking quotients.

(ii) Let G be a group with the property (FA). If G is a subgroup of an amal-
gamated free product G ¥4 G2 or an HNN extension G = G1*4, then G is
contained in a conjugate of G or Gs.

(iii) The class of (FA)-groups is closed under forming extensions.

(iv) If a subgroup of finite index in a group G has the property (FA), then the
group G itself has the property (FA).

(v) Every finitely generated torsion group has the property (FA).

The class of (FA)-groups has certain nice structural properties and is inter-
esting because of the strong embedding property given by (ii) and by the fact that
the eigenvalues of matrices in the image of a linear representation p : G — GLa(k)
are integral over Z for any field k (Prop. 22, [Ser80]).

The property (i), the existence of just infinite quotients for finitely generated
infinite groups and the trichotomy from [Gri00] mentioned in the introduction
make the problem of classification of finitely generated just infinite (FA)-groups
worthwhile. We are reduced to the classification of finitely generated (FA)-groups
in each of the classes (B), (HJINF) and (S). Below we solve this problem, in a
certain sense, for the class (B).

If a group G has a quotient isomorphic to Z, then it acts by translations on a
line and cannot be an (FA)-group. Similarly, if G surjects onto the infinite dihedral
group Do, then it acts on the line via the obvious action of D,. This suggests
the following definition (the first part being folklore):

Definition 2. a) A group is called indicable if it admits an epimorphism onto Z.
b) A group has property (FL) (fixed point on line) if every action of G by
isometry on a line fixes a point. If G is finitely generated this means that G

has no epimorphism onto Z or ID .

In this article we will often use two other notions: the notion of a hyperbolic
space and that of a branch group.

For the definition and the basic properties of Gromov hyperbolic spaces we
refer the reader to [CDP90]. The theory of CAT(0)-spaces is described in [BH99].
For the definition and the study of basic properties of branch groups we refer the
reader to [Gri00, BGS03].

Let us recall the main definition and a few important facts and notations
that will be often used later.

Definition 3. A group G is an algebraically branch group if there exists a sequence
of integers k = {k, }52, and two decreasing sequences of subgroups {R,,}2°, and
{Vn}52 of G such that

(1) k> 2, forallm >0, kg =1,
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(2) for all n,
Rn — V’rgl) X VTE2) NEEED ‘/'Tskokl---kn)7 (11)

where each Vn(j) is an isomorphic copy of V,,

(3) for all n, the product decomposition (1.1) of R,41 is a refinement of the
corresponding decomposition of R, in the sense that the j-th factor Vn(J ) of
Ry, j=1,...,koky ...k, contains the j-th block of k;,, ;1 consecutive factors

VG e sy

of Rn+1 )
(4) for all n, the groups R,, are normal in G and

n=0

(5) for all n, the conjugation action of G on R,, permutes transitively the factors
in (1.1),
and

(6) for all n, the index [G : R,] is finite.

A group G is a weakly algebraically branch group if there exists a sequence of
integers k = {k,}32, and two decreasing sequences of subgroups {R,}>2, and
{Vn}52 of G satisfying the conditions (1)—(5).

There is a geometric counterpart of this definition.

Let (7,0) be a spherically homogeneous rooted tree, where ) is the root and
G be a group acting on (7,0) by automorphisms preserving the root. Let v be
a vertex, and 7, be the subtree consisting of the vertices w such that v € [w, 0]
(geodesic segment joining w with the root). The rigid stabilizer ristg(v) of a vertex
v consists of elements acting trivially on 7'\ 7,. The rigid stabilizer of the n-th level,
denoted ristg(n), is the group generated by the rigid stabilizers of the vertices on
level n.

The action of G on 7 is called geometrically branch if it is faithfull, level
transitive, and if, for any n, the rigid stabilizer ristg(n) of n—th level of the tree
has finite index in G.

Observe that, in the level transitive case, the rigid stabilizers of the vertices of
the same level are conjugate in G. In this case ristg(n) is algebraically isomorphic
to the product of copies of the same group (namely the rigid stabilizer of any vertex
on the given level). Hence the rigid stabilizers of the levels and vertices play the
role of the subgroups R,, and V,, of the algebraic definition. A geometrically branch
group is therefore algebraically branch. The algebraic definition is slightly more
general than the geometric one but at the moment it is not completely clear how
big the difference between the two classes of groups is. Observe that in Section
2 we will assume that the considered groups are algebraically branch, while in
sections 3 and 4 we construct examples of geometrically branch groups.
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When constructing these examples, we will deal only with actions on a rooted
binary tree and our notation and the definition below are adapted exactly for this
case. Let G be a branch group acting on a binary rooted tree 7. The vertices of 7
are labeled by finite sequences of 0 and 1. Let 7y, 77 be the two subtrees consisting
of the vertices starting with 0 or 1, respectively.

Notation. If A, B,C C Aut(T) are three subgroups, we write A = B x C if A
contains the subgroup B x C of the product Aut(7y) x Aut(77) via the canonical
identification of Aut(7) with Aut(7;).

Recall that a level transitive group G acting on a regular rooted binary tree
is called regular branch over its normal subgroup H if H has finite index in G,
H = H x H and if moreover the last inclusion is of finite index.

A level transitive group G is called weakly regular branch over a subgroup H
if H is nontrivial and H = H x H.

Definition 4. A group G acting on the rooted binary tree (7,0) is called self-
replicating if, for every vertex u, the image of the stabilizer stg(u) of u in Aut(7,,)
(the automorphism group of the rooted tree 7p,) coincides with the group G after
the canonical identification of 7 with 7.

Obviously a self-replicating group is level transitive if and only if it is tran-
sitive on the first level (see also Lemma A in [Gri00]).

We will use the notations <R>g for the normal closure in G of a subset R C G,
¥ =y lay, [r,y] = a7y L2y, Given two subgroups, A, B in a group G, [A, B]
is the subgroup of G generated by the commutators [a, b] of elements in A and B,
and [A, B,]Y its normal closure. If G is a group, 72(G) denote the seond member
of its lower central series.

2. Fixed point properties of branch groups

Let X be a Gromov hyperbolic metric space, and 90X its Gromov’s boundary.
Recall (see [Gro87] or [CDP90] Chap. 9 for instance) that a subgroup G of the
group Isom(X) of isometries of X is called elliptic if it has a bounded orbit (or
equivalently if every orbit is bounded), parabolic if it has a unique fixed point
on 0X but is not elliptic, and loxodromic if it is not elliptic and if there exists a
pair w, w™ of points in X preserved by G. A group which is either elliptic, or
parabolic or loxodromic is called elementary; this terminology is inspired by the
theory of Kleinian groups. There are no constraints on the algebraic structure of
elementary groups due to the following remark.

Remark. Every f.g. group G can be realized as a parabolic group of isometries
of some proper geodesic hyperbolic space: if C' is the Cayley graph of G, C x R
admits a G-invariant hyperbolic metric ( [Gro87], 1.8.A, note that this construction
is equivariant). One can also construct a finitely generated group acting on a tree
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with a unique fixed point at infinity. For instance the lamplighter group (semi-
direct product of Z and Zs|t,t~!]) fixes a unique point in the boundary of the tree
of GLy(Zo[t™1,t]). In fact, the lamplighter group can be indentified with upper
triangular matrices with one eigenvalue equal to 1 the other being ¢". As all these
matrices have a common eigenspace, they fix one point in the boundary of the
tree of G Lz (the projective line on Za[t,t~1]]); but this group contains the Jordan
matrix and therefore cannot fix two points in the boundary of this tree.

In what follows, X denotes a complete Gromov hyperbolic geodesic space.
We will assume that either X is proper (closed balls are compact) or that X
is a complete R-tree, i.e., a complete 0-hyperbolic geodesic metric space. In the
first case, X U 0X is a compact set (in the natural topology) and an unbounded
sequence of points in X admits a subsequence which converges to a point in 0X.
Important examples of such spaces are Cayley graphs of hyperbolic groups (see
[Gro87] for instance). Other examples are universal covers of compact manifolds
of non positive curvature. Note that properness implies completness for a metric
space, but the converse is false. Recall also that a geodesic space is proper if and
only if it is complete and locally compact [Gro99]. The Gromov hyperbolicity of
a geodesic space can be defined in several ways (thineness of geodesic triangles,
properties of the Gromov product etc.) which are equivalent (see [CDP90] Chap. 1);
we will prefer the definition in terms of the Gromov product ( [CDP90] Chap. 1,
Def. 1.1).

For the rest of the statements in this section we will assume that the following
condition on the pair (X, G) holds:

(C) X is a complete geodesic space and X is either proper hyperbolic or is an
R-tree. G is a group and ¢ : G — Isom(X) is an isometric action of G on
X.

Note that such an action extends uniquely to a continuous action on X U 0X.

Theorem 3. Let G be a branch group acting isometrically on a hyperbolic space X .
Suppose the pair (X, G) satisfies the condition (C). Then:

a) The image of G in Isom(X) is elementary.

b) Suppose furthermore that G satisfies the property (FL), and X is a hyperbolic
graph with uniformly bounded valence of vertices. Then ¢(QG) is elliptic or
parabolic.

c) If X is CAT(0) and if the group o(G) is elliptic, then it has a fized point in
X.

d) If X is CAT(-1), or is an R-tree, then ¢(G) fizes a point in X or in 90X,
or preserves a line in X.

e) Let X be an R-tree. Suppose further that G is f.g.; then G cannot be parabolic.

Corollary 1. Let G be a f.g. branch group. G has fixzed point property for actions
on R-trees if and only if it has property (FL).
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Proof. A tree is CAT(—1), so if G acts on a tree and does not fix a point, it must
either preserve a line or a unique point on dX. The last possibility is excluded by
e). O

From d) we also deduce:

Corollary 2. If X is CAT(—1) and G acts on X UOX by isometries, then G fizes
a point or contains a subgroup of index 2 which fixes two points in 0X.

Recall (see [Ser80]) that a group G is an amalgam (resp. an HNN extension) if
it can be written as a free product with amalgamation G = Ax¢ B, with C # A, B
(resp. G = Axyci—1—c ). We say that this amalgam (resp. HNN extension) is strict
if the index of C in A is at least 3 and the index of C' in B is at least 2 (resp.
the indexes of C' and C’ in A are at least 2). If G splits as an amalgam or HNN
extension, then G acts on a simplicial tree T without edge inversion s.t. T/G has
one edge and 2 vertices in the case of an amalgam, and one edge and one vertex in
the case of an HNN extension. It is easy too see that if a group is a strict amalgam
or HNN extension its action on Serre’s tree is not elementary. If G = A x¢c B with
C of index 2 in A and B Serre’s tree is a line, and G permutes the two ends of
this line. If G = A*;cy-1—c» and C = C' = A, Serre’s tree is a line and G fixes
the two ends of this line. If G = Ax;c4—1—¢- is a strictly ascending HNN extension
(C" = A, but C # A), the group G contains a hyperbolic element (the letter t
for instance) and fixes exactly one end of the the tree. Therefore the property e)
implies the following;:

Corollary 3. Let G be a f.g. branch group. Then G is neither a strict amalgam nor
a strict HNN extension nor a strictly ascending HNN extension.

Before proving Theorem 3 let us state and prove some statements that have
independent interest and will be used later.

Recall that an isometry f of a hyperbolic space X is called elliptic (resp. par-
abolic, resp. hyperbolic) if the subgroup generated by f is elliptic (resp. parabolic,
resp. loxodromic). It can be proved (see [CDP90], chap. 9) that an isometry is
either elliptic, or parabolic or hyperbolic, and that if X is an R—tree an isometry
cannot be parabolic. An elliptic group cannot contain a hyperbolic or a parabolic
element, a loxodromic group cannot contain a parabolic element. In order to sim-
plify the notation, if ¢ : G — Isom(X) is an action of the group G, we denote by
gz the image of x under the isometry ¢(g).

Proposition 1. Let the pair (X, G) satisfy (C). Assume that each element of G is
either elliptic or parabolic. Then G is either elliptic or parabolic; if X is an R-tree,
and G is finitely generated, then G is elliptic.

The proof of this proposition is of dynamical nature and based on the follow-
ing
Lemma 1. ([CDP90], Chap. 9, Lemma 2). Let X be a §-hyperbolic space. Let g, h

be two elliptic or parabolic isometries of X. Suppose that min(d(gx, z),d(hz,x)) >
2(gx, hx), + 65. Then g~*h is hyperbolic.
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Recall that the Gromov product (z,y), is defined as 1/2(d(z, z) + d(y, z) —
d(z,y))

Proof of Proposition 1. Let us first consider the case where X is an R-tree, which
we denote by T', and G is finitely generated. Recall that projection of a point x
in a CAT(0) space onto a complete convex subset Y is the unique closest point
to z in Y (see [BH99], page 176). We claim that in an R-tree T, if g is some
elliptic isometry, and 7Y the subtree of fixed points of g, then for every z the
midpoint of the segment [z, gx] is the projection of z on TY: indeed let p be this
projection, so that the image of the segment [z, p] is [gz, p]; if the Gromov product
(x, gx)p = d is strictly positive, we can consider the point ¢ € [p, z] s.t. d(p, q) = d;
it is fixed by g as it belongs to [p, ] and it is the unique point on this segment with
d(g,p) = d, but g is closer than p to z, contradiction. Thus (z, gz), = 0, and as the
two segments [z, p] and [gz, p] = g[x, p] have the same length, p is the midpoint of
[z, g]. For every subset ¥ C G, let T be the fixed subset of . Let {g1,....g,} be
a finite generating subset of G, and let us prove by induction that 7{91:-97} is not
empty. For n = 1 this is the hypothesis. Suppose that T{91:9n—1} 0 Tlon} = g
The minimal distance between these two subtrees is achieved along a segment
[a,b], with @ € T1919n-1} p € T9n} Let zy be the midpoint of this segment:
zo ¢ T19n}, Therefore b € [z, gnxo] is the midpoint. As zq ¢ T1919n-1} e
have that zo ¢ T19} for some i. The intersection 719} N [a, 0] is a segment
[a, c]; the right extremity ¢ of this segment is the projection of zy on T19:} and
therefore ¢ € [xg, gixo] is the midpoint. Thus zy € [g;x0,gnZo] and, in other
words, (giTo, gnTo)z, = 0. Lemma 1 applies and proves that the isometry g;g, is
hyperbolic, a contradiction.

Suppose now that X is a proper geodesic hyperbolic space. Let G be as in
the statement, and xy € X be some base-point. If the orbit Gz is bounded, then
it is a bounded G invariant set, and G is elliptic. Assume that Gzg is not bounded.
We consider the set Gzg N 0X.

1) Assume that this set has only one point a. It must be G invariant. Let us
prove that G is parabolic. Suppose that G fixes another point b on the boundary.
Then it acts on the union Y of geodesic lines between a and b. Let L C Y be a
geodesic between a and b, so that every point in Y is at distance < 1004 of L.
Let mg € L; as Gxg N 0X = {a}, we can find two isometries g, h in G such that
d(xo, gxo) > 10000, d(x, hxg) > d(xg, gro)+ 10006 and the projections of gxg and
hxo on L are on the right of zg.

Considering these projections of gz and hxy on L, we see that d(zg, hzg) >
d(xo, gx0) + d(gzo, hzo) — 2006, thus (zo, hao)gz,) < 1006. By isometry, we get
(g7 w0, g7 thao)e, < 1006 < 1/2(min(d(zo, 9  20),d(x0, 9  hao)) — 35, and h
must be hyperbolic by Lemma 1.

2) Assume that GzoNOX has at least two points, a,b € GzoNOX . There exists
two sequences g, and h,, such that g,x9 — a, and h,zo — b. Then d(g,x0, z¢) —
oo as well as d(hno,x0), but (gnTo, hnZo)s, — {(a,b)s, and remains bounded
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(by the very definition of the Gromov boundary). Lemma 1 applies and we get a
contradiction. O

Corollary 4. Let (G, X) satisfy (C). If G has a subgroup of finite index which is
elliptic or parabolic, the G is also elliptic or parabolic.

Proof. No element of G can be hyperbolic, as any power of a hyperbolic element
is hyperbolic. O

Proposition 2. Let the pair (X, G) satisfy (C). If G is elliptic, then it has an orbit
of diameter < 1008. If, furthermore, X is CAT(0), then G has a fized point.

Proof. In a metric space, the radius of a bounded set Y is the infimum of r s.t.
there exists a z with Y C B(x,r). A center is a point ¢ s.t. Y C B(c,r’) for every
r’ > radius(Y"). The proof of Proposition 2 is a direct consequence of the following
generalization of Elie Cartan center’s theorem [BH99], 11.2.7. O

Proposition 3. In a proper geodesic 0-hyperbolic space, the diameter of the set of
the centers of a bounded set is < 1005. In a complete CAT(0) space, every bounded
set admits a unique center.

Proof. The second point is proved in [BH99], I1.2.7. Let us prove the first assertion.
Let a,b be two centers and suppose that d(a,b) > 1000. Let ¢ be a midpoint of
a,b. Let us prove that for every = in Y, d(y,c) < r — 109 and in such way get a
contradiction. By assumption d(a, z) and d(b, ) are less than r+4. By the 4 points
definition of §-hyperbolicity ([CDP90] Prop. 1.6) we know that d(z, c) + d(a,b) <
max(d(z,a) + d(b,c),d(x,b) + d(z,c)) — 25. As d(b, ¢) = d(a,c) = 1/2d(a,b) > 500
we get that d(z, c) < max(d(x,a),d(z,b)) — 486 < r — 486 and we are done. [

Proposition 4. Let the pair (X, G) satisfy (C). If the G-orbit of some point of 0X
is finite and has at least 3 elements, then G is elliptic.

Proof. If the orbit is finite and has at least 3 elements wy, ..., wy, let us construct
a bounded orbit of G in X. For every triple of different points w;,w;, wy in this
orbit, let us consider the set C;j; consisting of all points being at a distance less
than 244 from all geodesics between w;, w;, and wy. By hyperbolicity this set is
not empty and has diameter < 100§. This follows from [CDP90], Chap. 2, Prop.
2.2, p. 20. A finite union of bounded sets is bounded. Therefore, the union of the
sets Cjji is a bounded G invariant set. O

Proposition 5. Let X be a §—hyperbolic graph of bounded valence. If G C Isom(X)
s loxodromic, then there exists an epimorphism m : G — Z or m : G — Dy, such
that kerm s elliptic.

Proof. We will construct a combinatorial analogue of the Busemann cocycle (com-
pare [RS95]). As G is loxodromic, the action of G fixes two points w™ at infinity.
It contains a subgroup of index at most two GT which preserves these two points,
and contains some hyperbolic element h. Let U be the union of all geodesics be-
tween these two points at infinity, and choose a preferred oriented line L between
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this two points. If z € U, there exists a point in L such that d(z,p(z)) < 249
([CDP90], Chap. 2, Prop. 2.2, p. 20). Choose such a point and call it a projec-
tion of z. If z € U, let R(z) = {y € Uld(x,y) > 10000, and the projection of
y to L is on the right to that of x}. Note that our hypothesis implies that for
every pair z,y, {R(y)/R(z)} is contained in the ball centered at y and of radius
d(z,y) + 20006 and is therefore finite: by definition, a point of R(y) which is at
distance > d(z, y) 420006 from y must project on L on a point which is at the dis-
tance > 10006 of . Note also that if h is hyperbolic, R(h"x) is strictly contained in
R(x) if nis > 1. Let ¢(z,y) = Card{R(y)\ R(z)} — Card{R(z)\ R(z)}. Note that
c(y,z) + c(z,y) = 0, and that c(z,y) + c(y,2) = c(z, z). Moreover, if g is in GT,
then R(gz) = gR(x). Choose some point xg € U. The formula m(g) = ¢(zo, gzo)
defines a nontrivial morphism G — Z. The orbit of xy under the action of the
kernel of m is bounded, contained in B(xq,20006), and kerm is elliptic. If G/GT
is not trivial, and ¢ € G\ GT, then m — m(ege~!) = d(g) extends to a nontrivial
epimorphism G — D. O

Proof of Theorem 3. Let H; be the rigid stabilizer of the first level of G. It is a
product of n subgroups of G, Hy = L1 X ... X L, conjugate in G.

i) Suppose first that Ly contains no hyperbolic element.

Then L; has either (1) a bounded orbit or (2) a unique fixed point w at
infinity.

(1) In the first case, let C1 = {z|Vg € L1,d(gx,x) < 1000} (by Proposition 2
this set is nonempty). As Lo commutes with L; it preserves C;. Being conjugate
to L, every orbit of Ly is bounded. If g € Cy and D = diam(Laxg), we see
that the diameter of (L1 X Lao)xg is < D + 2 - 1000, hence Ly x Lo is elliptic, and
the set Cy = {x|Vg € L1 X Lo, d(gx,z) < 1004} is not empty (Proposition 2). By
induction we prove that Cy = {z|Vg € Ly x Ly X ... x Ly,d(gx,x) < 1000} is not
empty; thus G admits a subgroup of finite index which is elliptic, and G is itself
elliptic.

(2) In the second case, the unique fixed point w is stable under the action of
the subgroup Ls X ...Xx L,, and G has a subgroup of finite index which is parabolic,
thus G is parabolic itself.

ii) Suppose L; contains some hyperbolic element h. Let w™ be the two distinct
fixed points of h at infinity. As Lo X ... X L,, commutes with h this group fixes this
set. Now Lo contains a hyperbolic element ho, conjugated to h: thus ho has the
same fixed points at infinity as h, and H; must also fix the set {w,w™}. Thus the
orbit of w¥* is finite and Proposition 4 applies. The orbit of G cannot have more
than 2 elements unless G is elliptic: therefore it has exactly two elements, and G
is loxodromic.This proves a).

To prove b) apply Proposition 5. Proposition 2 and Proposition 3 (the unique
center for bounded sets) give rise to the desired fixed point for ¢). Claim d) follows
from the fact that between two points at infinity in a CAT(-1) space there exists
a unique geodesic (visibility property). For claim e), let w be an end of a tree
fixed by the group G. Let t — r(t) be a geodesic ray converging to w. Note that
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when the point z is fixed, the function t — d(x,r(t)) — ¢ is constant for ¢ >> 1.
The value of the constant by, (x) is called the Busemann function associated to w
(see [BH99], Chap. I1.8. for a study of Busemann functions in CAT(0) spaces).
If the point w is fixed by some isometry g, then g.r(t) is another ray converging
to w. But two rays converging to the same point in a tree must coincide outside
a compact set. Therefore d(gr(t),r(t)) = b(g) is constant for ¢ >> 1, and this
constant is by ., — by, By construction, g — b(g) is a homomorphism from G to R,
which is non-trivial unless every element of G is elliptic, and takes values in Z if X
is a combinatorial tree. Suppose that the restriction of b to L; is trivial. Then L,
consists of elliptic elements. Since G is finitely generated, L, is finitely generated
as well. Thus L is elliptic and i) applies. Otherwise, L contains a hyperbolic
element and ii) applies.

Theorem 3 is proved. O

3. An indicable branch group

Let G be a branch group acting on a rooted tree 7. It is proved in [Gri00] that, if
N <@ is a nontrivial normal subgroup, then the group N contains the commutator
subgroup of the rigid stabilizer ristg(n)’, for some level n. As ristg(n) is of finite
index in G, G/ristg(n) is finite, G/ristg(n)’ is virtually abelian and we have:

Proposition 6. A proper quotient G/N of a branch group is a virtually abelian
group.

We construct in this section an example of a finitely generated branch group
which surjects onto the infinite cyclic group. The construction starts from the
finitely generated torsion 2-group firstly defined in [Gri80b] and later studied
in [Gri84] and other papers (see also the Chapter VIII of the book [dIHO00]).

We will list briefly some properties of G that will be used later.

Let (7,0) be the rooted binary tree whose vertices are the finite sequences
of 0,1 with its natural tree structure (see [dIH00], VIII.A for details), the empty
sequence () being the root. If v is a vertex of 7 we denote by 7, the subtree
consisting of the sequences starting in v. In other words, the subtree 7, of 7
consists of vertices w that contain v as a prefix. Deleting the first |v| letters of
the sequences in 7, yields a bijection between 7, and 7, called the canonical
identification of these trees.

The group G (see [dIH00], VIIL.B.9 for details) acts faithfully on the binary
rooted tree (7,0) and is generated by four automorphisms a,b,c,d of the tree
where a is the rooted automorphism permuting the vertices of the first level, while
b, c,d are given by the recursive rules

b= (a,c),c=(a,d),d=(1,b).

This means that b does not act on the first level of the tree, it acts on the left
subtree 7y as a and acts on the right subtree 7; as ¢, with similarly meaning
of the relations for ¢ and d. Here we use the canonical identifications of 7 with



Homomorphic Images of Branch Groups 363

7;,i = 0,1. An alternative description of G is that it is the group generated by the
states of the automaton drawn on the figure 1.
The group G is 3-generated as we have the relations

== =d?>=bed=1

there are many other relations and G is not finitely presented [Gri84].

FIGURE 1. The automaton defining L

In order to study groups acting on the binary rooted tree 7, it is convenient
to use the embedding
Y Aut(T) — Aut(7T) 1 Se,

9+ (90, 91)x.

In this description S5 is a symmetric group of order 2, a € S describes the action
of g on the first level of the tree and the sections gg, g1 describe the action of g
on the of subtrees 7, 77. We will usually identify the element g and its image
(90, 91)c. Relations of this type will be often used below.

Let x be the automorphism of 7 defined by the recursive relation z = (1, x)a.
This automorphism is called the adding machine as it imitates the adding of a unit
in the ring of diadic integers [GNS00]. An important property of « is that it acts
transitively on each level of 7 and therefore has infinite order.

Let L = (z,G) be the subgroup of Aut(7T) generated by G and the adding
machine z.

Theorem 4. The group L is branch, amenable, and has infinite abelization.

The next two lemmas are the first steps towards the proof of the fact that L
is a branch group.

Lemma 2. The following formulas hold in the group L:
[,0] = (71, 2),
[r,d] = (x71bx,b)
[[$7 CL], d] = (17 [ZE, b])7
(17 [[xv b]v C]) = [[[$7 CL], d]v b]
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Proof. This follows by direct computation:
[,a] = 27 tara = a(1l, 27 Va(l,2)aa = (271, 1)(1,2) = (271, 2).
[z,d] = 27 dod = a(1,271)(1,b)(1,2)a(1,b) = (2~ bx,b)
[[$7a]7d] = [($_17$)7 (17 b)] = ([$_17 1]7 [ZE, b]) = (17 [$7b])
[[[CL‘, CL], d]? b] = [(17 [.’L‘, b])? (a, C)] = (1, [[CL’, b]? C]) U

Lemma 3. The group L is self-replicating, and hence level transitive.

Proof. Consider the elements b = (a,¢), ¢ = (a,d), d = (1,b), aba = (c,a),
za = (1,z). They stabilize the two vertices of the first level of 7, and their pro-
jections on Aut(77) ~ Aut(7T) are ¢, d, b, a, z, i.e., the generators of L. Note
that these elements generate L. Hence the projection of str(1) on Aut(7y) is L
modulo the canonical identification of 7 and 77. The conjugation by a permutes
the coordinates of elements in sty (1), hence the same holds for the first projection.
The self-replicating property (Definition 4) follows by induction on the level. The
level transitivity is an immediate consequence of the transitivity of L on the first
level and the self-replicating property. O

Let
K = ([a,b))%, S = [(x),G]",
R = (K,S,y2(L))* = KSv,(L).
These subgroups will play an important role in our further considerations.

Lemma 4. We have the following inclusions: y2(G) = v2(G) X %2(G), K = K X
K,and R> S x S.

Proof. The first two inclusions are known [Gri89, Gri00].
Using the commutator relations and the fact that conjugation by a permutes
the coordinates we have

(17 [07 x]) = [(a70)7 (17*%')] = [b7 xa] = [b7 a][b7x][[b7 CL'LCL] € R,
(17 [va]) = [(.’L'_l,.%'), (17b>] = [[;C,G,Ld] €ER,
by Lemma 2,
(1, [a, x]) = a[(a, c), (z,D)]a = ab, (z,1)]a = ab™ (7, 1)b(x, 1)a.
But z = (1,2)a and axza = (z,1)a which leads to
(1,]a,z]) = ab~ 'z tabaza = ab™'ablb, axa] = [a, b][b, axal.
Now we have
[b, axa] = alaba, x]a € S,
and [a,b] € K which gives (1, [a,z]) € R.
Finally
(17 [.’L’, d]) = (17 [x,bc]) = (17 [$7C] [$7b][[x7 b]? C]) = (17 [.’L‘, C])(l, [$7b])(17 [[x,ch])
and
(17 [[xv b]v C]) = [[[xv CL], d]vb] €ER
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by Lemma 2. Therefore the elements (1, [a, z]), (1, [b, z]), (1, [c, z]), (1, [d, z]) belong
to R and, as S = ([a, z], [b, ], [c, 2], [d, 2])*, the lemma is proved. O

Lemma 5. We have the inclusion: v2(L) = v2(L) X v2(L).

Proof. Consider the subgroup Q = (d, ¢, aca,za) C L. As d = (1,b), ¢ = (a,d),
aca = (d,a), za = (1,x), the group @ is a subdirect product in Dy X L where
Dy ~ (a,d) is a dihedral group of order 8. As v2(Dy4) = 1 we get

72(Q) = (1,72(L)),
VQ(QQQ) = (’YQ(L)v 1)7
and therefore
Y2(L) = v2(L) X yo(L). u
Lemma 6. The group L is a weakly regular branch group over R.

Proof. We know that K = K x K, v2(G) = 7(G) x 72(G), v2(L) = y2(L) X
v2(L) and R = S x S. But R is generated by S, v2(L) and K. This implies the
statement. O

In order to prove that L is a branch group, we consider its subgroup P =
(R, (z1)".

Lemma 7. The group P has finite index in L.

Proof. Every element g € L can be written as a product g = x'a’c*d'hfz*, where
helG,G), fesSie{0,1,2,3}, 4,k 1€0,1,t € Z. This implies that the index of
P in L is < 128. O

Let P, ~ P x ---x P C Aut(T) (2" factors) be the subgroup of Aut(7T)
that is the product of 2" groups isomorphic to P that act on the corresponding
2™ subtrees rooted at the vertices on the n-th level.

Lemma 8. The group L contains P, for every n.

Proof. For n = 0 the statement is obvious. For n = 1, let us consider (za)* =

(1,2%) which is an element of L. As L is self-replicating, for any given element
h € L there exists an element k in L s.t. k = (f,h). Conjugating (1,z%) by an
element of L of the form (f,h), we get that (1, (z*)") € L. But P is generated by
conjugates of z*. This together with Lemma 6 proves the inclusion 1 x P > L.
The inclusion P x 1 = L is obtained by conjugating L by a. Then we get that
PxP=P <L.

In order to prove the lemma for n = 2 we observe that

L3 [x,a = (za)* = (1,2%) = (1,1,2,2)2

(the index 2 indicates that we rewrite the considered while considering its action
on the second level; we will use such type of notations for further levels as well).
Multiplying (1,2?) (which is in L) by

(1, [z,a]) = (1,1, 271, 2)s,
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we get (1,1,1,2%)s € L. Therefore (1,1,1,2%)2 € L and hence P, < L (by level
transitivity and the self-replicating property of L we see that (z*,1,1,1), (1,2%,1,1)
and (1,1,z%, 1) also belong to L.

Let us prove the lemma by induction on n > 2. Suppose that, for every k < n,
the inclusion P < L holds and let us prove that P,,+; < L. Consider the element g

Lop=(1,....0,aY, 0 =(1,...,1,2% 2%),_1,

As L is self-replicating, there exists an element p € Stg(un—2), where u,_o is the
last vertex on the (n — 2)-th level, whose projection at this vertex is equal to b.
We have

L3 upl=1,...,1,[2%al,[z% c])n-1

=(1,...,1,[z,a],[z,d])n = (1,..., 1,27 2,27 bz, b) i1, (3.1)
As b2 =1 we get the relation
[Map]z = (17 RS 17(E—2,.’L'27 17 1)n+1
Now we have
L 9 ’r] = (17 9 171'47 l)n == (17 M) 1,:1:’27:1:27 17 1)n+17
2, 4 (3.2)
[M?p] n= (17"'7171; 7171)n+1
and we come to the conclusion that 1 x 1 x ... x 1 x P x 1 x 1 » L, hence
Px...xP»R,and P,41 < L, as L is level transitive. O
—_——

2n+1

We can now prove that L is a branch group. This group acts transitively on
each level of the rooted tree 7, and contains P, for every n =1,2... . In order to
prove that it is branch, as P, < risty(n), and L is level transitive, it is enough to
check that P, has finite index in L. We have the following diagram

L

1 o

str(n) —» H < L x...x L
1

ristr,(n) T T T
1 o

P, - P, = P x...x P

(the vertical arrows are inclusions, H and P, are ¢, images of str,(n) and P,
respectively, where 1, is the n-th iteration of ).

As the group P has finite index in L, we get that P, has finite index in H
and therefore P, has finite index in sty (n) and hence in L. This establishes the
first statement of Theorem 4.

The group L is the self-similar group generated by the states of the automaton
in Figure 1. The diagram of this automaton satisfies the condition of Proposition
3.9.9 of [Nek05]: it is therefore a bounded automaton in the sense of Sidki [Sid00].
This proposition states that an automaton is bounded if and only if its Moore
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diagram has the following property: every two nontrivial cycles are disjoint and
are not connected by a directed path; a cycle is called trivial if all of its states
represents the identity automorphism of the tree.

It is easy to see that automaton determining the group L satisfies this prop-
erty.

By a theorem of Bondarenko and Nekrashevych (Theorem 3.9.12 in [Nek05])
every group generated by the states of a bounded automaton is contracting. More-
over, by a theorem of Bartholdi, Kaimanovich, Nekrashevych and Virag [BKNV06]
such a group is amenable. This establishes the amenability of L, as well as its con-
tracting property.

In order to compute the abelianization of L, we need to combine the contract-
ing property of L with a rewriting process which corresponds to the embedding
1. The combination of this rewriting process and the contraction property will
produce an algorithm for solving the word problem in L: the branch algorithm.
This type of algorithm appeared in [Gri84] for the first time: it is a general fact
that the branch algorithm solves the word problem for contracting groups [Sav03].

The group

I'={(a,b,c,d,x:a*=0b*=c*=d* =bed = 1),

defined by generators and relations, naturally covers L. It is isomorphic to the free
product
Z2)27 % (Z)27 x Z.]2Z) * Z.

Therefore, the elements in I' are uniquely represented by words w = w(a, b, ¢, d, x)
in the reduced form (for this free product structure).
Similarly the group G is naturally covered by the group

(a,b,c,d:a®> =b*=c* =d* =bed = 1) ~ 7)27 % (Z)27 x 7/27).

The elements in G can be represented by reduced words (with respect to this free
product structure).

Let w be a word representing an element of I', w = uyz ugx™ . . . upx’* Uk+1,
where u; are reduced words in a, b, ¢, d, u; is nonempty for ¢ # 1, k+1, and i; # 0,
forj=1,... k.

Let us consider the following rewriting process:

1) In each word u; replace b,c,d by the corresponding element of the wreath
product L Sa, using the defining relations b = (a,c¢),¢ = (a,d) d = (1,b),
x = (1,x)a.

2) Move all the letters a to the right using the relations a(vg,v1) = (v1,vp)a. Use
the relation a2 = 1 for simplification of words, and take the componentwise
product of all involved pairs. One obtains in such a way a relation of the form
w = (wp, wy)a® with € € {0, 1}, which holds in L.

3) Reduce the words w; in T', obtaining a pair (wp,w;) of reduced words.

Note that the length of w;,7 = 0,1 is strictly shorter than of w if at least one
letter a appears in the word w.
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We can represent this rewriting process as a pair ¢ = (¢g, ¢1) (or a product
o X 1) of two rewritings w — wp and w — w;. We will apply these maps to words
with an even number of occurences of a, i.e., words representing the elements in
str,(1): in this case e = 0. We can therefore iterate this rewriting procedure ¢ n
times for words representing elements in stz (n), and get 2" words wj,,..;, with
i; € {0,1}. (For formal definition of g, ¢ in case of the group G see [Gri98al, for
L the formal description is similar.)

Proposition 7. The rewriting process is 3-step contracting with core N = {1, b, c,
d, z, 7%, b, cx, do, x71b, 27 e, 71d, a7 tbx, 7 ex, 7 1dx}. In other words:
for every word w representing an element in stabr,(3), ¢3(w) consists of 8 words
Wi ks By Jy k € {0,1} of strictly shorter length than w.

Proof. Let the word w = w1z wyz® ... wrpr™ w41 be as above and represents an
element in stabr,(3). As we already have noted, if the letter a occurs in some of
the w;, then rewriting process is strictly shortening in one step. In order to study
reduced words without the letter a, we will make use of the relations in Table 1.

Observe that w is a product of subwords in the form presented by the left
side in the relations in Table 1, followed by an element of the set

{1,b,¢,d, zbx, cx, dz, xb, xc,xd, z b,z e, d, bt ca™  da Tt

In all relations marked by A or B the rewriting process gives shortening in one
step (case A) or in two steps (case B); in the latter case note the presence of the
letter a, which insures reduction of length in one more step.

If the word w is not shortened after applying twice the rewriting procedure,
then either it belongs to N, or it is of the form *x~ ! x x...27! % x * t, with
* € {b, ¢, d}except for the the first or last * which may also represent the unit, and
te{z7 b, a2 e, d, b=t ca™t do 1}

Let 27 'bz = b, 2~ 'cx = &, 2~ dx = d. These elements are of order two, and
satisfy the relations b = (¢,a),é = (d,a),d = (b,1). Since these relations are of the
same form as the relations that hold for b, C' and d, the group G generated by
(aj), c, CZ> is isomorphic to G.

Let A < L be the subgroup generated by (b, ¢, d, b, é, ci} Note that A stabilizes
the first level of the tree. Consider the embedding ¢ : A — G x G obtained by
projecting the elements of A on the left and right subtrees (we use the same
notation v for the embedding as before).

Lemma 9. The group ¥(A) is a subdirect product of finite index in G x G.

Proof. We have ¢ = (d,a), ¢ = (a,d), d = (b,1), d = (1,b), bd = ¢ and bd = c.
Therefore the projection of ¢¥)(A) on each of two factors is onto.

Let B = (b)C and B = (b)C.

As d = (1,b) € ¥(A) and as for every g € G there exists some h s.t. (g, h) €
P(A), we see that (1,gbg~!) € 1(M). Therefore the group 1 x B is contained in
¥(A) and, by a symmetric argument, B x 1 is contained in 9)(A). Thus B x B <
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bzt = a(l,27 V) (a,c)a(l,27) = (27 e, axt)
Ja(l

ezt = a(l,271)(a,d)a
zex~! = (1,7)a(a,d)a

7 ler =a(l,27 Y (a,d
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TABLE 1. Some relations in L

P(A) < G x G. But the groups B and B have finite index in G and G, respectively,
and the lemma is proved. O

We now finish the proof of Proposition 7. Consider a reduced word u which
represents an element of L. Suppose that this element stabilizes the first level but
is not shortened after applying twice the rewriting process. The word u has to be
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of the form u = wb, where w represents an element of A and

te{e b, a7 e, a7 d, b eem daT )

Rewrite it as a word in the letters (b,¢,d, b, é, ). Use the relations b= (¢, a),
¢ =(d,a),d= (b1), b= (a,¢),c = (a,d) d = (1,b) to rewrite it as an element
(1210,’&11) of é x G.

Recall that, endowed with its natural system of generators, the group G is one
step contracting with core Ny = {1,b,¢,d} (and contracting coefficient 3 [Grig4]).
In other words,applying the rewriting procedure to reduce a word v in a,b,c,d
with an even number of occurrences of the letter a yields a couple a words of
length < 1/2|v| unless v € {1,b, ¢, d}. More precisely, if v — (vg,v1) is obtained
by rewriting in the group G, then |v;| < |v]/2 + 1.

By isomorphism the same property is true for a reduced word in the alphabet
a, 137 C, CZdetermining an element in G (and the core in this case is Ny = {1, 5, C, J})

Split the word w as a product of monads * and triads 2! * z. If there are at
least two monads or at least two triads we get after rewriting shortening at each
of coordinates. The remaining case is the case of a word of the form z~! * z* and
x2~1 % x for which one checks that reduction of length occurs in the second step.

This completes the proof of Proposition 7. O

From this proposition we get an algorithm to solve the word problem: the
branch algorithm for L. Let us describe it further.

Let w be a word in the letters a, b, ¢, d, . The problem is to check if w = 1 in
L. The notation w =y, w’ means that the two elements of L defined by the words
w and w’ are equal.

1) Reduce w in T'. If w is the empty word, then in L, w =, 1. If it is not the
empty word, compute the exponent exp, w (that is the sum of exponents of a in
w). Check if this number is even. If NO, then w Zy, 1. If YES go to 2).

2) Rewrite w as a pair (wp, w1 ) using the rewriting map ¢ = (o, ©1). Apply
1) successively to wp,w; and follow steps 1) and 2) alternatively. Either, at some
step one obtains a word with odd exp, or (after n steps) one obtains that all 2™
words represent the identity element in T (observe that the word problem in T is
solvable by using the normal form for elements).

Note that w =1, 1 & (wg = 1 and w; =1 1). Applying this procedure 3
times yields either the answer NO (the elemnt is not the identity) or a set of 8
words w;_; , with 4,7,k € {0,1} which - by Proposition 7- are strictly shorter than
w. This algorithm solves the word problem.

Lemma 10. Let w be a word in the generators. Let w =y, (wp,w1)a, @ = a or
a = 1 depending on the parity of the exponent exp, w, and the triple (wg,w1), o
is obtained from w by applying once the rewriting process described above. Then

exp, (w) = exp, (wo) + exp, (w1).
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Proof. The rewriting process uses the relations b = (a, ¢),c = (a,d),d = (1,b) and
r = (1,2)a, x=! = (271, 1)a which do not change the total exponent of z. The
reduction in group I' also doesn’t change the exponent. O

Lemma 11. The abelianization L/[L, L] is infinite. The image of x in L/[L, L] is
of infinite order.

Proof. Any element in the commutator group can be expressed as a product of
commutators [u, v]. Choosing the words in a, b, ¢, d, x representing u and v, we get
that any element in [L, L] can be written as a word w with exp, w = 0. Suppose
that for some n > 1, 2" € [L, L]. We get a word w = x"I[u;,v;] in the letters
a, b, c,d, x with total exponent n for x which represents the identity element in L.
Choose w of minimal length with this property. Applying the rewriting process
at most 3 times to w, we get a set of 8 words wjy;i, 1, j,k € 0,1 representing the
identity element in L with the sum of exponents of the symbol z different from
zero. Hence at least one of them has non zero exp,. The words w;;; are shorter
than w, a contradiction. O

The proof of Lemma 11 completes the proof of Theorem 4.

References

[BGSO?)] L. Bartholdi, R.I. Grigorchuk, and Z. Sunil&7 Branch groups, Handbook of alge-
bra, Vol. 3, North-Holland, Amsterdam, 2003, pp. 989-1112. MR MR2035113
(2005£:20046)

[BH99] M.R. Bridson and A. Haefliger, Metric spaces of non-positive curvature,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles
of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR
MR1744486 (2000k:53038)

[BKNVO06] L. Bartholdi, V. Kaimanovich, V. Nekrashevych, and B. Virag, Amenability
of automata groups, (preprint), 2006.

[Bos00] N. Boston, p-adic Galois representations and pro-p Galois groups, New hori-
zons in pro-p groups, Progr. Math., vol. 184, Birkh&duser Boston, Boston, MA,
2000, pp. 329-348. MR MR1765126 (2001h:11073)

[CDP90] M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des
groupes, Lecture Notes in Mathematics, vol. 1441, Springer-Verlag, Berlin,
1990. MR MR1075994 (92£:57003)

[CSMS01] T. Ceccherini-Silberstein, Antonio Machi, and Fabio Scarabotti, The Grig-
orchuk group of intermediate growth, Rend. Circ. Mat. Palermo (2) 50 (2001),
no. 1, 67-102. MR MR1825671 (2002a:20044)

[d1HOO] P. de la Harpe, Topics in geometric group theory, Chicago Lectures in Math-
ematics, The University of Chicago Press, 2000.

[dIHV89] P. de la Harpe and A. Valette, La propriété (T') de Kazhdan pour les groupes

localement compacts (avec un appendice de Marc Burger), Astérisque (1989),
no. 175, 158, With an appendix by M. Burger. MR MR1023471 (90m:22001)



372

[GMO3]

[GNS00]

[GNS06]
[Gri80a]
[Gri80b]

[Gri84]

[Gri89]

[Gri98a]

[Gri9s8b]

[Gri99]

[Gri00]

[Gro87]

[Gro99]

[GS06]

[GS07]

T. Delzant and R. Grigorchuk

R.I. Grigorchuk and A. Maki, On a group of intermediate growth that acts
on a line by homeomorphisms, Mat. Zametki 53 (1993), no. 2, 46-63. MR
MR1220809 (94c:20008)

R.I. Grigorchuk, V.V. Nekrashevich, and V.I. Sushchanskii, Automata, dy-
namical systems, and groups, Tr. Mat. Inst. Steklova 231 (2000), no. Din.
Sist., Avtom. i Beskon. Gruppy, 134-214. MR MR1841755 (2002m:37016)

R.I. Grigorchuk, V. Nekrashevych, and Z. Sunié¢, Hanoi towers groups, Ober-
wolfach Report 19 (2006), 11-14.

R.I. Grigorcuk, On Burnside’s problem on periodic groups, Funktsional. Anal.
i Prilozhen. 14 (1980), no. 1, 53-54. MR MR565099 (81m:20045)

, On Burnside’s problem on periodic groups, Funktsional. Anal. i
Prilozhen. 14 (1980), no. 1, 53-54. MR MR565099 (81m:20045)

R.I. Grigorchuk, Degrees of growth of finitely generated groups and the theory
of invariant means, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), no. 5, 939-985.
MR MR764305 (86h:20041)

, On the Hilbert-Poincaré series of graded algebras that are associ-
ated with groups, Mat. Sb. 180 (1989), no. 2, 207-225, 304. MR MR993455
(90§:20063)
, An example of a finitely presented amenable group that does not be-
long to the class EG, Mat. Sb. 189 (1998), no. 1, 79-100. MR MR1616436
(99b:20055)

, On Tychonoff groups, Geometry and cohomology in group theory
(Durham, 1994), London Math. Soc. Lecture Note Ser., vol. 252, Cambridge
Univ. Press, Cambridge, 1998, pp. 170-187. MR MR1709958 (2001g:20043)

, On the system of defining relations and the Schur multiplier of peri-
odic groups generated by finite automata, Groups St. Andrews 1997 in Bath,
I, London Math. Soc. Lecture Note Ser., vol. 260, Cambridge Univ. Press,
Cambridge, 1999, pp. 290-317. MR MR1676626 (2001g:20034)

, Just infinite branch groups, New horizons in pro-p groups, Progr.
Math., vol. 184, Birkh&duser Boston, Boston, MA, 2000, pp. 121-179. MR
MR1765119 (2002f:20044)

M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res.
Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75—263. MR MR919829
(89e:20070)

M. Gromov, Metric structures for Riemannian and non-Riemannian spaces,
Progress in Mathematics, vol. 152, Birkh&user Boston Inc., Boston, MA, 1999,
Based on the 1981 French original [ MR0682063 (85e:53051)], With appendices
by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean
Michael Bates. MR MR1699320 (2000d:53065)

R. Grigorchuk and Z. Sunil;, Asymptotic aspects of Schreier graphs and Hanoi
Towers groups, C. R. Math. Acad. Sci. Paris 342 (2006), no. 8, 545-550. MR,
MR2217913

, Self-similarity and branching in group theory, Groups St. Andrews
2005, I, London Math. Soc. Lecture Note Ser., vol. 339, Cambridge Univ.
Press, Cambridge, 2007, pp. 36-95.




[Mar91]

[RS95]

[Sav03]

[Ser80]
[Sid00]

[Tit77]

Homomorphic Images of Branch Groups 373

G.A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der
Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Re-
lated Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR MR1090825
(92h:22021)

D. Morris, Witte Amenable groups that act on the line. Algebr. Geom. Topol.
6 (2006), 2509-2518. MR MR2286034

V. Nekrashevych, Self-similar groups, Mathematical Surveys and Mono-
graphs, vol. 117, American Mathematical Society, Providence, RI, 2005. MR,
MR2162164 (2006e:20047)

A.Ju. Ol'sanskil, An infinite simple torsion-free Noetherian group, Izv. Akad.
Nauk SSSR Ser. Mat. (1979), no. 6, 1328-1393. MR MR567039 (81i:20033)
I. Pays and A. Valette, Sous-groupes libres dans les groupes d’automorphismes
d’arbres, Enseign. Math. (2) 37 (1991), no. 1-2, 151-174. MR MR1115748
(92£:20028)

E. Rips and Z. Sela, Canonical representatives and equations in hyperbolic
groups, Invent. Math. 120 (1995), no. 3, 489-512. MR MR1334482 (96¢:20053)
D.M. Savchuk, On word problem in contracting automorphism groups of rooted
trees, Visn. Kiiv. Univ. Ser. Fiz.-Mat. Nauki (2003), no. 1, 51-56. MR
MR2018505

J.-P. Serre, Trees, Springer-Verlag, Berlin, 1980. MR MR607504 (82¢:20083)
S. Sidki, Automorphisms of one-rooted trees: growth, circuit structure, and
acyclicity, J. Math. Sci. (New York) 100 (2000), no. 1, 1925-1943, Algebra,
12. MR MR1774362 (2002g:05100)

J. Tits, A “theorem of Lie-Kolchin” for trees, Contributions to algebra (collec-
tion of papers dedicated to Ellis Kolchin), Academic Press, New York, 1977,
pp. 377-388. MR MRO0578488 (58 #28205)

Thomas Delzant

Département de mathématiques
Université de Strasbourg

7 rue Descartes

F-67084 Strasbourg

e-mail: delzant@math.u-strasbg.fr

Rostislav Grigorchuk

Department of Mathematics

Texas A &M University

MS-3368, College Station, TX, 77843-3368

USA

e-mail: grigorch@math.tamu.edu



