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Abstract

We prove that a Kähler group which is cubulable, i.e. which acts properly discontinuously
and cocompactly on a CAT(0) cubical complex, has a finite index subgroup isomorphic to a
direct product of surface groups, possibly with a free Abelian factor. Similarly, we prove that a
closed aspherical Kähler manifold with a cubulable fundamental group has a finite cover which
is biholomorphic to a topologically trivial principal torus bundle over a product of Riemann
surfaces. Along the way, we prove a factorization result for essential actions of Kähler groups
on irreducible, locally finite CAT(0) cubical complexes, under the assumption that there is no
fixed point in the visual boundary.
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1 Introduction

The purpose of this text is to characterize fundamental groups of compact Kähler manifolds which
are cubulable, i.e. which act properly discontinuously and cocompactly on a CAT(0) cubical com-
plex. For a survey concerning fundamental groups of compact Kähler manifolds, referred to as
Kähler groups below, we refer the reader to [2, 13]. For basic definitions about cubical complexes,
we refer the reader to [8, I.7] or [50]. We only mention here that cubical complexes form a par-
ticular type of polyhedral complexes, and provide an important source of examples in geometric
group theory.

From now on we will only deal with finite dimensional cubical complexes. Such complexes have
a natural complete and geodesic metric. In the 80’s, Gromov gave a combinatorial criterion for
this metric to be CAT(0) [28, §4.2]. His work on hyperbolization procedures [28], as well as Davis’
work on reflection groups [18] drew attention to these complexes; see also [3, 19, 20]. Later, Sageev
established a link between actions of a group G on a CAT(0) cubical complex and the existence of
a multi-ended subgroup of G [49]. More recently, under the influence of Agol, Haglund and Wise,
CAT(0) cubical complexes received a lot of attention as the list of examples of cubulated groups
increased dramatically and thanks to their applications to 3-dimensional topology. We refer the
reader to [1, 5, 6, 32, 33, 54, 55] for some of these developments.

On the other hand, as we will see, actions of Kähler groups on CAT(0) cubical complexes are
very constrained. Even more, Kähler groups are in a sense orthogonal to groups acting on CAT(0)
cubical complexes. The first results in this direction go back to the work of the first author, together
with Gromov [23]. Note that most of the results of [23] are not formulated in terms of actions on
CAT(0) cubical complex but can be interpreted in terms of such actions thanks to the work of
Sageev [49]. In [23], the authors studied codimension one subgroups of hyperbolic Kähler groups.
More generally they studied filtered ends, or cuts of hyperbolic Kähler groups, see section 3.1 for the
definitions. Some of their results were later generalized by Napier and Ramachandran [46]. Stated
informally, the results of [23] show that under suitable hyperbolicity assumptions, the presence of
sufficiently many subgroups of a Kähler group Γ whose numbers of filtered ends are greater than
2 implies that a finite index subgroup Γ0 of Γ is a subdirect product of a certain number of surface
groups with a free Abelian group. All along this text, the expression surface group stands for
the fundamental group of a closed oriented hyperbolic surface. Recall that a subdirect product
of groups G1, . . . , Gm is a subgroup of G1 × · · · × Gm which surjects onto each factor. So, in the
previous statement, we mean that Γ0 is a subdirect product of G1, . . . , Gm where all the Gi’s are
surface groups, except possibly for one of them which could be free Abelian.

There is also a particular class of actions of Kähler groups on CAT(0) cubical complexes which
are easy to describe. These are the ones given by homomorphisms into right-angled Artin groups.
For homomorphisms from Kähler groups to right-angled Artin groups, it is easy to obtain a factor-
ization result through a subdirect product of surface groups, possibly with a free Abelian factor.
This relies on the facts that right-angled Artin groups embed into Coxeter groups and that Coxeter
groups act properly on the product of finitely many trees. This was observed by the second author
in [48].

These results left open the question of describing actions of Kähler groups on general CAT(0)
cubical complexes. We answer this question here assuming that the cubical complexes are locally
finite and that the actions have no fixed point in the visual boundary. We will briefly discuss
in section 5 the need for these two hypothesis. From this, one deduces easily a description of
cubulable Kähler groups.

The following statements involve various more or less standard notions about cubical complexes:
essential actions, irreducible complexes, visual boundaries... We recall all these definitions in
section 2.1.
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Theorem A Let M be a closed Kähler manifold whose fundamental group π1(M) acts on a finite
dimensional locally finite irreducible CAT(0) cubical complex X. Assume that:

• the action is essential,

• π1(M) has no fixed point in the visual boundary of X,

• π1(M) does not preserve a Euclidean flat in X.

Then there exists a finite cover M1 of M which fibers: there exists a holomorphic map with con-
nected fibers F : M1 → Σ to a hyperbolic Riemann surface such that the induced map F∗ : π1(M)→
π1(Σ) is surjective. Moreover the kernel of the homomorphism F∗ acts elliptically on X, i.e. its
fixed point set in X is nonempty.

Hence, up to restricting the action to a convex subset of X, the action factors through the
fundamental group of a hyperbolic Riemann surface. Indeed, as a convex subspace one can take
the fixed point set of the subgroup Ker(F∗); this is a subcomplex of the first cubic subdivision of
X.

From Theorem A, and using results due to Caprace and Sageev [15] and to Bridson, Howie,
Miller and Short [10], we deduce a characterization of cubulable Kähler groups. In the next three
statements, we implicitly assume that the cubical complexes are locally finite.

Theorem B Suppose that a Kähler group Γ acts properly discontinuously and cocompactly on a
CAT(0) cubical complex X. Let X = X1 × · · · × Xr be the decomposition of X into irreducible
factors. Assume moreover that the action of Γ on X is essential and that each Xi is unbounded.
Then Γ has a finite index subgroup Γ∗ which is isomorphic to a direct product

Γ∗ ' H1 × · · · ×Hk ×G1 × · · · ×Gm, (1)

where each Hj is isomorphic to Z, each Gj is a surface group, and k + m = r is the number
of irreducible factors of X. Moreover the isomorphism (1) can be chosen in such a way that for
each i, Xi contains a convex Γ∗-invariant subset Yi on which the action factors through one of the
projections Γ∗ → Gj or Γ∗ → Hj.

If a group G acts properly discontinuously and cocompactly on a CAT(0) cubical complex X,
one can always find a G-invariant subcomplex Y inside X, on which the action is essential and all
of whose irreducible factors are unbounded. This follows from Corollary 6.4 in [15]. This implies
the following corollary:

Corollary C Suppose that a Kähler group Γ acts properly discontinuously and cocompactly on a
CAT(0) cubical complex X. Then Γ has a finite index subgroup which is isomorphic to a direct
product of surface groups with a free Abelian group. The conclusion of Theorem B holds after
replacing X by a suitable invariant subcomplex.

In what follows, we will say that a closed manifold M is cubulable if it has the same homotopy
type as the quotient of a finite dimensional CAT(0) cubical complex by a properly discontinuous,
free, cocompact group action. Using an argument going back to Siu [53], and the fact that a
cubulable manifold is aspherical, we will finally prove the following theorem.

Theorem D If a Kähler manifold M is cubulable, it admits a finite cover which is biholomorphic
to a topologically trivial principal torus bundle over a product of Riemann surfaces. If M is
algebraic, it admits a finite cover which is biholomorphic to a direct product of an Abelian variety
with a product of Riemann surfaces.
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We mention that the factorization result in Theorem A does not rely on the use of harmonic
maps unlike most of the factorization results for actions of Kähler groups on symmetric spaces,
trees or more general buildings. Indeed, although there is a general theory of harmonic maps with
values into CAT(0) spaces [31, 39], the crucial step

harmonic⇒ pluriharmonic

namely the use of a Bochner formula to prove that a harmonic map from a Kähler manifold to a
certain nonpositively curved space is automatically pluriharmonic is not available when the target
space is a CAT(0) cubical complex. Thus, our proof follows a different scheme. The idea is to
produce fibrations of our Kähler manifold M over a Riemann surface, in such a way that the kernel
N �π1(M) of the homomorphism induced by the fibration preserves a certain hyperplane ĥ of the
cubical complex. Since N is normal it will have to preserve each hyperplane of the π1(M)-orbit of

ĥ. From this we will deduce that N actually acts elliptically on the CAT(0) cubical complex, i.e.
has a fixed point.

From the Kähler point of view, the new idea of this paper appears in Section 3.4. It can be
summarized as follows. Consider an infinite covering Y of a closed Kähler manifold. Given a proper
pluriharmonic function u on Y , one can look for conditions under which the foliation induced by
the holomorphic form du1,0 is actually a fibration. Our observation is that it is enough to find on Y
a second plurisubharmonic function which is not a function of u. This differs from other fibration
criterions in the study of Kähler groups as the second function we need is only required to be
plurisubharmonic. In the various Castelnuovo-de Franchis type criterions known so far, one needs
two pluriharmonic functions, or two holomorphic 1-forms, see [47] and the references mentioned in
the introduction there.

The text is organized as follows. In section 2, we recall basic facts on CAT(0) cubical complexes
as well as more advanced results due to Caprace and Sageev. Given a group G acting on a CAT(0)
cubical complex and satisfying suitable hypothesis, wee also explain how to construct a hyperplane
ĥ whose stabilizer H in G has the property that the Schreier graph of H\G is non-amenable.
In section 3, we explain how to construct some nontrivial plurisubharmonic functions on certain
covering spaces of a Kähler manifold whose fundamental group acts on a CAT(0) cubical complex.
The proof of Theorem A is concluded in Section 3.4. In section 4, we prove Theorem B and D.
Finally, section 5 contains a few comments about possible improvements of our results.

Acknowledgements. We would like to thank Pierre-Emmanuel Caprace, Yves de Cornulier
and Misha Sageev for many explanations about CAT(0) cubical complexes as well as Martin
Bridson for discussions motivating this work.

2 Groups acting on CAT(0) cubical complexes

In this section we recall some basic properties of CAT(0) cubical complexes and some advanced
results due to Caprace and Sageev [15]. For a more detailed introduction to these spaces, we refer
the reader to [8, I.7] and [50] for instance. From now on and until the end of the text, all CAT(0)
cubical complexes will be finite dimensional; we will not mention this hypothesis anymore. By
convention, we assume that all cubes of our cubical complexes are isometric to [−1, 1]n for some
n.
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2.1 Cubical complexes and hyperplanes

A cubical complex X can be naturally endowed with a distance as follows. If x and y are in X,
one considers chains

x0 = x, x1, . . . , xn = y

where each pair (xi, xi+1) is contained in a cube Ci of X and one defines

d(x, y) = inf

n−1∑
i=0

dCi
(xi, xi+1)

where the inf is taken over all possible chains. Here dCi
is the intrinsic distance of the cube;

the number dCi(xi, xi+1) does not depend on the choice of the cube containing xi and xi+1.
The function d is a distance which is complete and geodesic thanks to the finite dimensionality
hypothesis [8, I.7]. From now on, we will always assume that the cube complexes we consider
are CAT(0) spaces, when endowed with the previous metric. According to a classical theorem by
Gromov [28, §4.2], this is equivalent to the fact that the complex is simply connected and that the
link of each vertex is a flag complex. The visual boundary [8, II.8] of a CAT(0) cubical complex
X is denoted by ∂∞X.

We now recall the definition of hyperplanes, first introduced by Sageev [49]. We fix a CAT(0)
cubical complex X. Let 2 be the equivalence relation on edges of our complex, defined as follows.
One says that two edges e and f are equivalent, denoted e2f , if there exists a chain

e1 = e, . . . , en = f

such that for each i, ei and ei+1 are opposite edges of some 2-dimensional cube. If e is an edge we
will denote by [e] its equivalence class.

A midcube of a cube C, identified with [−1, 1]n, is the subset of C defined by setting one of the
coordinates equal to 0. One says that a midcube and an edge e of a cube C ' [−1, 1]n are transverse
if the midcube is defined by ti = 0 and the coordinate ti is the only nonconstant coordinate of
the egde e. Now the hyperplane associated to an equivalence class of edges [e] is the union of all

midcubes which are transverse to an edge of the class [e]. It is denoted by ĥ([e]). If we want to

denote a hyperplane without referring to the edge used to define it, we will denote it by ĥ. Finally
we will denote by N(ĥ) the union of the interiors of all cubes which intersect a hyperplane ĥ.

One can prove that hyperplanes enjoy the following properties [49]:

1. Each hyperplane intersects a cube in at most one midcube.

2. Each hyperplane ĥ separates X into two connected components, the closures of the two
connected components of X − ĥ are called the two half-spaces associated to ĥ.

3. Every hyperplane as well as every halfspace is a convex subset of X for the distance d.

4. For every hyperplane ĥ, the set N(ĥ) is convex and naturally isometric to ĥ × (−1, 1). If

t ∈ (−1, 1), the subset of N(ĥ) corresponding to ĥ × {t} under this isometry is called a

translated hyperplane of ĥ.

5. If a geodesic segment intersects a hyperplane in two points, it is entirely contained in it.

The group Aut(X) of automorphisms of a CAT(0) cubical complex X is the group of all per-
mutations X → X which send isometrically a cube of X to another cube of X. An automorphism
of X is automatically an isometry of the distance d introduced earlier. In what follows, every
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time we will say that a group G acts on a CAT(0) cubical complex, we will mean that we have a

homomorphism from the group G to the group Aut(X) of automorphisms of X. In this case, if ĥ
is a hyperplane, we will denote by

StabG(ĥ)

the subgroup of G of elements which globally preserve ĥ and which also preserve each component
of the complement of ĥ.

Following [15], we say that an action of a group G on a CAT(0) cubical complex X is essential
if no G-orbit is contained in a bounded neighborhood of a halfspace. This implies in particular
that G has no fixed point in X. We will also use the following convention. If h is a halfspace
of X, we will denote by ĥ the associated hyperplane (the boundary of h) and by h∗ the opposite
halfspace, i.e. the closure of X \ h.

Finally, we mention that there is a natural notion of irreducibility for a CAT(0) cubical complex,
see [15, §2.5]. Any finite dimensional CAT(0) cube complex X has a canonical decomposition as a
product of finitely many irreducible CAT(0) cubical complexes. Moreover every automorphism of
X preserves this decomposition, up to a permutation of possibly isomorphic factors. We refer the
reader to [15, §2.5] for a proof of these facts. We will use this decomposition to deduce Theorem B
from Theorem A.

2.2 Existence of strongly separated hyperplanes

The following definition is due to Behrstock and Charney [4] and is a key notion to study rank 1
phenomena for group actions on CAT(0) cubical complexes.

Definition 1 Two hyperplanes ĥ1 and ĥ2 in a CAT(0) cubical complex are strongly separated if

they are disjoint and if there is no hyperplane meeting both ĥ1 and ĥ2.

If X is a CAT(0) cubical complex and Y is a closed convex subset of X, we will denote by
πY : X → Y the projection onto Y [8, II.2]. The following proposition is also taken from [4].

Proposition 1 If the hyperplanes ĥ1 and ĥ2 are strongly separated, there exists a unique pair of
point (p1, p2) ∈ ĥ1× ĥ2 such that d(p1, p2) = d(ĥ1, ĥ2). The projection of any point of ĥ2 (resp. ĥ1)

onto ĥ1 (resp. ĥ2) is p1 (resp. p2).

Proof. The first claim is Lemma 2.2 in [4]. The proof given there also shows that if ĥ is a hyperplane

distinct from ĥ1 and ĥ2, no translated hyperplane of ĥ can intersect both ĥ1 and ĥ2. We now prove
the last assertion of the proposition. It is enough to prove that the projection on ĥ1 of each point
of ĥ2 is the middle of an edge of the cubical complex. Since ĥ1 is connected, this implies that all
points of ĥ1 have the same projection, which must necessarily be the point p1. Let x ∈ ĥ2. If the
projection q of x onto ĥ1 is not the middle of an edge, than there exists a cube C of dimension at
least 3 which contains q as well as the germ at q of the geodesic from q to x. One can identify C
with [−1, 1]n in such a way that

q = (0, s, s3, . . . , sn)

with |s| < 1. Since the germ of geodesic going from q to x is orthogonal to ĥ1, it must be contained
in [−1, 1] × {s} × [−1, 1]n−2. We call m̂ the hyperplane associated to any edge of C parallel to
{0} × [−1, 1] × {0}n−2. Hence the germ of [q, x] at q is contained in a translated hyperplane of
m̂. This implies that [q, x] is entirely contained in this translated hyperplane. This contradicts the

fact that no translated hyperplane can intersect both ĥ1 and ĥ2. 2
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Note that the second point of the proposition can be stated in the following slightly stronger way.
If h1 is the half-space defined by ĥ1 and which does not contain ĥ2, then the projection of any point
of h1 onto ĥ2 is equal to p2. Indeed if q ∈ h1 and if γ is the geodesic from q to πĥ2

(q), there must

exist a point q′ on γ which belongs to ĥ1. Hence πĥ2
(q) = πĥ2

(q′) = p2. This proves the claim.

The following theorem is due to Caprace and Sageev [15, §1.2]. It gives sufficient conditions for
the existence of strongly separated hyperplanes in a CAT(0) cubical complex X.

Theorem 2 Assume that the CAT(0) cubical complex is irreducible and that the group Aut(X)
acts essentially on X and without fixed point in the visual boundary. Then X contains two strongly
separated hyperplanes.

In the end of this section, we consider a CAT(0) cubical complex X, two strongly separated

hyperplanes ĥ and k̂ in X, and a group G acting on X. We prove a few lemmas which will be used
in the next sections. We denote by k the halfspace delimited by k̂ which does not contain ĥ.

Lemma 3 Let p be the projection of k̂ (or k) on ĥ. Let h be an element of StabG(ĥ). If h(k)∩ k is
nonempty, then h fixes p.

Proof. This is an easy consequence of Proposition 1. Let πĥ : X → ĥ be the projection. We have

seen that πĥ(k) = p. Since h ∈ StabG(ĥ), the map πĥ is h-equivariant. Let x ∈ k be such that

h(x) ∈ k. We have:
πĥ(h(x)) = p

since h(x) ∈ k. But we also have πĥ(h(x)) = h(πĥ(x)) = h(p) since x ∈ h. Hence h(p) = p. 2

We now define
Σ = {h ∈ StabG(ĥ), h(k) ∩ k 6= ∅}

and let A be the subgroup of StabG(ĥ) generated by Σ. According to the previous lemma, every
element of A fixes p. Let

U =
⋃
a∈A

a(k)

be the union of all the translates by A of the halfpsace k.

Lemma 4 Let h be an element of StabG(ĥ). If h(U)∩U is nonempty, then h ∈ A and h(U) = U .

Proof. Let h be such that h(U) ∩ U is nonempty. Then there exist a1 and a2 in A such that
ha1(k) ∩ a2(k) 6= ∅. This implies that a−1

2 ha1 is in Σ, hence in A. In particular h is in A. 2

If the space X is proper, there are only finitely many hyperplanes passing through a given ball
of X. Since the group A fixes the point p, in this case we get that the family of hyperplanes(

a(k̂)
)
a∈A

is actually a finite family. This implies that the family of halfspaces (a(k))a∈A is also finite. Note
that the same conclusion holds if we assume that the action of G has finite stabilizers instead of
assuming the properness of X. Indeed, the whole group A is finite in that case. We record this
observation in the following:

Proposition 5 If X is locally finite or if the G-action on X has finite stabilizers, then there exists
a finite set A1 ⊂ A such that for all a ∈ A, there exists a1 ∈ A1 such that a1(k) = a(k).

We will make an important use of this Proposition in section 3.3. Although we will only use it
under the hypothesis that X is locally finite, we decided to remember the fact that the conclusion
still holds for actions with finite stabilizers as this might be useful to study proper actions of Kähler
groups on non-locally compact CAT(0) cubical complexes.
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2.3 Non-amenability of certain Schreier graphs

In this section we consider an irreducible CAT(0) cubical complex and a finitely generated group G
which acts essentially on X, does not preserve any Euclidean subspace of X, and has no fixed point
in ∂∞X. A consequence of the work of Caprace and Sageev [15] is that under these hypothesis,
the group G contains a nonabelian free group. We will need the following slight modification of
this important fact; see also [38] for a similar statement.

To state the next theorem, we need the following definition. Following Caprace and Sageev [15],
we say that three halfspaces a, b, c form a facing triple of halfspaces if they are pariwise disjoint.

Theorem 6 Let X be an irreducible CAT(0) cubical complex. Assume that G is a finitely generated
group of automorphisms of X which satisfies the following three conditions: G does not fix any point
in the visual boundary of X, does not preserve any Euclidean subspace of X and acts essentially.

Then X contains a facing triple of halfspaces k, h, l such that the three hyperplanes k̂, ĥ, l̂ are
strongly separated and such that there exists a non-Abelian free group F < G with the property that
F ∩ gStabG(ĥ)g−1 = {1} for all g ∈ G.

Besides the facts about CAT(0) cubical complexes already recalled in the previous sections,
we will further use the following three results from [15], which apply under the hypothesis of the
previous theorem.

1. The space X contains a facing triple of halfspaces, see Theorem E in [15].

2. We will use the flipping lemma from [15, §1.2]: for any halfspace h, there exists g ∈ G such
that h∗ ( g(h).

3. Finally we will also use the double skewer lemma from [15, §1.2]: for any two halfspaces k ⊂ h,
there exists g ∈ G such that g(h) ( k ⊂ h.

We now turn to the proof of the theorem.

Proof of Theorem 6. By 1 above, one can choose a facing triple of halfspaces

h, h1, h2

in X. By the flipping lemma, there exists an element k ∈ G such that k(h∗) ( h. We now define
h3 = k(h1) and h4 = k(h2). By construction, h1, h2, h3, h4 is a facing quadruple of halfspaces. We
will need to assume moreover that these four halfspaces are strongly separated. This can be done
thanks to the following lemma.

Lemma 7 There exists half-spaces h′j ⊂ hj (1 ≤ j ≤ 4) such that the h′js are strongly separated.

Proof of Lemma 7. According to Theorem 2, we can find two halfspaces a1 ⊂ a2 such that the
corresponding hyperplanes âi are strongly separated. We claim the following:

Up to replacing the pair (a1, a2) by the pair (a∗2, a
∗
1), there exists i ∈ {1, 2, 3, 4} and x ∈ G such

that x(a1) ⊂ x(a2) ⊂ h∗i .

Let us prove this claim. First we prove that one of the four halfspaces a1, a2, a∗1, a∗2 is contained
in h∗j for some j. If this is false, each of these four halfspaces intersects the interior of each of the
hj . In particular ak and a∗k intersect the interior of hj . Since hj is convex, âk intersects it also.
Considering two indices j 6= j′ and a geodesic from a point in âk ∩ hj to a point in âk ∩ hj′ , one
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sees that âk intersects each of the hyperplanes ĥj . Since this is true for k = 1, 2, this contradicts
the fact that the hyperplanes â1 and â2 are strongly separated. This concludes the proof that one
of the four halfspaces a1, a2, a∗1, a∗2 is contained in h∗j for some j. If a2 or a∗1 is contained in one
of the h∗j , this proves the claim (with x = 1). Otherwise we assume that a1 ⊂ h∗j (the last case
a∗2 ⊂ h∗j being similar). In this case the double skewer lemma applied to a1 ⊂ a2 implies that there
exists x ∈ G such that:

x(a1) ⊂ x(a2) ⊂ a1 ⊂ h∗j .

This proves our claim. We now write b1 := x(a1), b2 := x(a2).

Since h1 ⊂ h∗2, the double skewer lemma implies that there exists g ∈ G such that g(h∗2) ( h1.
Similarly there exists h ∈ G such that h3 ) h(h∗4). Applying one of the four elements g, g−1, h, h−1

to b1 and b2, we obtain two halfspaces which are contained in one of the hj . For instance if i = 2
in the claim above, one has g(b1) ⊂ g(b2) ⊂ h1. In what follows we continue to assume that we
are in this case, the other ones being similar. Since h1 ⊂ h∗4 and since h(h∗4) ⊂ h3, one has

hg(b1) ⊂ hg(b2) ⊂ h3.

Finally by a similar argument we have:

g−1hg(b1) ⊂ g−1hg(b2) ⊂ h2 and h−1g(b1) ⊂ h−1g(b2) ⊂ h4.

We now define h′1 = g(b1), h′2 = g−1hg(b1), h′3 = hg(b1) and h′4 = h−1g(b1). We check that the
h′js are strongly separated halfspaces. It is clear that they are pairwise disjoint. We check that

the corresponding hyperplanes are strongly separated. We do this for the pair {ĥ′1, ĥ′2}, the other

cases being similar. If a hyperplane û intersects both ĥ′1 and ĥ′2, it will have to intersect also g(b̂2).
This contradicts the fact that the pair

g(b̂1), g(b̂2)

is strongly separated. Hence ĥ′1 and ĥ′2 are strongly separated. 2

We now continue our proof using the facing quadruple of strongly separated hyperplanes con-
structed in the previous lemma. So, up to replacing hj by h′j , we assume that

(hj)1≤j≤4

is a facing quadruple of strongly separated halfspaces which moreover do not intersect ĥ.

Exactly as in the proof of the previous lemma, the double skewer lemma implies that there
exists g ∈ G such that g(h∗2) ( h1 and h ∈ G such that h3 ) h(h∗4). Define U = h1 ∪ h2 and
V = h3 ∪ h4. We now see that we have a Schottky pair: since g(V ) ⊂ h1 ⊂ h∗2, for any positive
integer n, we have gn(V ) ⊂ h1 ⊂ U . Also, since g−1(V ) ⊂ h2 ⊂ h∗1 we have g−n(V ) ⊂ h2 ⊂ U for
any positive integer n. Similarly hn(U) ⊂ V for any non zero integer n. The ping-pong lemma
implies that g and h generate a free subgroup of G. Note that this argument is borrowed from the
proof of Theorem F in [15].

Now we observe that ĥ ⊂ U c ∩V c. If we apply one of the four elements {g, g−1, h, h−1} to ĥ we
obtain a subset of U or a subset of V . This implies that for any nontrivial element γ of 〈g, h〉 we

have γ(ĥ) ⊂ U or γ(ĥ) ⊂ V . In particular γ(ĥ) ∩ ĥ = ∅, and the intersection of the groups 〈g, h〉
and StabG(ĥ) is trivial.

We need to prove something slightly stronger. Namely we are looking for a free subgroup of G
which intersects trivially every conjugate of StabG(ĥ). So we first make the following observation.
Let x be an element of 〈g, h〉 which is not conjugate to a power of g or of h. We will prove that

x does not belong to any conjugate of StabG(ĥ). Up to changing x into x−1 and up to conjugacy,
we can assume that this element has the form:

x = ga1hb1 · · · garhbr
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with ai, bi nonzero integers and r ≥ 1. This implies that any positive power xm of x satisfies
xm(U) ⊂ U . Better, since x(U) ⊂ ga1(V ) it follows from the properties of g and of the hi’s that
the distance of x(U) to the boundary of U is bounded below by some positive number δ. This
implies that

d(xm(U), ∂U) ≥ mδ. (2)

Similarly one proves that
d(x−m(V ), ∂V ) ≥ mδ′ (3)

for any m ≥ 1 and for some positive number δ′. Suppose now by contradiction that x stabilizes a
hyperplane û. Assume that û does not intersect U . For p ∈ û we have

d(p, U) = d(xm(p), xm(U))

for any integer m ≥ 1. But since xm(p) is never in U the quantity d(xm(p), xm(U)) is greater or
equal to the distance from xm(U) to ∂U . Hence we obtain, using Equation (2):

d(p, U) ≥ mδ

which is a contradiction since the left hand side does not depend on m. This proves that û must
intersect U . In a similar way, using Equation (3), one proves that û must intersect V . But this
contradicts the fact that the halfspaces (hj)1≤j≤4 are pairwise strongly separated. Hence x does

not preserve any hyperplane. In particular x is not contained in any G-conjugate of StabG(ĥ).

Now one can consider a normal subgroup N of the free group 〈g, h〉 which does not contain any
nontrivial power of g or h (for instance its derived subgroup). Any finitely generated subgroup

F < N has the property that it intersects trivially every G-conjugate of StabG(ĥ). This proves our
claim.

We finally construct two halfspaces k and l as in the statement of the Theorem. We simply have
to repeat the arguments used in the proof of Lemma 7. Exactly as in the proof of that lemma,
one can find two halfspaces b1 ⊂ b2 which are contained in h∗j for some j and such that b̂1 and

b̂2 are strongly separated. We assume that j = 2 to simplify. We continue as in the proof of the
lemma. Applying the element g to b1 and b2, we obtain two halfspaces which are contained in h1:
g(b1) ⊂ g(b2) ⊂ h1. Since h1 ⊂ h∗4 and since h(h∗4) ⊂ h3, one has

hg(a1) ⊂ hg(a2) ⊂ h3.

Finally by a similar argument we have:

g−1hg(b1) ⊂ g−1hg(b2) ⊂ h2.

We now define k = g(b1) and l = g−1hg(b1). One now checks that ĥ, l̂, k̂ are strongly separated
exactly as in the end of the proof of Lemma 7. 2

In what follows, we will use the following definition.

Definition 2 Let G be a finitely generated group acting on a CAT(0) cubical complex X. We

say that a hyperplane ĥ of X is stable for G if the Schreier graph StabG(ĥ)\G is nonamenable,
i.e. satisfies a linear isoperimetric inequality. We say that a halfspace h is stable for G if the
corresponding hyperplane ĥ is stable for G.

Note that to define the Schreier graph of StabG(ĥ)\G, one needs to pick a finite generating set
for G, but the (non)amenability of this graph is independent of this choice. We refer the reader
to [36] for the discussion of various equivalent notions of amenability for Schreier graphs. Here we
will only need the following:
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Lemma 8 Let G be a group, H < G a subgroup, and F < G a finitely generated free group
such that F ∩ gHg−1 = {1} for all g ∈ G. Then any Schreier graph of H\G satisfies a linear
isoperimetric inequality i.e. is nonamenable.

Proof. It is well-known that the Schreier graph of H\G satisfies a linear isoperimetric inequality
if and only if the G-action on `2(G/H) does not have almost invariant vectors. So we will prove
this last fact. For this it is enough to prove that the F -action on `2(G/H) does not have almost
invariant vectors. But the hypothesis on F implies that F acts freely on G/H. Hence, as an
F -representation, `2(G/H) is isomorphic to a direct sum of copies of the regular representation of
F on `2(F ). This proves the claim. 2

We will need to record the following corollary of the previous theorem.

Corollary 1 Under the hypothesis of Theorem 6, we have:

• Any halfspace which is part of a facing triple of halfspaces is stable.

• For any halfspace h which is part of a facing triple of halfspaces, and any finite index subgroup
G2 of G, there exists γ ∈ G2 such that h and γ(h) are strongly separated.

Proof. This is contained in the proof of the previous theorem. Indeed for the first point of the
corollary, we observe that we started the proof of the previous theorem with any facing triple
of halfspaces and proved that a given halfspace among the three is stable, as a consequence of
Lemma 8.

For the second point, we consider the triple h, l, k constructed in the previous theorem. We have
l ⊂ h∗. Applying the double skewer lemma to this last pair, we find x ∈ G such that x(h∗) ( l.
This implies xn(h∗) ⊂ l for all n ≥ 1. We pick n0 ≥ 1 such that xn0 ∈ G2. In particular the

hyperplane xn0(ĥ) is contained in l. Any hyperplane meeting both xn0(ĥ) and ĥ would have to

meet l̂, which is impossible since ĥ and l̂ are strongly separated. Hence xn0(ĥ) and ĥ are strongly
separated. 2

We will also use the following classical fact.

Lemma 9 Let M be a closed Riemannian manifold with fundamental group G. Let H < G be a
subgroup and let M1 → M be the covering space associated to H. Then the Schreier graph H\G
satisfies a linear isoperimetric inequality if and only if M1 satisfies a linear isoperimetric inequality.

A proof can be found in [30, Ch. 6]. Note that the proof in [30] is given only is the case when H
is trivial, but the arguments apply in general. Combining Theorem 6, Corollary 1, and Lemma 9,
we obtain:

Proposition 10 Let M be a closed Riemannian manifold with fundamental group G. Suppose that
G acts on a CAT(0) cubical complex X, satisfying the hypothesis of Theorem 6. Let h be a halfspace

of X which is part of a facing triple of halfspaces and let ĥ be the corresponding hyperplane. Let
Mĥ be the covering space of M corresponding to the subgroup

StabG(ĥ) < G.

Then, Mĥ satisfies a linear isoperimetric inequality.
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3 Fibering Kähler groups acting on CAT(0) cubical com-
plexes

In this section we first give a criterion to produce fibrations of certain open Kähler manifolds over
Riemann surfaces (Proposition 11). Although this criterion is well-known to experts, we explain
how to deduce its proof from known results about filtered ends of Kähler manifolds. This serves
as a pretext to survey this notion and its applications in the study of Kähler groups. Later, in
sections 3.2 and 3.3, we explain how to construct pluriharmonic or plurisubharmonic functions on
certain covering spaces of a compact Kähler manifold, starting from an action of its fundamental
group on a CAT(0) cubical complex. We finally prove Theorem A in section 3.4.

3.1 Filtered ends

The aim of this subsection is to recall the proof of the following classical proposition.

Proposition 11 let M be a closed Kähler manifold. Let M1 →M be a covering space of M and
let π : M̃ →M1 be the universal cover. We assume that there exists a proper, pluriharmonic map
e : M1 → I where I is an open interval of R. Let ẽ := e◦π be the lift of e to the universal cover M̃ .
If some level set of ẽ is not connected, then there exists a proper holomorphic map with connected
fibers

M1 → Σ

where Σ is a Riemann surface. This applies in particular if some levet set of e is not connected.

Before turning to the proof of the proposition, we recall briefly various notions of ends in
topology and group theory.

Let Y be a noncompact manifold. Recall that the number of ends of Y , denoted by e(Y ), is the
supremum of the number of unbounded connected components of Y −K where K runs over the
relatively compact open sets of Y with smooth boundary. Now if M is a closed manifold, M1 →M
a covering space, and π : M̃ → M1 the universal covering space, one can look at the number of
ends of various spaces, each of which also admits a purely group theoretical description.

• There is the number of ends of M̃ ; this is also the number of ends of the fundamental group
of M .

• There is the number of ends of the space M1, which is an invariant of the pair π1(M1) <
π1(M) [34, 51]. When this number is greater than 1, one says that π1(M1) has codimension
1 in π1(M) or that it is multi-ended.

• There is also a third, less known notion, of filtered ends, which can be associated to a
continuous map between two manifolds. Here we will only consider the case where this map
is the universal covering map. This leads to the following definition.

Definition 3 Let M1 be an open manifold and let π : M̃ →M1 be its universal covering space. A
filtered end of M1 (or of π : M̃ →M1) is an element of the set

lim
←
π0(M̃ − π−1(K))

where K runs over the relatively compact open sets of M1 with smooth boundary. The number of
filtered ends of M1 is denoted by ẽ(M1).
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As for the previous notions, one can show that in the case where M1 covers a compact manifold
M , this number only depends on the pair π1(M1) < π1(M). Also, one always has ẽ(M1) ≥ e(M1).

The interest in this notion is that the number of filtered ends of π : M̃ →M1 can be greater than
1 even if M1 is 1-ended. A simple example of this situation is obtained as follows. Take M to be
a genus 2 closed surface and Σ to be a subsurface of genus 1 with one boundary component. The
covering space M1 of M defined by the subgroup π1(Σ) < π1(M) has this property.

This notion was first introduced by Kropholler and Roller [40] in a purely group theoretical
context. A topological approach to it was later given in the book by Geoghegan [27]. Filtered ends
were studied in the context of Kähler groups by Gromov and the first author [23]. There, the name
cut was used instead of filtered ends, or rather the term cut was used to indicate the presence of at
least two filtered ends for a certain map or covering space, whereas the term Schreier cut referred
to the classical notion of relative ends of a pair of groups in [23].

With the notion of filtered ends at our disposal, Proposition 11 will be a simple application of
the following theorem.

Theorem 12 Let M be a closed Kähler manifold and let M1 → M be an infinite covering space
of M . If the number of filtered ends of M1 is greater or equal to 3, then there exists a proper
holomorphic mapping with connected fibers M1 → Σ, where Σ is a Riemann surface.

This result was proved in [23] under certain additional hypothesis of “stability”. A more general
version was later proved by Napier and Ramachandran [46]. Their version includes the theorem
stated above but also more general ones which apply to Kähler manifolds which are not necessarily
covering spaces of a compact manifold.

Before turning to the proof of Proposition 11, we make the following easy observation.

Lemma 13 Let V be a complex manifold and f : V → R be a nonconstant smooth pluriharmonic
function. Denote by Crit(f) the set of critical points of f . Then for each t ∈ R, the set Crit(f)∩
f−1(t) is nowhere dense in f−1(t).

The proof is straightforward, once one remembers that the function f is locally the real part of
a holomorphic function F and that the critical set of f locally coincides with that of F .

Proof of Proposition 11. Note that if M1 has at least three ends, the result follows from much older
results, see [44]. Thus, we could assume that M1 has only two ends, although this is not necessary.

Let t1 be a real number such that ẽ−1(t1) is not connected. Let x and y be two points in
distinct connected components of ẽ−1(t1). By Lemma 13, we can assume that x and y are not
critical point of f . We claim that at least one of the two sets

{ẽ > t1}, {ẽ < t1}

is not connected. Let us assume that this is false. Then one can find a path α from x to y contained
in the set {ẽ ≥ t1} and a path β from y to x contained in the set {ẽ ≤ t1}. We can assume that
α and β intersect ẽ−1(t1) only at their endpoints. Let γ be the path obtained by concatenating
α and β. Let γ1 : S1 → M1 be a smooth map freely homotopic to γ, intersecting ẽ−1(t1) only at

the points x and y and transverse to ẽ−1(t1) there. Since M̃ is simply connected, we can find a
smooth map

u : D2 → M̃

coinciding with γ1 on the boundary. Pick ε > 0 small enough, such that t1 + ε is a regular value
of ẽ ◦ u. The intersection of the level ẽ ◦ u = t1 + ε with the boundary of the disc is made of two
points aε and bε such that u(aε) → x and u(bε) → y when ε goes to 0. Let Iε be the connected
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component of the set {ẽ ◦ u = t1 + ε} whose boundary is {aε, bε}. Up to taking a subsequence, we
can assume that Iε converges as ε goes to 0 to a compact connected subset I0 ⊂ {ẽ ◦u = t1}. Now
the set u(I0) is connected, contained in ẽ−1(t1) and contains x and y. This contradicts the fact
that x and y are in distinct components of ẽ−1(t1). Hence at least one of the two sets {ẽ > t1} and
{ẽ < t1} is not connected. Note that the maximum principle implies that no connected component
of these open sets can be at bounded distance from the set ẽ−1(t1). This is easily seen to imply
that M1 has at least three filtered ends. The conclusion now follows from Theorem 12. 2

Remark 1 Note that our Proposition 11 can be applied to the case where e is the primitive of
the lift of a harmonic 1-form α on M with integral periods and where M1 is the covering space
associated to the kernel of the homomorphism π1(M)→ Z induced by α. In this case one recovers
a particular case of a result due to Simpson [52]. Hence Theorem 12 about filtered ends implies this
particular case of the result of Simpson. Proposition 11 can also be thought of as a nonequivariant
version of Simpson’s result.

3.2 The first pluriharmonic map

We now consider a CAT(0) cubical complex X, assumed to be irreducible and locally finite. Let M
be a compact Kähler manifold and let Γ be its fundamental group. We consider a homomorphism

% : Γ→ Aut(X).

We suppose that the Γ-action on X satisfies the three hypothesis of Theorem A, although this will
not be used untill section 3.3. We denote by M̃ the universal cover of M . If ĥ is a hyperplane of
X we will write Mĥ for the quotient of M̃ by the group StabΓ(ĥ):

Mĥ = M̃/StabΓ(ĥ). (4)

Since X is contractible, one can choose a Lipschitz %-equivariant map ψ : M̃ → X. We fix a
hyperplane ĥ of X and a halfspace h associated to ĥ. Define a function dh on X by

dh(x) =

 d(x, ĥ) if x ∈ h,

−d(x, ĥ) if x ∈ h∗.

Let f : M̃ → R be the composition f = dh ◦ ψ. Finally let f be the function induced by f on Mĥ.

Proposition 14 The map f is proper. In particular the manifold Mĥ has at least two ends.

Proof. In the following proof, we let H = StabG(ĥ). We pick a point x0 in M̃ . We consider the
map

F : H\G→ R

defined by F (Hg) = f(g · x0). It is enough to prove that F is proper, this is easily seen to imply
that f is proper. So let (gn) be a sequence of elements of G such that

|F (Hgn)| ≤ C, (5)

for some constant C. We need to prove that the set {Hgn} is a finite subset of H\G. But

equation (5) implies that the distance of %(gn)(ψ(x0)) to ĥ is bounded by C. Put differently this

says that each of the hyperplanes (%(gn)−1(ĥ)) intersects the ball of radius C centered at ψ(x0).

By our hypothesis of local finiteness of X this implies that the family of hyperplanes (%(gn)−1(ĥ))
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is finite. Hence there exists element x1, . . . , xr in G such that for all n there exists i such that
%(gn)−1(ĥ) = %(xj)(ĥ). This implies Hgn = Hx−1

i . 2

In what follows we will denote by Ends(V ) the space of ends of an open manifold V . We recall
that V ∪Ends(V ) carries a natural topology, see for instance [26, Ch.6]. We now make use of the
following classical theorem.

Theorem 15 Let V be a complete Riemannian manifold of bounded geometry and satisfying a
linear isoperimetric inequality. Let χ : Ends(V ) → {−1, 1} be a continuous map. Then there
exists a unique continuous map hχ : V ∪ Ends(V ) → [−1, 1] which extends χ, is harmonic on V ,
and has finite energy: ∫

V

|∇hχ|2 <∞.

Note that we will not need the precise definition of a Riemannian manifold of bounded geometry;
the only important point we need is that a covering space of a closed Riemannian manifold is of
bounded geometry. This theorem was proved by Kaimanovich and Woess [35] and by Li and
Tam [42] independently. A simple beautiful proof due to M. Ramachandran can be found in the
paper by Kapovich [37, §9]. In the case when V is Kähler, the map hχ is pluriharmonic. This
follows from a standard integration by part argument, which is valid here because hχ has finite
energy, see Lemma 3.1 in [41] or [29, §1.1.B].

We now assume that ĥ is stable for Γ and apply the above to the manifold V = Mĥ. The

proper function f defines a partition of the space of ends of this manifold into two open sets: the
set of ends of {f ≥ 0} and the set of ends of {f ≤ 0}. Let χ : Ends(V )→ {−1, 1} be the function
taking the value 1 on the first open set and −1 on the second open set. Since Mĥ satisfies a linear
isoperimetric inequality, we obtain:

Proposition 16 There exists a unique function

uh : Mĥ → (−1, 1)

which is pluriharmonic, of finite energy and satisfies uh(x) → 1 when x → ∞ and f(x) > 0 and
uh(x)→ −1 when x→∞ and f(x) < 0.

We denote by p the projection from M̃ to Mĥ. For t0 ∈ (0, 1) we define:

Uh,t0 = {x ∈ M̃, uh(p(x)) > t0}.

We have:

Lemma 17 If t0 is close enough to 1 the set Uh,t0 satisfies ψ(Uh,t0) ⊂ h.

Proof. By the continuity of uh on Mĥ ∪Ends(Mĥ), we have that if t0 is close enough to 1, one has

the inclusion {uh > t0} ⊂ {f ≥ 0}. This implies the conclusion of the lemma. 2

We will ultimately produce a fibration of the manifold Mĥ onto a Riemann surface. To achieve
this, we will construct a second plurisubharmonic function defined on Mĥ, which is not a function
of uh. We build this second map in the next section.

3.3 A second plurisubharmonic map

We consider a facing triple of strongly separated halfspaces h, k, l as given by Theorem 6. According
to Corollary 1, h, k and l are stable for Γ. Thus, we can apply the results of section 3.2 to anyone
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of the three covering spaces Mĥ, Mk̂, Ml̂. We recall that these covering spaces were defined by

Equation (4). We also make use of the various lemmas proved in section 2.2. In particular we
consider the subgroup

A < StabΓ(ĥ)

generated by Σ = {h ∈ StabΓ(ĥ), h(k) ∩ k 6= ∅}. If a ∈ A, the hyperplane a(k̂) is stable for Γ, as k̂
is. Thus, we can also apply the results of section 3.2 to the covering space Ma(k̂). So we denote by

uh : Mĥ → (−1, 1) and ua(k) : Ma(k̂) → (−1, 1)

the proper pluriharmonic maps of finite energy provided by Proposition 16.

For each a ∈ A, let ũa(k) be the lift of ua(k) to M̃ . Now define a function βk : M̃ → R by:

βk(x) = sup
a∈A

ũa(k)(x).

Proposition 5 implies that the A-orbit of k is finite, hence the supremum above is actually the
supremum of a finite number of smooth pluriharmonic functions. Hence βk is a continuous plurisub-
harmonic function. We now fix some constant C in (0, 1). Let Vk,C = {βk > C}.

Lemma 18 1. The function βk : M̃ → R is A-invariant. In particular the open set Vk,C ⊂ M̃
is A-invariant.

2. For each a ∈ A, there exists Ca ∈ (0, 1) such that ψ({ũa(k) > Ca}) ⊂ a(k).

3. If C is close enough to 1, one has ψ(Vk,C) ⊂ ∪a∈Aa(k).

Proof. Note that by the uniqueness of the map ua(k), we have:

ũa(k) = ũk ◦ a−1.

So the function βk is also equal to
sup
a∈A

ũk ◦ a−1,

which is A-invariant. This proves the first point. The second point was already proved in Lemma 17
for the harmonic function uh : Mĥ → (−1, 1) and the proof is similar here. As for the third point,

if A1 ⊂ A is a finite set such that {a(k)}a∈A = {a(k)}a∈A1
, the constant C = max

a∈A1

Ca has the

desired property. 2

We now assume that the constant C satisfies the conclusion of the previous lemma. Note that
the open set Vk,C naturally defines an open set V ∗k,C = Vk,C/A inside M̃/A. This open set actually

embeds into the quotient of M̃ by the bigger subgroup StabΓ(ĥ). Namely:

Proposition 19 The natural map π : M̃/A→Mĥ is injective on the closure of V ∗k,C .

Proof. We will check that if h ∈ StabΓ(ĥ) − A then h(Vk,C) ∩ Vk,C is empty. Let us suppose

by contradiction that this is not empty for some h ∈ StabΓ(ĥ) − A. Let x ∈ Vk,C be such that
h(x) ∈ Vk,C . By Lemma 18 (3), there exist a1, a2 ∈ A such that ψ(x) ∈ a1(k) and ψ(h(x)) ∈ a2(k).
This implies that h(a1(k)) ∩ a2(k) 6= ∅. By Lemma 4, h must be in A, a contradiction. 2

We now define a function γ : Mĥ → R+ as follows. If x ∈ π(V ∗k,C), define γ(x) = βk(y) − C,

where y is a lift of x inside Vk,C . If x /∈ π(V ∗k,C), define γ(x) = 0. We have:
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Lemma 20 If C is close enough to 1, the function γ is continuous and plurisubharmonic. Hence,
V ∗k,C is a plurimassive set in the sense of [46, Def. 1.1].

Proof. As in the previous Proposition, we denote by π the projection M̃/A → Mĥ. Up to taking

C closer to 1, we can always assume that there exists C0 ∈ (0, C) such that the conclusion of the
third point of Lemma 18 holds for C0. We claim that F := π(Vk,C/A) is closed. We first conclude
the proof of the lemma using this claim. We consider the two open sets

π(Vk,C0
/A) and Mĥ − F.

They cover Mĥ, hence it is enough to prove that γ is continuous and plurisubharmonic on each of

them. On Mĥ−F , γ is 0 so there is nothing to prove. On π(Vk,C0/A), the function γ is constructed

as follows: one considers the plurisubharmonic function max(βk − C, 0) on M̃ . It descends to a

function q : M̃/A→ R+. The restriction of γ to π(Vk,C0/A) is obtained by composing the inverse
of the map π : Vk,C0/A→ π(Vk,C0/A) with q. Hence it is continuous and plurisubharmonic.

We finally prove that F := π(Vk,C/A) is closed. It is enough to see that⋃
h∈StabΓ(ĥ)

h(Vk,C)

is closed. For this it is enough to check that there exists ε > 0 such that for any h ∈ StabΓ(ĥ)−A,
the distance from h(Vk,C) to Vk,C is greater or equal to ε. Applying the map ψ, we see that it is

enough to find a positive lower bound, independent of h ∈ StabΓ(ĥ) − A, for the distance from
h(U) to U in X, where U = ∪a∈Aa(k), as in section 2.2. But this follows from the fact that there
is a uniform positive lower bound for the distance between two disjoint halfspaces in a CAT(0)
cubical complex. 2

We started this section considering a facing triple of strongly separated hyperplanes h, k and l.
So far, we only used h and k. In the next proposition, we make use of the third hyperplane l.

Proposition 21 Assume that the level sets of ũh (the lift of uh to M̃) are connected. Then, there
exists a finite cover M2 →Mĥ (possibly equal to Mĥ) and a continuous plurisubharmonic function
δ : M2 → R+ such that there exists a level set of the lift of uh to M2 on which δ is not constant.

Proof. Note that the function uh is surjective. Assume that the conclusion of the proposition is
false when M2 = Mĥ and δ = γ. Then there exists a function

ϕ : (−1, 1)→ R+

such that γ = ϕ ◦ uh. We claim that the function ϕ is continuous, convex, and vanishes on [t0, 1)
for t0 close enough to 1. Let us prove these claims.

First we note that ϕ is continuous in a neighborhood of every real number t such that u−1
h (t)

is not contained in the critical set of uh. But every real number t has this property according
to Lemma 13. Hence ϕ is continuous on (−1, 1). Note that this argument proves that for each
t ∈ (−1, 1), one can find q ∈Mĥ and local coordinates (z1, . . . , zn) centered at q such that γ(z) =

ϕ(uh(q) + Re(z1)). The convexity of ϕ then follows from [24, 5.13]. For the last claim, we pick a

point x ∈ M̃ such that uh(p(x)) > t0. Here and as before p denotes the projection M̃ →Mĥ. If t0
is close enough to 1, Lemma 17 implies that ψ(x) ∈ h. Since h and⋃

a∈A
a(k)
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are disjoint, Lemma 18 implies that h(x) /∈ Vk,C for any h in StabΓ(ĥ). Hence γ(p(x)) = 0. This
proves that ϕ vanishes on [t0, 1).

These three properties of ϕ imply that the level sets of ϕ are connected. In fact the level ϕ = c
is a point for c > 0 and is an interval of the form [a0, 1) for c = 0. This implies, together with the

hypothesis on the level sets of ũh, that the level sets of γ ◦ p : M̃ → R+ are connected. But this

implies StabΓ(ĥ) = A. Now since the A-orbit of k is finite, the group

H2 = StabΓ(ĥ) ∩ StabΓ(k̂)

is of finite index in StabΓ(ĥ). Let M2 → M1 be the corresponding cover and u2 be the lift of uh
to M2. Let δ be the lift of the function uk to M2. We claim that δ satisfies the conclusion of the
proposition.

If this is not the case, then δ is a function of u2. As before one sees that δ = ϕ0 ◦ u2 where ϕ0

is continuous and convex. Actually, since δ is pluriharmonic and not only plurisubharmonic, ϕ0

must be affine. So there exists real numbers a and b such that:

δ = au2 + b.

Since u2 and δ both take values into (−1, 1) and are onto, one sees that b must be 0 and that
a = ±1. We now obtain a contradiction from this fact, making use of the hyperplane l. Let sn be
a sequence of points of M̃ such that d(ψ(sn), l̂) goes to infinity and such that ψ(sn) ∈ l. Such a

sequence exists because the action is essential. Since d(ψ(sn), h) ≥ d(ψ(sn), l̂) we must have that
f(p(sn))→ −∞, hence also uh(p(sn))→ −1.

In the next paragraph, we denote by x 7→ [x] the covering map M̃ →M2.

If a = −1, one sees that δ([sn]) → 1 which implies that ψ(sn) ∈ k for n large enough. Hence
Ψ(sn) ∈ k ∩ l. This is a contradiction since k and l are disjoint. If a = 1 we argue in a similar way

with the pair (h, k). We take a sequence qn of points of M̃ such that ψ(qn) ∈ h and d(ψ(qn), ĥ)→∞.
This implies u2([qn])→ 1. Since δ = u2 this implies that ψ(qn) ∈ k for n large enough. Since k∩ h
is empty we get a contradiction again. This proves the proposition. 2

3.4 Producing fibrations

We continue with the notations and hypothesis from section 3.3. Our aim is now to prove the
following:

Proposition 22 The manifold Mĥ fibers: there exists a proper holomorphic map Mĥ → Σ with
connected fibers onto a Riemann surface Σ.

Proof. By Proposition 11, we can assume that the level sets of the lift of the map

uh : Mĥ → (−1, 1)

to the universal cover are connected, otherwise the conclusion is already known. By Proposition 21,
we can first replace Mĥ by a finite cover p : M2 →Mĥ such that there exists a function δ : M2 → R+

which is continuous, plurisubharmonic and not constant on the set {uh◦p = t} for some real number
t. Note that if this is true for some number t, one can always find a number t′, close to t, which
has the same property and moreover satisfies that t′ is a regular value of uh ◦ p. Let F be the
foliation of M2 defined by the (1, 0) part of the differential of uh ◦ p. Note that d(uh ◦ p) might
have zeros; we refer to [2, p.55] for the precise definition of F . We now consider the manifold

Xt′ = (uh ◦ p)−1(t′).
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It is invariant by the foliation F . Hence on Xt′ we have a real codimension 1 foliation defined by
the nonsingular closed 1-form which is the restriction of dC(uh ◦ p) to Xt′ . Such a foliation has
all its leaves closed or all its leaves dense; this is an elementary particular case of the theory of
Riemannian foliations. We must thus show that the restriction of F to Xt′ cannot have all its
leaves dense. Let q be a point where the restriction of δ to Xt′ reaches its maximum m. Let L(q)
be the leaf of F through q. The maximum principle implies that δ is constant on L(q). Hence
the closure of L(q) is contained in the set δ = m. Since δ is not constant on Xt′ , L(q) cannot be
dense in Xt′ , hence is closed. We have found a compact leaf of the foliation F . This compact leaf
projects to a compact leaf of the foliation Fĥ defined by du1,0

h on Mĥ. But it is now classical that

this implies that the foliation Fĥ is actually a fibration. See for instance [14, (7.4)] or [23, §4.1].2

Now we will apply the following result:

Let V be a closed Kähler manifold. Assume that V has a covering space V1 → V which admits
a proper holomorphic mapping to a Riemann surface, with connected fibers: π1 : V1 → Σ1. Then
π1 descends to a finite cover of V : there exists a finite cover V2 of V such that V1 → V decomposes
as V1 → V2 → V , V2 admits a holomorphic mapping π2 : V2 → Σ2 with connected fibers and there
exists a holomorphic map Σ1 → Σ2 which makes the following diagram commutative:

V1
//

��

Σ1

��
V2

// Σ2.

This fact is now well-known, we refer the reader to [23, §5.6] or [45, Prop. 4.1] for a proof.
Applying this result to V = M and to the cover V1 = Mĥ we obtain a finite cover M2 → M
and a fibration π2 : M2 → Σ onto a Riemann surface. By replacing M2 by another finite cover,
we can assume that the fundamental group of a smooth fiber of π2 surjects onto the kernel of
the map (π2)∗ : π1(M2) → π1(Σ). Note that a smooth fiber of the fibration of Mĥ obtained in
Proposition 22 projects onto a smooth fiber of π2. This implies that the normal subgroup

N := Ker((π2)∗ : π1(M2)→ π1(Σ))

is contained in the stabilizer of ĥ inside π1(M2). In what follows, we write Γ2 = π1(M2). To
conclude the proof of Theorem A, we only have to establish the next proposition.

Proposition 23 The normal subgroup N acts as an elliptic subgroup of Aut(X) i.e. the fixed
point set of N in X is nonempty.

Proof. We know that N is contained in the group StabΓ2
(ĥ). But since N is normal in Γ2, N is

contained in
StabΓ2(γ(ĥ))

for all γ in Γ2. By Corollary 1, we can pick γ ∈ Γ2 such that ĥ and γ(ĥ) are strongly separated.

Since N preserves ĥ and γ(ĥ) it must preserve the projection of ĥ onto γ(ĥ), which is a point
according to Proposition 1. Hence N is elliptic. 2

4 Cubulable Kähler manifolds and groups

4.1 Cubulable Kähler groups

We first recall a few definitions concerning finiteness properties of groups as well as a result by
Bridson, Howie, Miller and Short [10]. These will be used in the proof of Theorem B. A group G
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is of type FPn if there is an exact sequence

Pn → Pn−1 → · · · → P0 → Z→ 0

of ZG-modules, where the Pi are finitely generated and projective and where Z is considered as a
trivial ZG-module. It is of type FP∞ if it is of type FPn for all n. See [12, §VIII.5] for more details
on these notions. We simply mention that the fundamental group of a closed aspherical manifold
is of type FP∞.

It is proved in [10] that if H1, . . . ,Hn are either finitely generated free groups or surface groups
and if G is a subgroup of the direct product

H1 × · · · ×Hn

which is of type FPn, then G is virtually isomorphic to a direct product of at most n groups,
each of which is either a surface group of a finitely generated free group. We also refer the reader
to [9, 11] for more general results. Note that the idea of applying the results from [10] to Kähler
groups is not new. This possibility was already discussed in [9, 11], and put into use in [48]. We
also mention here that there exist Kähler groups which are subgroups of direct products of surface
groups but which are not of type FP∞, see [25, 43].

We now prove Theorem B. So let Γ and X be as in the statement of the theorem. Let

X = X1 × · · · ×Xr

be the decomposition of X into a product of irreducible CAT(0) cubical complexes. There is a
finite index subgroup Γ1 of Γ which preserves this decomposition. Note that the action of Γ1 on
each of the Xi is essential since the original action is essential on X. We will make use of the
following two results from [15]:

• The group Γ1 contains an element γ0 which acts as a rank 1 isometry on each irreducible
factor.

• The group Γ1 contains a copy of Zr.

See [15], Theorem C and Corollary D for these statements. We recall here that a rank 1 isometry
of a CAT(0) space is a hyperbolic isometry none of whose axis bounds a flat half-plane.

Proposition 24 Let i ∈ {1, . . . , r}. Exactly one of the following two cases occurs:

1. The action of Γ1 preserves a geodesic line in Xi.

2. The action of Γ1 has no invariant Euclidean flat in Xi and fixes no point in the viusal
boundary of Xi.

Proof. Since Γ1 contains a rank 1 isometry, if Γ1 preserves a Euclidean flat in Xi, this flat must be
a geodesic line. According to Proposition 7.3 from [15] (see also the proof of that proposition), if
Γ1 does not preserve a geodesic line in Xi, it does not have any fixed point in the visual boundary
of Xi. 2

Up to replacing Γ1 by a finite index subgroup, we assume that whenever Γ1 preserves a geodesic
line Li in some Xi, it acts by translations on it. In this case, the translation group is discrete as
follows from [7] for instance. Hence the action of Γ1 on Li factors through a homomorphism to Z.

We now continue the proof of Theorem B. We change the numbering of the factors Xi’s so that
for 1 ≤ i ≤ k, Γ1 preserves a geodesic line in Xi and acts by translations on it, whereas for i > k,
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it fixes no point in the visual boundary of Xi and preserves no flat. Hence for j > k, the Γ1-action
on Xj satisfies all the hypothesis of Theorem A. Using Theorem A we get a finite index subgroup
Γ2 < Γ1 and a homomorphism

ψ : Γ2 → Zk × π1(Σ1)× · · · × π1(Σr−k) (6)

with the following properties:

1. The homomorphism Γ2 → π1(Σj) induced by ψ is surjective for each k + 1 ≤ j ≤ r.

2. For each i, there exists a convex cobounded subset Yi ⊂ Xi on which the Γ2-action factors
through the coordinate number i of the homomorphism Γ2 → Zk if i ≤ k or through the
homomorphism Γ2 → π1(Σi−k) if i > k.

Since the action of Γ2 is proper, the kernel N of ψ is finite. By replacing Γ2 by a finite index
subgroup Γ3, we can assume that N ∩ Γ3 is central in Γ3. We thus have a central extension:

{0} // N ∩ Γ3
// Γ3

// ψ(Γ3) // {0}.

Lemma 25 The group ψ(Γ3) is of type FP∞.

Proof. Let Y ⊂ X be the fixed point set of N . This is a subcomplex of the first cubical subdivision
of X. Since ψ(Γ3) is torsion-free, it acts freely on Y . The quotient Y/ψ(Γ3) is a finite complex,
hence ψ(Γ3) is of type FL, in particular FP∞. See [12, VIII.6] for the definition of the FL condition
and its relation to the FPn and FP∞ conditions. 2

Now the result of [10] implies that ψ(Γ3) itself is isomorphic to a direct product of surface
groups and finitely generated free groups. No non-Abelian free factor can appear, but since this is
not needed for the next lemma, we will postpone a little bit the explanation of this fact.

Lemma 26 The group Γ3 has a finite index subgroup Γ4 which does not intersect N . In particular
Γ4 ' ψ(Γ4).

Proof. It is enough to prove that the central extension of ψ(Γ3) by N∩Γ3 appearing above becomes
trivial on a finite index subgroup of ψ(Γ3). Being isomorphic to a direct product of surface groups
and free groups, ψ(Γ3) has torsion-free H1. Hence the universal coefficient theorem implies that

H2(ψ(Γ3), N ∩ Γ3)

is isomorphic to Hom(H2(ψ(Γ3),Z), N ∩Γ3). If H < ψ(Γ3) is a subgroup of finite index such that
every element in the image of the map H2(H,Z) → H2(ψ(Γ3),Z) is divisible by a large enough
integer p, the pull-back map Hom(H2(ψ(Γ3),Z), N ∩ Γ3) → Hom(H2(H,Z), N ∩ Γ3) is trivial.
Hence the desired central extension is trivial on H. 2

As in Lemma 25, one proves that Γ4 is of type FP∞. Applying again the result of [10], we get
that Γ4 is isomorphic to a direct product of surface groups, possibly with a free Abelian factor. To
obtain the more precise statement of Theorem B, and to justify the fact Γ4 does not contain any
free non-Abelian factor, we argue as follows. We will call direct factor of the product

Zk × π1(Σ1)× · · · × π1(Σr−k). (7)

either one of the groups π1(Σs) or one of the Z copy of Zk. The intersection of Γ4 with each of the
r direct factors in (7) must be nontrivial because Γ4 contains a copy of Zr. Indeed if one of these
intersections was trivial, Γ4 would embed into a direct product which does not contain Zr. We call
L1, . . . , Lr these intersections, where Li < Z for 1 ≤ i ≤ k and where Li < π1(Σi−k) for i ≥ k + 1.
The proof of [10, p. 101] shows that for i ≥ k+ 1, Li is finitely generated and of finite index inside
π1(Σi−k). This implies that Γ4 contains a finite index subgroup Γ∗ which is the direct product
of each of its intersections with the factors in (7). The group Γ∗ now satisfies the conclusion of
Theorem B.
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4.2 Cubulable Kähler manifolds

We now turn to the proof of Theorem D. Let M be as in the statement of the theorem. Note
that in particular, M is aspherical. Applying Corollary C, we see that a finite cover M1 of M has
fundamental group isomorphic to a product of the form

Z2l × π1(S1)× · · · × π1(Sm) (8)

where the Si’s are closed surfaces of genus greater than 1. We fix such an isomorphism and we
denote by πi (1 ≤ i ≤ m) the projection from π1(M1) onto π1(Si). From now on the proof will not
make any further use of CAT(0) cubical complexes. We only use arguments from Kähler geometry.
First, we will need the following classical result, see Theorem 5.14 in [16]:

Theorem 27 Let X be a Kähler manifold, S a topological surface of genus > 2, and π : π1(X)→
π1(S) a surjective homomorphism with finitely generated kernel. Then, there exists a complex
structure on S and a holomorphic map with connected fibers p : X → S such that the map

p∗ : π1(X)→ π1(S)

induced by p is equal to π.

Applying this theorem to the various πi’s we obtain that the surfaces Si’s can be endowed with
complex structures such that one has holomorphic maps pi : M1 → Si inducing the homomorphisms
πi at the level of fundamental group.

Let A be the Albanese torus of M1 and let α : M1 → A be the Albanese map, which is well-
defined up to translation. We also denote by Ai the Albanese torus (or Jacobian) of the Riemann
surface Si and by αi : Si → Ai the corresponding map. By definition of the Albanese maps, for each
i there exists a holomorphic map ϕi : A→ Ai which makes the following diagram commutative:

M1
α //

pi

��

A

ϕi

��
Si

αi // Ai.

We denote by ϕ : A → A1 × · · · × Am the product of the maps ϕi and by β : S1 × · · · × Sm →
A1×· · ·×Am the product of the maps αi. Up to composing the maps αi’s with some translations,
we can and do assume that ϕ maps the origin of A to the origin of A1×· · ·×Am, hence is a group
homomorphism.

Let Y be the following submanifold of A:

Y = {y ∈ A,ϕ(y) ∈ Im(β)}

This is indeed a submanifold since β is an embedding and ϕ is a submersion. Now by construction
the Albanese map α of M1 can be written as:

α = i ◦ Φ

where i is the inclusion of Y in A and Φ : M1 → Y is holomorphic. We now have:

Lemma 28 The map Φ is a homotopy equivalence between M1 and Y .

Proof. Let B be the kernel of the map ϕ. The complex dimension of B is equal to

1

2

b1(M1)−
m∑
j=1

b1(Sj)
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which equals the number l appearing in Equation (8). One can find a C∞ diffeomorphism θ : A→
B ×A1 × · · · ×Am such that ϕ ◦ θ−1 is equal to the natural projection

B ×A1 × · · · ×Am → A1 × · · · ×Am.

This implies that the complex manifold Y is C∞ diffeomorphic to B×S1×· · ·×Sm. In particular,
Y and M1 have isomorphic fundamental groups. We finally prove that Φ induces an isomorphism
on fundamental groups. It follows from our description of Y that one can choose identifications of
π1(M1) and π1(Y ) with

Z2l × π1(S1)× · · · × π1(Sm)

in such a way that Φ∗ preserves each of the projections onto the groups π1(Sj). This implies that
Φ∗ induces an isomorphism between the quotients of π1(M1) and π1(Y ) by their respective centers.
To conclude, it is enough to check that Φ∗ induces an isomorphism between the centers of π1(M1)
and π1(Y ). But the composition of Φ∗ with the projection from π1(Y ) onto its abelianization
coincides with the map α∗ : π1(M1) → π1(A) ' H1(M1,Z). Since the center of π1(M1) injects in
H1(M1,Z), the restriction of Φ∗ to the center of π1(M1) must be injective. Now using the fact
that the quotient of H1(M1,Z) by the image of the center of π1(M1) in H1(M1,Z) is torsionfree,
one sees easily that Φ∗(Z(π1(M1))) must be equal to the center of π1(Y ). This concludes the proof
that Φ∗ is an isomorphism.

The manifold M1 is aspherical by hypothesis. The manifold Y is also aspherical since it is
diffeomorphic to B × S1 × · · · × Sm. Since Φ induces an isomorphism on fundamental group, it is
a homotopy equivalence. This concludes the proof of the lemma. 2

We now conclude the proof using the following fact due to Siu and contained in the proof of
Theorem 8 from [53]:

Let f : Z1 → Z2 be a holomorphic map between two compact Kähler manifolds of dimension n.
Assume that f is of degree 1 and that the induced map H2n−2(Z1,R)→ H2n−2(Z2,R) is injective.
Then f is a holomorphic diffeomorphism. The conclusion holds in particular if f is a homotopy

equivalence.

Applying Siu’s result to the map Φ : M1 → Y we obtain that M1 and Y are biholomorphic. This
proves the first statement in Theorem D. When the original manifold M is algebraic, an easy
application of Poincaré’s reducibility theorem [21, VI.8] shows that a finite cover of M1 is actually
biholomorphic to a product of a torus with finitely many Riemann surfaces. This concludes the
proof of Theorem D.

5 Comments

We discuss here some possible improvements to our results.

First, one would like to remove the hypothesis of local finiteness in Theorem A. We summarize
at which points this hypothesis was used:

1. It was used for the first time in Proposition 5. However in this place, we have seen that it can
be replaced by the hypothesis that the group action under consideration has finite stabilizers.
Note that Proposition 5 is used later in section 3.3 to prove that a certain function defined as
a supremum of continuous plurisubharmonic functions is actually the supremum of a finite
number of continuous functions, hence is continuous.
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2. It is also used in the proof of Proposition 14 to show that the signed distance function to
a hyperplane induces a proper function on a suitable covering space of the manifold under
consideration.

Second, one could try to remove the hypothesis that there is no fixed point in the visual
boundary in Theorem A. There is a well-known strategy to achieve this, see [17, §2.H] as well
as appendix B by Caprace in [17]. If a group G acts without fixed point on a CAT(0) cubical
complex X but with a fixed point in the visual boundary ∂∞X, one can construct another CAT(0)
cubical complex X1, of smaller dimension, on which G acts and such that X1 embeds in the Roller
boundary of X. By applying this construction repeatedly, one can obtain a description of actions
having a fixed point in the visual boundary. The reason why we cannot use this method here is that
the passage from X to X1 does not preserve the local finiteness of the complex. We thank Pierre-
Emmanuel Caprace for useful discussions concerning this point. Thus, one sees that removing the
hypothesis of local finiteness from Theorem A should also allow to describe parabolic actions of
Kähler groups on CAT(0) cubical complexes. Note that parabolic actions of Kähler groups on
trees are already understood [22].
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13, 19

[24] J.-P. Demailly, Complex analytic and differential geometry, book available on
https://www-fourier.ujf-grenoble.fr/∼demailly/documents.html. – cited on p. 17

[25] A. Dimca, S. Papadima and A. Suciu, Non-finiteness properties of fundamental groups of
smooth projective varieties, J. Reine Angew. Math. 629 (2009), 89–105. – cited on p. 20

[26] C. Drutu and M. Kapovich, Lectures on Geometric Group Theory, book in preparation, avail-
able at https://www.math.ucdavis.edu/∼kapovich/papers.html. – cited on p. 15

[27] R. Geoghegan, Topological methods in group theory, Graduate Texts in Mathematics 243,
Springer, New York (2008). – cited on p. 13

[28] M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ. 8, Springer,
New York (1987), 75–263. – cited on p. 2, 5

[29] M. Gromov, Kähler hyperbolicity and L2-Hodge theory, J. Differential Geom. 33, No. 1 (1991),
263–292. – cited on p. 15

25



[30] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, based on the
1981 french original, with appendices by M. Katz, P. Pansu and S. Semmes, Progress in
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67084 Strasbourg, France Ciudad Universitaria, 04510 México DF, México
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