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1 Introduction

A group G is cohopfian (or has the co-Hopf property) if any injective endo-
morphism f : G→ G is surjective.

Answering a question of E. Rips, Z. Sela showed in [S2] that a torsion-
free, non-virtually cyclic word-hyperbolic group (in Gromov’s sense) is co-
hopfian if and only if it is not a non-trivial free product. The cohopficity of
3-manifold groups has been studied by many authors; see [PW] and [OP]
where a more complete list of references on this subject is given.

A non-trivial free product A ∗ B is never cohopfian, as it contains the
proper subgroupA∗mBm−1 isomorphic to A∗B ifm /∈ (A∪B). More gener-
ally, let the group G split as an HNN-extension, G = A∗C = 〈A, t | tCt−1 =
ϕ(C)〉, and suppose that t centralizes C. Then G is not cohopfian (set
f : G→ G be the identity on A and f(t) = t2; then f is injective, not sur-
jective). It is shown in [OP] that this example can be realized as a Kleinian
group. Note that in this case, the group G splits over a parabolic subgroup
C which is of infinite index in the unique maximal parabolic subgroup C̃ of
G containing C (where C̃ = 〈C, t〉), and C̃ is not conjugate into A. In such
a case we will refer to the group C and the corresponding splitting of G over
C as essentially non-maximal. On the other hand it is also shown in [OP]
that G is cohopfian if it does not split over an elementary subgroup. A nat-
ural question is whether all non-cohopfian torsion free one-ended Kleinian
groups arise only in this way, in other words is G non-cohopfian if and only
if G has essentially non-maximal splittings over parabolic subgroups? The
main result of the paper (Theorem A below) is a criterion showing that
essentially this is the case.

Let G be a one-ended, non-elementary, geometrically finite Kleinian
group. Instead of directly studying the “absolute” cohopfian property of G,
we extend this notion to the “relative” case. Let E = {E1, . . . , En} be a
fixed set of elementary subgroups of G (a “peripheral system”) and suppose
that f : G→ G is an endomorphism which sends each Ei into itself. Then
Theorem B below guarantees that f is a surjective if G has no essentially
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non-maximal splittings over elementary subgroups relative to the system E
(i.e. a splitting in which every Ei is elliptic).

The notion of “relative cohopficity” can be easily illustrated by the
example of a surface with boundary. Let S be a compact surface of genus
g > 1 whose boundary is a finite collection of loops αi (i = 1, . . . , n). Let
Ei be the cyclic peripheral subgroup of G = π1(S) generated by αi and E =
{E1, . . . , En}. The group G is a free group and is not cohopfian; however
it is cohopfian relatively to E , i.e. if f : (G, E) → (G, E) is an injective
endomorphism sending each group Ei into itself then f is surjective.

The proof of the cohopficity criterion goes as follows. Let f : (G, E) →
(G, E) be an injective, non-surjective endomorphism of a one-ended Kleinian
group G. In section 3, refining the main result of the paper [OP], we prove,
using the theory of groups acting on real trees, that the group G splits
over elementary subgroups relative to the system E (Proposition 3.1). Our
further goal is to find among all the trees Tn, a (G, E)-tree T and another
injective, non-surjective map F : (G, E) → (G, E) so that F sends all vertex
and edge stabilizers of T into themselves. In the simplest case, when the
tree T is dual to a splitting of G as an amalgamated productG = A∗CB, we
obtain that F (A,C) ⊂ (A,C) and F (B,C) ⊂ (B,C). An argument based
upon M. Bestvina and M. Feighn’s accessibility theorem [BF2] will then
show (section 6) that the pairs (A, (C ∪ E)) and (B, (B ∪ E)) are “simpler”
than (G, E). The general case will follow by induction.

In section 7, we prove that if a group G admits an essentially non-
maximal splitting over a parabolic group, then it is not cohopfian.

In section 8 we treat the case of infinitely ended groups. The proofs
here are based on the techniques developed in the previous sections.

Let us point out that the methods of Z. Sela’s paper [S2] do not work
for geometrically finite Kleinian groups containing parabolic subgroups of
rank greater than one. The main reason is that the crucial point of many
considerations in [S2] is the so called “shortening argument” which does
not work if the injectivity radius of the space tends to zero. In the present
paper we apply different methods. We also note that most of our arguments
do not require constant negative sectional curvature, what we really use is
strict negativity of the curvature and two purely algebraic facts: elementary
groups are virtually abelian and geometrically finite groups are finitely
presentable. However the elementary subgroups of the isometry group of an
Hadamard manifold of pinched negative curvature are in general virtually
nilpotent. Note that finitely generated virtually abelian groups are always
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not cohopfian (see section 7); whereas I. Belegradek has recently shown
that nilpotent groups can be cohopfian [Be].
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McShane for reading and correcting the manuscript. The second author is
deeply grateful to the Max-Planck Institute für Mathematik of Bonn for
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at the MPI where he worked on this paper. We thank the referees for many
valuable suggestions.

2 Preliminaries and Formulations of the Results

Let H
n be the real hyperbolic space of dimension n. A group G is Kleinian

if G is a discrete subgroup of the orientation preserving part of the isometry
group Isom+H

n of H
n. The limit set Λ(G) of G is the set of accumulation

points of some (any) orbit G(z) (z ∈ H
n).

Recall that a Kleinian group H ⊂ Isom+H
n is elementary if its limit set

Λ(H) ⊂ Sn−1∞ is a finite set, and H is a finite elementary group if and only if
Λ(H) = ∅. An infinite elementary group H is loxodromic (resp. parabolic)
if the limit set Λ(H) contains two points (resp. one point). By Bieber-
bach’s theorems (see e.g. [R]) every elementary subgroup H of Isom+H

n

is a finitely generated virtually abelian group, i.e. contains a free abelian
subgroup A of finite index. The rank of the group A is called the rank of
H. A loxodromic elementary group is always virtually cyclic (2-ended). A
parabolic subgroup of rank greater than one is a one-ended group.

Notation. If C is elementary and infinite, it is contained in a unique
maximal elementary subgroup of G. This subgroup will be denoted C̃ through-
out the paper.

A finitely generated Kleinian group G is geometrically finite if there
exists an ε > 0 so that the hyperbolic volume of an ε-neighborhood of
C(Λ(G))/G is finite, where C(Λ(G)) ⊂ H

n is the convex hull of the limit
set of G (i.e. the smallest convex subset of H

n invariant under the G-action)
is finite.

We say that G splits as a graph of groupsX∗ = (X, (Ce)e∈X1 , (Gv)v∈X0)
(where Ce and Gv denote respectively edge and vertex groups of the
graph X) if G is isomorphic to the fundamental group π1(X∗) in the sense
of Serre [S2]. The Bass–Serre tree T is the universal cover, in the sense of
Serre, of the graph X = T/G. When X has only one edge, we will say that
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G splits as an amalgamated free product (resp. an HNN-extension) if X
has two vertices (resp. one vertex).

We will need the following definitions:

Definition 2.1. Let G act on a tree T . A subset H of G is called elliptic
(resp. hyperbolic) in T (and in the graph T/G) if H fixes a point in T (resp.
does not fix a point in T ). If T is the Bass–Serre tree of a splitting of G as
a graph of groups, H is elliptic if and only if it is conjugate into a vertex
group of this graph.

We say that G splits relative to a family of subgroups (E1, . . . , En), or
that the pair (G, E) splits as a graph of groups, if G splits as a graph of
groups such that all the groups Ei are elliptic. A (G, E)-tree is a G-tree in
which Ei are elliptic for all i.

Definition 2.2. Suppose G splits as a graph of groups

G = π1(X,Ce, Gv) , (1)

and suppose that edge groups (i.e. the groups Ce) of this graph are ele-
mentary. We say that the edge stabilizer Ce is essentially non-maximal
if the maximal elementary subgroup C̃e is not elliptic in the splitting (1).
The splitting (1) is essentially non-maximal if there exists at least one such
edge. Otherwise we say that the splitting (1) is essentially maximal.

Theorem A. Let G ⊂ Isom+H
n be a non-elementary, geometrically finite,

one-ended Kleinian group without 2-torsion. Then G is cohopfian if and
only if the following two conditions are satisfied:

1) G has no essentially non-maximal splittings.

2) G does not split as an amalgamated free product G = A ∗C C̃, with
C̃ maximal elementary, such that the normal closure of the subgroup
C in C̃ is of infinite index in C̃. �

Note that if C is a non-trivial essentially non-maximal elementary sub-
group of G, then |C̃ : C| = ∞. Therefore C is a parabolic subgroup of G,
and rank (C) < rank C̃.

Corollary 2.3. Let G be a non-elementary, geometrically finite, one-
ended Kleinian group without 2-torsion. Suppose that every elementary
subgroupC over which G splits has a finite index in the maximal elementary
subgroup C̃, then G is cohopfian.

As explained in the Introduction, the proof of Theorem A is based on
the study of the relative case.
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Definition 2.4. Let G be a group, and E = (E1, . . . , En) a family of
elementary subgroups. An endomorphism of G is called an endomorphism
of the pair (G, E) if it sends each Ei into itself.

The pair (G, E) is cohopfian, if any injective endomorphism of (G, E) is
surjective. We say that the pair (G, E) is one ended if (G, E) does not split
over finite subgroups.

Theorem B. Let G ⊂ Isom+H
n be a non-elementary, geometrically finite,

Kleinian group without 2-torsion and E = {E1, . . . , Ek} be a family of
elementary subgroups of G. Suppose that the pair (G, E) is one-ended.
Then (G, E) is cohopfian if the following two conditions are satisfied:

1) The pair (G, E) has no essentially non-maximal splitting over elemen-
tary subgroups.

2) The pair (G, E) does not split as an amalgamated free product G =
A ∗C C̃, with C̃ maximal elementary and the normal closure of C in
C̃ is a subgroup of infinite index of C̃. �

Remark. The sufficiency part of Theorem A is a special case of Theorem B
if the family E is empty.

We will need the following definition of acylindrical splittings introduced
by Sela in the torsion free case and in [D1] in the general case:
Definition 2.5. Let G split as a graph of groups G = π1(X) with ele-
mentary edge stabilizers and T be the Bass–Serre tree dual to this splitting.

a) The torsion free case: The splitting (and the tree T ) isK-acylindrical
if the stabilizer of each segment of T of diameter at least K is trivial.

b) The general case: The G-tree T is called (K,Φ)-acylindrical if the
stabilizer of each segment on T of the diameter at least K is a finite
group. (Here Φ stands for “finite”.)
If G splits as a graph of groups G = π1(X) , one says that this
splitting is (K,Φ)-acylindrical if the Bass–Serre tree – the universal
cover of X – is (K,Φ)-acylindrical. �

Recall also (see e.g. [BF1]) that a G-tree is called irreducible if it is
minimal (i.e. there is no proper invariant subtree) and if the label of every
vertex of valence two properly contains the labels of both edges incident to
it (if the two edges are distinct). The relationship between Definitions 2.2
and 2.5 is established in the following lemma.
Lemma 2.6. LetG be a finitely presented Kleinian group, E = {E1, . . . , Ek}
be a family of elementary subgroups of G, and suppose that the pair (G, E)
is one-ended. The pair (G, E) has no essentially non-maximal splittings
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iff there exists a constant K such that each irreducible (G, E)-splitting
over elementary subgroups is (K,Φ)-acylindrical. In this case, every essen-
tially non-maximal splitting of (G, E) as an amalgamated free product or
an HNN-extension is (3,Φ)-acylindrical.

Proof. Suppose that the pair (G, E) has no essentially non-maximal split-
tings and let G act on a simplicial tree T with elementary edge stabilizers.
Then G splits as the graph of groups X = T/G. Let m denote the number
of edges of X. We will first show that the tree T is 2m+1-acylindrical. To
this end, suppose that l is an embedded path in T consisting of n successive
edges such that n ≥ 2m+1. We want to show that the stabilizer C of l is a
finite group. Arguing by contradiction suppose that the group C is infinite.
Since n ≥ 2m+ 1 the path l contains at least three distinct edges e1, e2, e3
which are in the same G-orbit. Let Ci be the stabilizer of the edge ei and
let αi and α′

i be its vertices (i = 1, 2, 3). Let e2 = g(e1) and e2 = h(e3) for
some g and h not belonging to C2. We have C ⊂

⋂3
i=1 Ci and C2 = gC1g

−1,
C2 = hC3h

−1.
As g−1C2g ∩ C2 ⊃ C and C is infinite, we deduce that g−1C̃2g = C̃2

where C̃2 is the unique maximal elementary subgroup of G containing C2.
The same property holds for h. Thus the elements g and h belong to
C̃2 which also contains C. As G does not have essentially non-maximal
splittings, it follows that C̃2 fixes a point on the tree T and so there is a
vertex v ∈ T whose stabilizer D contains C̃2.

Let [α′
i, αi+1] denote the segment of the path l between the vertices α′

i

and αi+1. A standard argument [S, I-6.4] shows that either the element g
fixes a point x in [α′

1, α2] or g acts on T without fixed points. We have
already shown that the latter case is impossible. Similarly, the element
h fixes a point y ∈ [α′

2, α3]. Now their common fixed point v belongs to
the same connected component of T \ e2 as one of the vertices x or y,
say x. Thus h fixes the path between y and v in T . This path contains
the edge e2, and so h ∈ C2 which is impossible. Thus the group C must be
finite. In particular, if the graph X contains only one edge, the splitting X
(i.e. amalgam or an HNN-extension) is (3,Φ)-acylindrical.

By the result of Bestvina–Feighn [BF2] there is a uniform upper bound
ν(G) < ∞ for the number of edges of all irreducible splittings of G with
elementary edge stabilizers. Thus, setting K = 2ν(G) + 1 we obtain the
result. The necessary condition is proved.

Conversely, suppose that the group has an essentially non-maximal
splitting G = π1(X,Ce, Gv) relatively to the system E . As the pair (G, E)



402 T. DELZANT AND L. POTYAGAILO GAFA

is one ended, every edge group Ce = C of X is an infinite elementary sub-
group. Furthermore, there exists an edge e such that C = Ce is a subgroup
of infinite index of the maximal parabolic subgroup C̃ ⊂ G which does not
fix a point in T – universal cover of X. Since the group C̃ is a finitely
generated virtually abelian group, it then follows from [S, 6.5, Proposition
27] that there is an element t in C̃ acting hyperbolically on T . The group
C̃ contains an abelian subgroup of finite index C ′ and, so there exists k ∈ N

such that tk ∈ C ′, and tk centralizes the group C0 = C ∩C ′. Therefore, the
group C0 also fixes the edges e, tk(e), . . . , tnk(e), . . . , and, hence a segment
of arbitrarily big length. We see that the tree T is not (K,Φ)-acylindrical
for any K ∈ N. The lemma follows. �

In the final section we will need a somewhat different notion of acylin-
dricity for splittings of an infinitely ended group G over finite subgroups.
We call such a splitting strictly K-acylindrical if the stabilizer of each seg-
ment of the corresponding Bass–Serre tree T of the diameter at least K is
a proper subgroup of some edge stabilizer of T . In section 8, we prove the
following theorem:

Theorem C. Let G ⊂ Isom+H
n be a non-elementary, geometrically finite

Kleinian group without 2-torsion. Then G is cohopfian if and only if the
following three conditions are satisfied:

1) G does not have essentially non-maximal splittings over infinite ele-
mentary subgroups.

2) G does not split as an amalgamated free product G = A∗C C̃, so that
the normal closure of the subgroup C in C̃ is of infinite index in C̃.

3) Every splitting of G over finite groups is strictly M -acylindrical for a
uniform constant M . �

Remark 2.7. By Lemma 2.6, condition 1 can be replaced by the following:

1) There exists a constant K such that each irreducible splitting of G
over an infinite elementary subgroup is (K,Φ)-acylindrical. �

We now introduce some terminology which will be used in the sequel.
A G-tree T̂ is called a resolution of a G-tree T if there exists a G-

equivariant simplicial map ρ : T̂ → T .
Suppose that T is a (G, E)-tree and ϕ : (G, E) → (G, E) is a monomor-

phism. Let ϕ∗T denote the G-tree defined as follows: as metric space,
ϕ∗T is T , but the action of G on T is obtained from the original action by
composing with ϕ,

gϕ∗T (x) = ϕ(g)T (x) .
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The stabilizer of a vertex v (edge e) of the tree ϕ∗T is equal to ϕ−1(Gv)
(respectively ϕ−1(Ce)) where Gv (respectively Ce) is the stabilizer of v
(respectively e) on T .

A marking of the G-tree T is a subtree t of T which is a fundamental
domain for the action of the group G on T. A pair (T, t) will be called
a marked tree where t is a marking of T . If t is a marking of T and
f : G → G is an injective endomorphism we denote by t̃ a marking of
the tree f∗T containing t setwise. Two markings t, t′ of the tree T are
isomorphic if there exists an automorphism ϕ of G and a G-equivariant
isometry I : ϕ∗T → T sending t to t′. Note that if the graph T/G is finite
there are at most finitely many different markings of T up to isomorphism.
We say that the G-tree T dominates the G-tree T ′ if there exists a resolution
ρ : T → ϕ∗T ′ for some automorphism ϕ of G. Similarly, we say that the
marked tree (T, t) dominates the marked G-tree (T ′, t′) if there exists a
resolution ρ : (T, t) → (ϕ∗T ′, t′) sending the marking t to the marking t′.

3 Finding a Splitting of a Non-cohopfian Pair (G, E)

Let G be a non-cohopfian Kleinian group, and f : G → G be an injective
non-surjective endomorphism, then the result of [OP] implies that G admits
a non-trivial action on a simplicial tree with elementary edge stabilizers.
The following proposition provides a relative version of this result:

Proposition 3.1. Let G ⊂ Isom+H
n be a non-elementary, geometrically

finite Kleinian group without 2-torsion and E = {E1, . . . , Ek} is a finite
family of elementary subgroups of G. Suppose that the pair (G, E) is non-
cohopfian and let f : (G, E) → (G, E) be an injective endomorphism which
is not surjective. Then (G, E) has a non-trivial splitting over elementary
subgroups.

Proof. We may assume (w.l.o.g.) that all the subgroups Ei are infinite
maximal elementary subgroups of G and Ei are loxodromic for the first s
subgroups from E (0 ≤ s ≤ k). Suppose also that the elements γi generate
the infinite cyclic subgroup 〈γi〉 of finite index of Ei (i = 1, . . . , s). Let Aγi

denote the invariant axis of the element γi and dist�n ( · ) be the hyperbolic
distance between subsets of H

n (i = 1, . . . , s). We start with the following:

Lemma 3.2. Suppose that there exists i ∈ {1, . . . , s} such that for all
g ∈ G the quantity dist�n (Aγi , f

m(g)(Aγi )) is bounded. Then, there exist
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natural numbersm0, n0 ∈ N and elements αm ∈ G such that for allm > m0:

fm(γn0
i ) = αmf

m0(γn0
i )α−1

m , km ∈ Z .

Proof of the lemma. We will need the following result:

Uniform Klein Combination (UKC) Theorem (M. Gromov [G],
T. Delzant [D3], R.C. Alperin and G. Noskov [AN]). Suppose G is a geomet-
rically finite group, γ a loxodromic element and E its maximal elementary
subgroup. Then there exists N such that for any element a ∈ G \ E the
elements γN and aγNa−1 freely generate the free group F2.

Assuming this theorem we shall prove the lemma. Let γi = γ and
E = Ei. As the group E does not have 2-torsion it is well known [DuD,
6.12] that E = K�C where C = 〈γ〉 ∼= Z and K is a finite group of order l.
There exists k ∈ N such that γk centralizes E. It is then easy to check that
there exists q ∈ N so that f(γkl) = γklq. Setting γ̃ = γklN , where N is given
by the above UKC theorem, we have f(γ̃) = γ̃q.

By hypothesis, for every element g ∈ G there exists a constant K < ∞
such that

dist�n

(
Aγ , f

m(g)(Aγ)
)
≤ K (m ∈ N) .

Set gm = fm(g), and choose points wm ∈ Aγ and ym ∈ gm(Aγ) so that
d�n (wm, ym) = dist�n (Aγ , gm(Aγ)) (j = 1, 2; m ∈ N). Let w′

m be the point
g−1
m (ym) ∈ Aγ , then d�n (wm, gm(w′

m)) ≤ K. As the group 〈γ̃〉 is a finite
index subgroup of E, it acts co-compactly on the axis Aγ . So there exist
integers km, rm such that wm = γ̃km(zm), w′

m = γ̃rm(z′m), zm, z′m ∈ Ai and
d�n (zm, z′m) ≤ K1 < +∞ for some K1. We obtain

d�n

(
zm, γ̃

−kmgmγ̃
rm(zm)

)
≤ K +K1 < +∞ .

As the group G is discrete and γ̃−kmgmγ̃
rm ∈ G (m ∈ N), it follows that

∃m0 such that ∀m > m0 : γ̃−kmgmγ̃
rm = γ̃−km0gm0 γ̃

−rm0 .
We deduce that for every g ∈ G there exists m0 ∈ N such that ∀m > m0

and there exist integers km and rm such that

fm(g) = γ̃kmfm0(g)γ̃rm (j = 1, 2) , (∗)

where km := km− km0 , rm := −rm− rm0 . Now pick any element a ∈ G \E
and set g = aγ̃a−1.

We can also choose m0 so that (∗) holds not only for g but also for g2

(after replacing km (resp. rm) by tm (resp. sm)). We obtain

fm(g2) = γ̃tmfm0(g2)γ̃sm = γ̃kmfm0(g)γ̃rm+kmfm0(g)γ̃rm . (∗∗)
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As fm0(E) ⊂ E, the subgroup f−m0(E) is elementary (being isomorphic
to fm0(f−m0(E))) and contains E. By the maximality of the latter, we
get f−m0(E) = E. So fm(a) is an element which does not belong to E
(∀m ∈ N).

The UKC theorem now yields that the elements γN and hm0 =
fm0(a)γNfm0(a−1) freely generate the free group F2. As γ̃ = γklN and
f(γ̃) = γ̃q, we obtain that fm0(g) = (hm0)

qm0kl. Thus, the elements γ̃ and
fm0(g) also generate a free group. Then it follows from (∗∗) that rm = −km
and so

fm(g) = γ̃kmfm0(g)γ̃−km = γ̃kmfm0(aγklNa−1)γ̃−km, m > m0 .

proving the lemma. �

Proof of the proposition. Let us choose a generating system S =
{γ1, . . . , γr, a1, . . . , al} of G where γi are generators of subgroups Ei ∈ E
and the elements aj do not belong to E (1 ≤ i ≤ l). If for some i ∈ {1, . . . , s}
there exists an element bi ∈ G such that the function dist�n (Aγi ,f

m(bi)(Aγi))
is not bounded we add the elements bi and biγib

−1
i to the system S and

retain the same notation S for it. Consider now the following displacement
function:

dm(f, S,G) = min
x∈�n

max
s∈S

d�n

(
x, fm(s)(x)

)
. (5)

It is proved in [OP] that if the map f is not surjective then for any gen-
erating system S the function dm(f, S,G) is not bounded (m ∈ N). In
this case, by the theorem of Bestvina–Paulin [B1], [P], the group G acts
stably and non-trivially on a real tree T� with elementary edge stabilizers.
Furthermore, it is proven in [B1], [P] that

lim
m→∞

l(fm(g))
dm(f, S,G)

= L�(g) , (6)

where l(g) = inf d�n (x, g(x)) and L�(g) = inf dT�(x, g(x)) are the trans-
lation lengths in the hyperbolic space H

n and in the tree T� respectively.
By Rips’ theorem [BF1] there exists a non-trivial simplicial G-tree with
elementary edge stabilizers.

Arguing by contradiction suppose that for every simplicial G-tree one
of the subgroups Ei acts hyperbolically on it (i = 1, . . . , k). By the relative
version of Rips’ theorem [BF1, Theorem 9.6] there exists an element γ ∈ E ,
which acts hyperbolically on the real tree T� too, implying that the quantity
L�(γ) is strictly positive.
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After passing to a subsequence, we may choose an element g ∈ S and a
point xm ∈ H

n which realizes the min-max in (5),

dm(f, S,G) = d�n

(
xm, f

m(g)(xm)
)
,

and such that the following inequality holds:

0 < lim
m→∞

l(fm(γ))
d�n (xm, fm(g)(xm))

≤ 1 .

Note that up to passing to a further subsequence we may suppose that
for every m ∈ N the group fm(γ) generates infinite virtually cyclic lox-
odromic group. Indeed if fm(γ) is parabolic (∀m > m0) then (6) yields
that γ fixes a point in the tree T�, which is impossible. So we may assume
(w.l.o.g.) that γ ∈ E1. As fm(E1) ⊂ E1 the group fm(E1) is an infinite
virtually cyclic loxodromic subgroup of G leaving the axis Aγ invariant
(m ∈ N).

It follows from Lemma 3.2 that there exists an element b ∈ G such that
the distance dist�n (Aγi , f

m(b)(Aγ)) is unbounded; otherwise the element γ
would act elliptically on the tree T� as fm(γn0) is conjugate to the element
fm0(γn0) (∀m > m0). Furthermore we may assume by construction, that
the system S contains the elements b and h = bγb−1. Set hm = fm(h) =
bmf

m(γ)b−1
m . Notice that l(hm) = l(fm(γ)). To finish the proof of the

proposition we will show that γ cannot act hyperbolically on T�. There are
two cases according to whether or not the quantity Dm = dist�n (xm, Aγ)
remains bounded.

Case 1. Dm is unbounded.
As γ ∈ S, so d�n (fm(γ)(xm), xm) < dm(f, S,G). Let us choose a point

wm ∈ Aγ which realizes the distance Dm. Since l(hm) = l(fm(γ)) we obtain

l(hm)
dm(f, S,G)

=
l(fm(γ))
dm(f, S,G)

=
d�n (wm, fm(γ)(wm))

dm(f, S,G)

≤ e−Dm
d�n (xm, fm(γ)(xm))

dm(f, S,G)
≤ e−Dm → 0 ,

implying that the element h = bγb−1 acts elliptically on T� and, so is γ. A
contradiction.

Case 2. Dm is bounded.
Since h ∈ S, so d�n (hm(xm), xm) < dm(f, S,G). Choose zm ∈ Ahm =

bm(Aγ) such that d�n (xm, zm) = dist�n (xm, Ahm) and denote this distance
Mmx. As dist�n (Aγ , bm(Aγ)) → ∞ we obtain that up to a subsequence
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Mm → +∞ (m → +∞). Then

l(hm)
dm(f, S,G)

≤ e−Mm
d�n (hm(xm), xm)

dm(f, S,G)
→ 0 ,

As before it follows that the element γ acts elliptically on the tree T�
contradicting our hypothesis. Therefore, we have shown that there exists
a non-trivial (G, E)-tree. The proposition is proved. �

4 Accessibility of Finitely Presented Groups

In this section we collect some results about different versions of accessi-
bility (acylindrical and hierarchical) for finitely presented groups. Let G
denote an abstract (not necessarily Kleinian) group.

We will consider decompositions of finitely presented groups over so
called elementary subgroups which we now define axiomatically

Definition 4.1. Let G be a finitely presented group and C a fixed
family of subgroups of G. We call the family C and every element C ∈ C
elementary if the following axioms are satisfied:

(1) If C ∈ C then every subgroup and every conjugate of C is in C.

(2) Every infinite subgroup belonging to C is contained in a unique max-
imal subgroup C̃ so that C̃ ∈ C. The union of an ascending sequence
of finite elementary groups is elementary.

(3) Every subgroup of C satisfies the following fixed-point condition:
whenever C acts on a simplicial tree τ , C preserves a point in τ , or
a point on its ideal boundary ∂τ or a pair of points on ∂τ (possibly
permuting them).

(4) If C ∈ C is an infinite maximal elementary subgroup then its normal-
izer in G is contained in C, i.e. gCg−1 = C implies that g ∈ C for all
g ∈ G.

Examples of elementary families are well known in the geometry of neg-
atively curved spaces. Namely, discrete subgroups of the hyperbolic space
H
n or, more generally, Hadamard spaces with a pinched negative curvature

are elementary in the classical sense if their limit set is a finite set. In this
case they are also elementary according to our axioms (1)–(4). Indeed, the
properties (1), (2) and (4) are easy exercises, the only property which is
non-trivial is axiom (3) which follows from Margulis’ lemma saying that
every such group is virtually nilpotent (abelian in the constant curvature
case) and from Tits’ theorem [Ti] implying that every virtually nilpotent
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group satisfies (3). Another important example one obtains by considering
elementary subgroups (i.e. virtually cyclic) of word-hyperbolic (Gromov)
groups which are also elementary according to the axioms (1)–(4).

A finite hierarchy of length k of the group G over elementary subgroups
is defined inductively (on k) as follows ([DP]):

Definition 4.2. Let G be a group and C a family of elementary subgroups
of G. If G does not split as an amalgamated free product or an HNN-
extension over a subgroup in C, we say that G admits a hierarchy (of
length 0). We say that G admits a finite hierarchy of length k if G splits
as G0 = G1

1 ∗C G1
2 or G = G1

1∗C (C ∈ C), and one of the groups G1
1 or

G1
2 admits a finite hierarchy of length k − 1 and the other admits a finite

hierarchy of length at most k− 1. We say that G admits a hierarchy if this
holds for some integer k (which we call the length of the hierarchy.)

We define then the number l(G) to be the minimal number of the lengths
among all hierarchies of G. Similarly l(G, E) denotes the minimal number
of the lengths of all hierarchies of G such that all the subgroups in E are
elliptic in every decomposition appearing in this hierarchy.

Hierarchical Accessibility Theorem. Let G be a finitely presented
group without 2-torsion and C ⊂ G an elementary family of subgroups. Let
E = {E1, . . . , Ek} be a fixed finite subset of C. Then (G, E) has a finite
hierarchy over elementary subgroups.

In other words, either l(G, E) = 0, or there exists a decomposition of
(G, E) as an amalgamated free product (or an HNN-extension)

G = A ∗C B , (G = A∗C) ,

such that
max

{
l(A,A ∩ E), l(B,B ∩ E)

}
< l(G, E) . (3)

Proof. The proof of the main Theorem 3.6 of the paper [DP], can easily be
adapted to the relative case, by keeping track of the peripheral system E .
Let us sketch this proof. Recall that in order to prove Theorem 3.2 in
[DP] we used a version of an invariant c( · ) (called complexity) of finitely
presented groups which first appeared in [D2]. Consider a simplicial devel-
opable orbihedron Π of dimension 2 whose fundamental group is G (see [H])
such that the vertex stabilizers of Π are in C and every subgroup Ei fixes
a vertex xi ∈ Π (i = 1, . . . , k). We define first c(Π, E) to be the pair
(T (Π), b1(Π)), where T (Π) is the number of 2-dimensional faces of Π and
b1(Π) is the first Betti number of the underlying topological space of Π.
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Then c(G, E) is defined to be the infimum (for the lexicographical order)
over all such G-orbihedra Π.

If T is a (G, E)-tree, the main result of [DP, Theorem 3.2] produces a
simplicial tree T̂ and a resolution f : T̂ → T so that the invariant c( · ) of the
vertex stabilizers of T̂ strictly decreases. All we need to check is that the
groups Ei are still elliptic on the tree T̂ . To see this consider the orbihedron
universal cover P of the complex Π. The axioms of Definition 4.1 allow
one to construct a G-equivariant map ρ : P → T ∪ ∂T (see [DP, 4.1]).
Recall that the tree T̂ is constructed to be the dual tree to the lamination
Λ ⊂ P whose leaves are preimages under ρ of the midpoints of the edges
of T . Let Ei ∈ E be an elementary subgroup which fixes a vertex xi ∈ P .
By hypothesis it also fixes a vertex vi in the tree T . As the map f is
equivariant, every element g ∈ Ei stabilizes a component Ωi of P \Λ which
contains xi. Thus the group Ei is contained in the stabilizer Gv̂i

of the
vertex v̂i corresponding to the component Ωi which is a vertex stabilizer
of T̂ . The result now follows by the argument of [DP, Theorem 3.6]. �

Acylindrical Superaccessibility Theorem (relative to a subset). Let
G be a finitely presented group and E1, . . . , Eq a fixed finite set of infinite
elementary subgroups of G. Suppose that the pair (G, E) is one-ended and
there is a finite bound for orders of finite subgroups of G. Then for each
K ∈ R there exists a finite number of G-trees T1, . . . , TM such that all
subgroups Ei are elliptic on Tj , and for every minimal (K,Φ)-acylindrical
(G, E)-tree T , there exist an automorphism ϕ of G sending each group Ei
into itself and a resolution ϕ∗(Ti) → T (i ∈ {1, . . . ,M}).

This theorem in the torsion-free case (i.e. for K-acylindrical splittings)
in the absolute form (i.e. without the claim about subgroupsEi) was proved
by Sela [S1]. The absolute form of the case with torsion is given in [D1].
The argument of [D1] can be adapted to the relative case along the following
lines.
Proof. Let Π be a finite 2-dimensional CW-complex with π1(Π) ∼= G all of
whose 2-faces are either bigons or triangles. Suppose also that Π contains
subcomplexes Bi (i = 1, . . . , q) whose fundamental groups are isomorphic
to Ei. One can construct a G-equivariant simplicial map ρ : P → T where
P is the universal cover of Π. Let Λ̃ denote a lamination of P whose leaves
are preimages under ρ of the midpoints of the edges of T . By construction,
Λ̃ is a G-equivariant lamination and let Λ denote Λ̃/G. One defines a sub-
graph Λk of Λ by describing its intersection with each face ∆ of Π. Namely
∆ ∩ Λk are those leaves of Λ in ∆ whose image under ρ is situated within



410 T. DELZANT AND L. POTYAGAILO GAFA

a distance at least k from the images of the vertices or the center of ∆. It
is proven in [D1] (see Lemma 1.5) that the action on T of the fundamental
group of each connected component of Λk pointwise fixes a segment of the
length k. It follows from the hypothesis that the fundamental group of each
connected component of Λk is finite.

One can collapse all the leaves of Λk and all sub-complexes Bi to
points. As the number of faces of Π and leaves in Λ \ Λk is uniformly
bounded, we note that the number of faces and edges of the resulting orbi-
hedron Π′ is uniformly bounded (here one uses the minimality of the tree T
[D1, Lemmas 2.1, 2.2]). Each vertex stabilizer of Π′ is either finite or is
one of the groups Ei. As the orders of finite subgroups of G are uniformly
bounded, there are only finitely many orbihedrons with all these proper-
ties, so Π′ must belong to a finite set of orbihedrons {Ω1, . . . ,ΩM}, with
M depending only on the group G and the system of its subgroups Ei
(i = 1, . . . , q).

There exists a simplicial map θk between the complexes Π′ and Ωk

(for some k ∈ {1, . . . ,M}). This map induces an isomorphism (θk)∗ :
G→ πo1(Ωk) where πo1(Ωk) is the fundamental group of Ωk (in the sense of
orbihedra). Notice that θk lifts to an equivariant map θ̃k between P ′ and
Ω̃k which are the orbihedron universal covers of Π′ and Ωk correspondingly.
If θ̃k(xi) = yj where the stabilizer of the point xi ∈ P ′ is Ei and yj ∈ Ωk

(i, j ∈ {1, . . . , q}, k ∈ {1, . . . ,M}) then we have (θk)∗(Cj) ⊂ Stab(yj) = Cj .
After possibly replacing θk by a power we may suppose that (θk)∗(Ei) ⊂ Ei.
Following [D1, Theorem 3.1] let us consider the dual tree τ̂ to the lamination
which is the image of the lamination Λ in P ′ and let Tk be the same for
the orbihedron Ωk. Arguing as in the proof of the hierarchical accessibility
theorem, we obtain that the groups Ei are elliptic in the tree τ̂ and there
is an equivariant simplicial map τ̂ → Tk. The actions of the groups G and
πo1(Ωk) on the trees τ̂ and Tk respectively are conjugate by the map θk.
Thus we have τ̂ = θk

∗(τk) and the theorem follows. �

Definition 4.3. Let F be graph of groups decomposition of the pair
(G, E). We say that the graph F1 refines F if it is obtained from F by
replacing a vertex v ∈ F0 by a non-trivial graph of groups decomposition
Fv of the pair (Gv, E ∩ S), where S is the set of edge groups of F .

A sequence {Fn} of graphs of groups decompositions of (G, E) is called
a refining sequence if for every n the graph Fn+1 refines Fn. We call the
refining sequence {Fn} stabilizing if there exists n0 such that Fn = Fn0 for
all n > n0; and non-stabilizing otherwise.
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We need another accessibility result, which we are now going to prove,
for refined sequences of splittings of finitely presented groups. Let G de-
note a finitely presented group equipped with the family E of elementary
subgroups.

Suppose {Fn} is a sequence of decompositions of the pair (G, E) so that
the graph Fn+1 is obtained from Fn by making an elementary refinement;
i.e. the label of some vertex v of Fn is replaced by an elementary splitting
A ∗C B or A∗C , in which all the edge groups of the graph Fn are elliptic.
Collapsing a vertex is the inverse operation to the refinement. We call an
edge e of a graph of groups of (G, E) non-trivial if it is a loop or if the
label of both of its vertices do not coincide with the label of e, otherwise we
call e trivial . Likewise, we call a vertex v of valence two trivial if its label
coincides with the label of one of the edges incident to it. Note that the
label of a trivial vertex is necessarily an elementary subgroup of G.

Bestvina–Feighn’s accessibility theorem [BF2] ensures that there exists
m such that all edges (and vertices) in Fn\Fm are trivial for n > m. Indeed,
if it is not so then collapsing all the edges of the graph Fn whose labels
coincide with the label of one of its vertices, we will obtain an irreducible
graph of groups decomposition of (G, E) with elementary edge stabilizers
having an unbounded number of edges (when n→ +∞); this is prohibited
by [BF2].

Suppose now that the group G admits a non-stabilizing sequence {Fn}
then for some vertex vm whose label is Am we will have an infinite chain
of elementary refinements,

Am = Am+1 ∗Cm+1 Cm , Am+1 = Am+2 ∗Cm+2 Cm+1 ,

. . . Am+k = Am+k+1 ∗Cm+k+1
Cm+k . . . ,

(4)

where Cm+k is an infinite elementary subgroup of G (as G is one ended
and splits over Cm+k). By Definition 4.3 each splitting in (4) is non-trivial,
so we have Cm+k � Cm+k+1. It also follows that for all but finitely many
indices |Cm+k : Cm+k+1| <∞ as the rank of the maximal elementary group
C̃m+k is finite. We obtain from (4) the following splitting in which all edges
are trivial:

Am=
(
(...((Cm∗Cm+1Cm+1)∗Cm+2Cm+2) ∗ ... ∗Cm+k

Cm+k)∗Cm+k+1
Am+k+1

)
,

∀ k ∈ N . (4′)

Let Em denote the union of E and the labels of the edges incident to the
vertex vm. We will need the following lemma.
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Lemma 4.4. Suppose that the pair (G, E) has no essentially non-maximal
splittings and admits a non-stabilizing sequence (4). Then the pair (Am, Em)
splits as

Am = A ∗C C̃m , rank C < rank C̃m ,

where C ⊂
⋂
i≥1Cm+i, A ⊂

⋂
i≥1Am+i; and C̃m is maximal elementary

subgroup of Am containing C.

Remark 4.5. We thank M. Bestvina for suggesting how to prove this
lemma. In the paper [Bo] a similar statement is proved (Theorem 6.1).

Before we give the proof of the lemma we first provide an example
of infinite non-stabilizing sequence of splittings which we borrow from
[BF1, p. 450].

Example. Take the free group F2 = F (x, y). Then we have the sequence
of non-trivial splittings (compare with (4)),

F2 = 〈x〉∗〈x2〉〈x2, y〉 ; 〈x2, y〉 = 〈x2〉∗〈x4〉〈x4, y〉 ; 〈x4, y〉 = 〈x4〉∗〈x8〉〈x8, y〉...

Note that each of these splittings is non-trivial but altogether they give a
non-trivial splitting of F2 where all edges are trivial,

F2 =
(
. . . ((〈x〉 ∗〈x2〉 〈x2〉)∗〈x4〉) ∗ · · · ∗〈x2k〉 〈x2k, y〉

)
∀ k ∈ N .

The group F2 splits as 〈x〉 ∗ 〈y〉 where the edge group is obtained as id =⋂
k〈x2k〉 and the other vertex group is

〈y〉 =
⋂

k

〈x2k, y〉 .

Proof of Lemma 4.4. Note that, since all edge groups of the graph Fn are
quasi-convex subgroups of G, it follows from the proof of [K, Lemma 3.5]
that every vertex group of Fn is a quasi-convex subgroup of G. Then by
[Sw], we have that Am is a geometrically finite group, in particular, it is a
finitely presented group.

For every k ∈ N let Tk denote the Bass–Serre Am-tree corresponding
to the splitting (4′) (m is fixed). Let P be a simply connected complex on
which Am acts co-compactly so that every subgroup Ei ∈ E fixes a point
pi ∈ P (i = 1, . . . , q).

Proceeding now as in the proof of the acylindricity theorem, we con-
struct a Am-equivariant simplicial map fk : P → Tk. To this end for a point
p0 ∈ P we set fk(p0) = x0 (e.g. the vertex whose stabilizer is Cm). Then
extend this equivariantly by setting fk(gp0) = gx0 (g ∈ Am). Consider
now the lamination Λk of the complex P which is the pullback by fk of the
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midpoints of the tree Tk. The components of Λk are called tracks. Note
that the tree Tk is obtained from Tk+1 by collapsing the orbit of one edge.
It follows from this construction that Λk+1 is obtained from Λk by adding
the Am-orbit of the tracks dual to the added edge in Tk+1.

As the complex Π = P/Am is finite, there exists a natural number k0

such that for all k ≥ k0 the tracks in Λk \ Λk0 project into finitely many
families of mutually parallel graphs in Π [Du] (see Figure 1). Let C be the
common stabilizer of an infinite sequence of such tracks. The map fk is
equivariant, so for every k there exists nk > k such that C ⊂ Cnk

. As ∀ k
Ck ⊂ Ck−1 and k → ∞, we obtain that C ⊂

⋂
k Ck. Collapsing all tracks

in P having the same stabilizer to one track we obtain a dual tree to this
system of tracks which gives rise to a splitting of Am over C. Since the
sequence Ck is strictly decreasing we also have |Cm : C| = ∞. Similarly, by
the equivariance of fk it follows that the stabilizers of the complementary
components to the tracks are either subgroups of Ck or

⋂
k Ak.

Figure 1: The complex Π = P/Am

Let Xm denote the corresponding graph of groups decomposition of Am.
The splitting given by Xm is non-trivial (as the decomposition (4′) is non-
trivial for every k) and is relative to the system of subgroups Em. So
it refines the decomposition Fm of G. As the pair (G, E) does not have
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essentially non-maximal splittings, the splitting Xm is also essentially non-
maximal. Furthermore, by the choice of m, the graph Xm may only contain
trivial edges and vertices. Thus, there is only one non-elementary vertex
group A ⊂

⋂
Ai, and all the other vertex groups are subgroups of Cm. Now

the maximal elementary subgroup C̃m of Am containing C is elliptic in Xm,
so C̃m is conjugate either into A or into Cm. The former case is impossible
by the non-triviality of the splitting, so C̃m = Cm. So collapsing all vertices
of Xm whose labels are elementary, we still obtain the non-trivial one edge
splitting Am = A ∗C Cm (note that we cannot get HNN-extension which
would be essentially non-maximal in this case). The lemma is proved. �

It follows from the lemma that the group C is infinite as the pair (G, E)
is one-ended.

5 Finding a G-tree Invariant under Endomorphism

Let G be a Kleinian group and E = {E1, . . . , Ek} be a fixed finite family of
elementary subgroups of G.

Suppose that the pair (G, E) is not cohopfian. Then Proposition 3.1 tells
us that (G, E) splits as an amalgamated free product (or an HNN-extension)
over an elementary subgroup. We get infinitely many such splittings in the
following proposition.

Proposition 5.1. Let G be a non-elementary, geometrically finite,
Kleinian group without 2-torsion endowed with the system E . Then the
following assertions are true:

1) If f : (G, E) → (G, E) is a non-surjective monomorphism, then there
exists a (G, E)-tree τ so that for every n ∈ N the tree fn∗(τ) is a
non-trivial (G, E)-tree.

2) If in addition, the pair (G, E) is one-ended and has no essentially non-
maximal splittings then there exists a (G, E)-tree J such that for all
n ∈ N, the tree fn∗(J) is a non-trivial, (K,Φ)-acylindrical (G, E)-tree
for some uniform constant K.

Proof. We prove the first part of the proposition by induction on the
length l(·, E) of a hierarchy of (G, E). Note that by Proposition 3.1 we have
l(G, E) ≥ 1. By the hierarchical accessibility theorem, (G, E) splits as an
amalgamated free product or HNN, G = A ∗C B or G = A∗C (C ∈ C) with

max
{
l(A,A ∩ E), l(B,B ∩ E)

}
< l(G, E) .

Let T denote the Bass–Serre tree dual to this splitting. If for all n ∈ N the
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trees fn∗(T ) are non-trivial, let T = τ. If not, there exists m ∈ N such that
up to conjugation fm(G) is a subgroup of A or B, say A. As f is injective,
the subgroup A is a non-elementary group and fm(A) � A.

As we have noticed in the previous chapter from [K], [Sw], it follows
that A and B are finitely presented groups.

So let us first check the statement of the proposition when l(G, E) = 1.
Then l(A,A ∩ E) = 0 and a contradiction: the pair (A, E ∩ A) is not
cohopfian, so Proposition 3.1 applied to A implies that A splits non-trivially
relatively to A ∩ E .

Suppose now that l(G, E) > 1; as f is a non-surjective monomorphism of
(A,A∩E) and l(A, E ∩A) < l(G, E) we can apply the induction hypothesis
to A. So there exists a non-trivial (A, E ∩ A)-tree TA such that fn∗(TA)
is a non-trivial (A, E ∩ A)-tree for all n ∈ N. Let τ denote f∗(TA) which
can be also considered as a G-tree (as f(G) ⊂ A). We get a sequence of
G-trees fn∗(τ) (n ∈ N), which are all non-trivial A-trees when restricted
to A. Whence fn∗(τ) is a non-trivial G-tree (∀n ∈ N).

If E ∈ E then by the induction hypothesis, the group E∩A is a subgroup
of a vertex stabilizer of τ , say Gv. Thus, f−n(E ∩ A) is contained in the
vertex stabilizer f−n(Gv) of the tree fn∗τ . Since f(Ei) ⊂ Ei we obtain
Ei ⊂ f−n(Ei ∩A) ⊂ f−n(Gv). We have shown that the system E is elliptic
in the trees fn∗τ, and therefore fn∗τ is a non-trivial (G, E)-tree for every
n ∈ N. The first part of the proposition is proved.

The graph τ/G may be reducible. In this case we collapse in τ/G
every edge whose label is equal to the label of one of its vertices. Denote
J the universal cover (in the sense of Serre) of this new graph of groups
decomposition of G. As G acts on τ without global fixed points, then
obviously, G also acts without global fixed points on J, and the system
E is elliptic on J . Furthermore, as the set of the non-elementary vertex
stabilizers of the trees J and τ is the same, it follows from part 1) that
the trees fn∗J are also non-trivial (G, E)-trees (∀n ∈ N). The pair (G, E)
is one-ended and has no essentially non-maximal splittings, so Lemma 2.6
now yields that the reduced (G, E)-tree J is (K,Φ)-acylindrical for some
uniform constant K. Then the trees fn∗J are also (K,Φ)-acylindrical for
the same constant K. Indeed, otherwise there is a segment l of length K on
the tree fn∗(J) whose pointwise stabilizer is an infinite subgroup C. Thus
fn(C) is an infinite subgroup fixing pointwise the segment l on J too. This
is impossible. �

Proposition 5.2. Suppose that the pair (G, E) is one-ended and does
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not have essentially non-maximal splittings. Let f : (G, E) → (G, E) be a
non-surjective monomorphism. Then there exist a non-trivial (G, E)-tree
T with elementary edge stabilizers and a non-surjective monomorphism
F : (G, E) → (G, E) such that F (Gs) ⊂ Gs for every vertex (resp. edge)
stabilizer Gs.

Proof. Suppose f : (G, E) → (G, E) is an injective non-surjective endo-
morphism. We first claim that there exist a non-surjective monomorphism
F of (G, E) and a marked (G, E)-tree (T, t) which dominates (F ∗T, t̃) (see
Preliminaries for the terminology).

To be able to apply the acylindrical superaccessibility theorem, we con-
sider the minimal G-subtree Jn of fn∗J. Let j be a marking of J and let j̃n
be the marking of Jn containing j. By Proposition 5.1 there exists a tree
J so that fn∗(J) is a non-trivial (K,Φ)-acylindrical (G, E)-tree for some
uniform constant K. Clearly, the same is true for the minimal subtree Jn.

By the acylindrical superaccessibility theorem, there exists a family
of (G, E)-trees τ1, . . . , τm such that for every minimal (K,Φ)-acylindrical
(G, E)-tree τ , there exists i ∈ {1, . . . ,m} that the tree τi dominates τ . Fur-
thermore, the number of possible markings of the trees τi (i ∈ {1, . . . ,m}) is
finite (up to automorphism of (G, E)). So for a given resolution ρi : τi → τ
we can find a marking ti ⊂ ρ−1

i (t) of the tree τi such that ρi : (τi, ti) → (τ, t).
Thus, we obtain a finite number of marked trees (τ1, t1), . . . , (τM , tM )
(M ≥ m) such that for every minimal marked (G, E)-tree (τ, t) there exists
a marked tree (τi, ti) dominating (τ, t).

Passing to a subsequence, we can assume that there is a marked tree
(τi, ti) which dominates all the trees (Jn, j̃n). Note that, for every k ∈ N

the tree fk∗τi is a non-trivial (G, E)-tree, as it dominates the non-trivial
tree (fk+n)∗J for some n ∈ N.

Assuming (w.l.o.g.) that the above set of marked trees {(τ1, t1), . . . ,
(τM , tM )} contains (J, j), consider the following order relation on the set
of indices {1, 2, . . . ,M}. We say that i ≥ k if there exists an injective
endomorphism F of (G, E) such that F is surjective iff f is, and the marked
tree (τi, ti) dominates the marked tree (F ∗(τk), t̃k). Note that this relation
is transitive. Indeed, if i ≥ k then there is a resolution from the marked
tree (τi, ti) to the marked tree (ϕ∗

1F
∗
1 τk, t̃k) where t̃k is a marking of the

tree ϕ∗
1F

∗
1 τk containing tk. If also j ≥ i then there is a resolution (τj, tj) →

(ϕ∗
2F

∗
2 τi, t̃i) implying that (τj , tj) resolves (ϕ∗

2F
∗
2ϕ

∗
1F

∗
1 τk, t̃k). As each map

Fi is surjective iff f is surjective, the transitivity of this relation follows.
As M < +∞, we must have l ≥ l for some index l ∈ {1, 2, . . . ,M}.
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Therefore, there exists an injective endomorphism F of (G, E) and a resolu-
tion ρm : τl → F ∗τl sending the marking tl to the marking t̃l. Furthermore,
the map F is surjective iff f is. Setting T = τl, t = tl, t̃ = t̃l we obtained
the marked (G, E)-tree (T, t) which dominates (F ∗T, t̃). This proves our
claim.

We have ρm(t) = t̃. The resolution ρm is a composition of finitely many
folds [BF1], so it does not increase the number of G-orbits of edges of T .
As t ⊆ t̃ = ρm(t) we obtain ρm(t) = t = t̃. Whence Gs ⊂ F−1(Gs) and so
F (Gs) ⊂ Gs for every vertex (resp. edge) stabilizer Gs of the tree T . The
map F and the tree T satisfy the conclusion of the proposition. �

6 Proof of Theorem B

Let G ⊂ Isom+H
n be a non-elementary Kleinian group without 2-torsion

equipped with a finite system E = {E1, . . . , Ek} of elementary subgroups
and suppose that F : (G, E) → (G, E) is a monomorphism of G sending each
subgroup Ei into itself. Let Ẽi denote Ei if Ei is finite and the maximal
elementary subgroup of G containing Ei if Ei is infinite.

The aim of this section is to prove

Theorem B. Suppose that the pair (G, E) is one-ended. Then (G, E) is
cohopfian if the following two conditions are satisfied:

1) The pair (G, E) has no essentially non-maximal splittings over ele-
mentary subgroups.

2) The pair (G, E) does not split as an amalgamated free product G =
A ∗C C̃, with C̃ maximal elementary such that the normal closure of
the subgroup C in C̃ is of infinite index in C̃.

Proof. Suppose f : (G, E) → (G, E) is an injective endomorphism. If
the pair (G, E) is indecomposable over elementary subgroups then Propo-
sition 3.1 implies that f is surjective. So we may assume that (G, E) splits
non-trivially over elementary subgroups. By Proposition 5.2 we can find a
non-trivial (G, E)-tree T and an injective endomorphism F of (G, E) send-
ing each vertex (edge) stabilizer of T into itself. We will need the following
two lemmas.
Lemma 6.1. Suppose that there exists a graph of groups Y decomposition
of (G, E) and an endomorphism F of (G, E) sending all vertex and edge
groups of Y into themselves. If F |Gv is surjective for every vertex group
Gv of Y then F : G→ G is surjective too.
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Proof. If the graph Y is a tree of groups then the vertex groups Gv (v ∈ Y 0)
generate the whole group G, and so the map F is surjective. Assume then
that Y is not a tree, fix a maximal subtree of Y, and let e be an edge which
is not in the maximal subtree. By Proposition 5.2 there exists a resolution
ρ and marking t, so that ρ sends the marked tree (T, t) to the marked tree
(F ∗T, t). Let a be a vertex of e. As e does not separate T it follows that
there exists an element g ∈ G and lifts ã1 and ã2 of a to the marking t
such that g(ã1) = ã2. We want to show that g is in the image of F . As
the subtree t is also a marking of the tree F ∗T , there exists g1 ∈ G so that
F (g1)(ã1) = ã2 by definition of the G-action on the tree F ∗T . This implies
that the element F (g1) · g−1 belongs to the stabilizer Gã2 of the vertex ã2.
By hypothesis F restricted to Gã2 is surjective. So there exists g2 ∈ G for
which F (g1) · g−1 = F (g2). It follows that the element g is in the image
of F . The lemma is proved. �

The next lemma shows that we have only to worry about non-elementary
vertex groups.
Lemma 6.2. Suppose that Y is a splitting of the pair (G, E) which is essen-
tially non-maximal and the pair (G, E) satisfies condition 2 of Theorem B.
Suppose also that F is an injective endomorphism sending every vertex
(edge) group of Y into itself. If the map F |Gv is surjective for every non-
elementary vertex group Gv of Y then F : G→ G is surjective.

Proof. Collapsing each edge of the graph Y = T/G whose label is equal
to the label of the vertex incident to it, we may assume that the splitting
Y is irreducible (as this operation does not modify the non-elementary
vertex stabilizers, all the assumptions of the lemma remain valid for the
new splitting). Let us now consider edge groups and elementary vertex
groups of the graph Y = T/G. Since our group G is non-elementary, after
collapsing all pairs of adjacent neighboring vertices v1 and v2 whose labels
are elementary groups we still get a non-trivial splitting of G satisfying all
the above properties. Similarly, if there is a vertex v whose vertex group
Gv is elementary and such that there is a loop e emanating from v, then we
collapse this loop to v. The resulting vertex group will still be elementary
and the map F sends it into itself. So we may assume that every edge
e ∈ Y 1 which is not a loop has at least one vertex v ∈ ∂e whose label is a
non-elementary group Gv. Moreover, there is no loop of Y emanating from
a vertex whose label is elementary.

We can also suppose that our graph Y does not have vertex groups
which are non-maximal elementary groups. Indeed, if Gv is such a group
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then, since Y is an essentially non-maximal splitting, the maximal elemen-
tary subgroup G̃v containing Gv is contained in some other vertex group,
say Gv′ . However, the group Gv is contained in the stabilizer of the edge
belonging to the path between v′ and v. This contradicts the irreducibility
of the graph Y .

Let us now prove that the restriction F |Ge on every edge group Ge
is surjective. Indeed, as F is injective the group F−1(Ge) is elementary
(being isomorphic to F (F−1(Ge)) which is a subgroup of Ge) and we have
F−1(Ge) ⊃ Ge since F (Ge) ⊂ Ge. Let v1 ∈ ∂e be one of the vertices
of e whose stabilizer Gv1 is not elementary. Since F |Gv1

is surjective, for
any y ∈ Ge there exists x ∈ Gv1 so that F (x) = y. If another vertex
v2 ∈ ∂e also has a non-elementary stabilizer then, for the same reason and
the injectivity of F , we obtain that x ∈ Gv2 and so x ∈ Ge. Now if, Gv2 is
a maximal elementary subgroup of G we have F−1(Gv2) ⊃ F−1(Ge) ⊃ Ge.
Thus F−1(Gv2) = Gv2 since Ge is infinite and is contained in the unique
maximal elementary subgroup Gv2 . This shows that x ∈ Gv2 and again
x ∈ Ge.

Let us prove that F is surjective on every elementary maximal vertex
group Ev (v ∈ Y 0) of the graph Y . Let ei (i = 1, . . . , l) be the edges incident
to v and Ci be their labels. As there is no loop emanating from the vertex
v we get a decomposition G = A ∗Cv Ev, where Cv is the elementary group
generated by Ci (i = 1, . . . , l) and A is the group generated by labels of
the vertices of Y 0 \ {v}. We already know that our map F is surjective
on every edge group Ci and so it is surjective on Cv. Moreover applying
the previous argument to each edge stabilizer of the tree T , we conclude
that the restriction of F on every G-conjugate of Cv is also surjective. It
now follows that F is surjective on the normal closure Nv of Cv in Ev .
Since F maps the group Ev into itself, and Nv onto itself, it induces an
injective map Φ : Ev/Nv → Ev/Nv . By the hypothesis 2) of the theorem,
the group Ev/Nv is finite, whence the map Φ is surjective, and so F is
surjective on Ev. We have proved that F is surjective on every edge and
every elementary vertex group of the graph Y . The conclusion now follows
from the previous lemma. �

The remaining part of the proof of Theorem B consists of two steps.

Step 1. Decomposition procedure. Let Y be the graph of groups
decomposition given by Proposition 5.2, and F the injective endomorphism
of (G, E), such that F sends every vertex and edge group of Y into itself.
If F |Gv is surjective for every non-elementary vertex group Gv of Y then
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Lemma 6.2 implies that F (and so f) is surjective. We may therefore assume
that there exists a non-elementary vertex group Gv of the graph Y such
that F |Gv is not surjective. Then by Proposition 3.1 the pair (Gv , E ∪ Cv)
splits non-trivially over elementary subgroups, where Cv is the set of labels
of the edges of Y incident to the vertex v.

We claim now that every splitting Yv of (Gv , E ∪ Cv) is essentially non-
maximal and the pair (Gv , (E ∪ Cv)) satisfies condition 2 of the theorem.
Let C denote an edge stabilizer of Yv and C̃ be the maximal elementary
subgroup of G containing C. We want to show that the group C̃v = C̃∩Gv
is conjugate into some vertex group of the splitting Yv. Let Tv and T denote
respectively the corresponding Bass–Serre tree of the splittings Yv and Y .
As the splitting Yv = Tv/Gv refines the graph Y , it gives rise to a new
splitting Yv of (G, E). Let Tv be the corresponding tree. The splitting Yv
of G is essentially non-maximal, so the group C̃ stabilizes some vertex v1
of Tv. If v1 belongs to Tv there is nothing to prove. If not, v1 ∈ (Tv \ {v}),
and so the group C̃v, fixing the vertices v1 and v of the tree T , also fixes
a path between them pointwise. Thus C̃v is a subgroup of an edge group
of the graph Y and by hypothesis is elliptic in the splitting Yv as was
promised. Similarly the pair (Gv , E ∪ Cv) is one-ended. As every splitting
of the pair (Gv , E ∪Cv) over elementary subgroups refines Y we obtain that
(Gv , E ∪ Cv) does not split as Gv = A ∗C C̃ where the normal closure of C
in C̃ is a subgroup of infinite index of C̃.

All the edge groups of the graph Y = T/G are quasi-convex subgroups
of G. The results [K, Lemma 3.5] and [Sw] imply that every vertex sta-
bilizer Gv is a geometrically finite group, and so is a finitely presented
group [R]. Proposition 5.2 applies to the vertex group Gv giving an injec-
tive endomorphism Fv of Gv which sends all vertex (edge) groups of Xv

to themselves and which is surjective iff F is. We now decompose relative
to the edge groups all other non-elementary vertex groups of the graph Y ,
and then pass to all non-elementary vertex groups obtained, further etc.
The following lemma guarantees that the decomposition procedure stops.

Lemma 6.3. This refining decomposition procedure stops after finitely
many steps.

Proof. By [BF2] there exists a constant ν(G) such that every graph of
groups decomposition of G with elementary edge groups can contain at
most ν(G) non-trivial edges and vertices. Denote by Yn the graph of
groups decomposition of (G, E) which we obtain after n refining decom-
positions described above, and let Tn denote the corresponding Bass–Serre
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tree. Suppose that the sequence Yn does not stabilize. Then there exists
n0 > ν(G) such that every component Yn \ Yn+1 (n > n0) can only contain
trivial vertices and edges (see section 4 for the definitions). So there exists
a vertex vm0 (m0 = m(n0) > n0) of the graph Yn0 whose label is a non-
elementary group Gm0 such that the above decomposition procedure gives
us the following refining sequence:

Gm0 = A1 ∗C2 C1 , A1 = A2 ∗C3 C2, . . . , (5)

where Ai are non-elementary and Ci are elementary vertex groups and
Ci ⊂ Ci−1 (i = 1, 2, . . . ). Then Lemma 4.4 implies that the pair
(Gm0 , (E ∪ Cm0 ∩Gm0)) splits as

Gm0 = A ∗C C̃m0 , (6)

where Cm0 is the set of the stabilizers of edges of Tn0 incident to the
vertex vm0 , and C̃m0 is the maximal elementary subgroup of Gm0 con-
taining all Ci. Furthermore, by Lemma 4.4, rank(C) < rank(C̃m0). We
are now going to replace the infinite refining sequence (5) by one splitting
(6) over a subgroup of smaller rank. To this end, we apply our machinery
described in section 5 to the splitting (6). Let Fm0 be the endomorphism
of Gm0 obtained according to this procedure. It preserves the first splitting
Gm0 = A1 ∗C2 C1 in (5), sending each vertex (edge) group of it into itself.

Let tm0 denote the Bass–Serre tree corresponding to the splitting (6).
We claim that (F lm0

)∗tm0 is a non-trivial (Gm0 , (E ∪ Cm0 ∩ Gm0))-tree for
all l ∈ N (compare with Proposition 5.2). For otherwise, F km0

(Gm0) ⊂ A

for some k ∈ N. We have also Fm0(C̃m0) ⊂ C̃m0 , and so F km0
(C̃m0) ⊂

(A ∩ C̃m0 = C) which is impossible since rank(C) < rank(C̃m0) and F is
injective.

As the graph (F km0
)∗tm0/Gm0 refines Yn0 and n0 > ν(G), it may contain

only one conjugacy class of non-elementary vertex stabilizers and all its
edge stabilizers are conjugate into C. Collapsing all vertices in the graph
(F km0

∗(tm0))/Gm0 whose labels are elementary, we reduce it to an edge of
groups such that the label of the edge is an infinite index subgroup of the
label of one of the vertices which is a maximal elementary subgroup. So
without changing the notation, we may assume (w.l.o.g.) that Fm0 sends
vertex (edge) groups of the splitting (6) into themselves. We now refine the
splitting given by the graph Yn0 by replacing the vertex group Gm0 by the
splitting (6) and retain the same notation Yn0 for the new splitting.

Similarly, if the decomposition procedure for the pair (A, (E ∪ Cm0 ∩A))
does not stop after finitely many steps there exists a decomposition
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A = B ∗K K̃A where B is non-elementary and K is an infinite index sub-
group of the maximal elementary subgroup K̃A of A containing K. We
get a splitting of Gm0 which refines the splitting Yn0 giving the new graph
Yn0+1 of groups decomposition of (G, E). By the argument given before
Lemma 6.3 all these splittings are essentially non-maximal relative to the
edge groups.

The graph Yn0+1 is obtained from Yn0 by replacing the vertex labelled
by A by the edge of groups A = B ∗K K̃A. As n0 > ν(G) the new edge has
to be trivial and so we obtain C = K̃A in the splitting

Gm0 = C̃m0 ∗C (K̃A ∗K B) .

This implies that rank(K) < rank(C) = rank(K̃A). As the graph Yn0 is
finite, the above decomposition procedure will necessarily terminate after
finitely many steps. The lemma is proved. �

Step 2. Surjectivity of f . Our process of decomposition of the group G
has a structure of a rooted tree which we shall describe now. By Lemma 6.3
this tree T is finite, and can be written as T =

⋃M
n=1 Vn. The initial group

G corresponds to the root vertex O. Each vertex x of T belongs to set Vn
of vertices of level n for some n ∈ {1, . . . ,M}. Every vertex of level ≥ 2
has a unique parent. The parent vertex X corresponds to a group GX with
a fixed graph of groups decomposition for which Gx is one of the vertex
groups (we borrow this family terminology from the paper [BiJ]). In its
turn the vertex x will have a collection of “children” V (x) ⊂ Vn+1 which
correspond to vertex groups of the graph of groups decomposition of the
group Gx. Edges of the tree T indicate “family ties” between “parents”
and “children”. Furthermore, by Proposition 5.2 to each vertex x ∈ Vn we
associate an endomorphism Fx : Gx → Gx which preserves the splitting of
Gx sending the labels of the “children” of x in V (x) ⊂ Vn+1 into themselves.

Those vertices v ∈ Vn which are either elementary or indecomposable
over elementary subgroups (relative to the edge groups) will be terminal
vertices of the tree T . For every non-terminal vertex x ∈ Vn we apply the
decomposition procedure described on Step 1 to get vertex groups V (x) ∈
Vn+1 and the corresponding endomorphism Fx sending them to itself etc.

After descending along the tree T we reach the final level VM all of whose
vertices are terminal (of course there could be some terminal vertices of T
belonging to other levels). Now we are going to go up in order to prove
the surjectivity of the original map f . Each vertex w ∈ VM−1 is either
terminal or there is a set of its “children” xi ∈ V (w) ⊂ VM which are all
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terminal. In the former case the map Fw is surjective. In the latter case by
Proposition 3.1 it follows that Fw|Gxi

is surjective for every non-elementary
vertex group xi ∈ V (w). Then by Lemma 6.2 we obtain that Fw is surjective
for every w ∈ VM−1. Similarly, w ∈ V (u) for some vertex u ∈ VM−2 (the
“parent” of w). We have by Proposition 5.2 that the corresponding maps
Fu|Gw and Fw are surjective or not simultaneously. Therefore, Fu|Gw is
surjective for all w ∈ V (u) whose labels are non-elementary. Again by
Lemma 6.2 Fu is surjective and so on.

Applying this procedure finitely many times we finally arrive at the first
level V1 of T corresponding to the vertices of the graph Y . We have just
shown that for all non-terminal vertices v ∈ V1 the maps Fv are surjective
and, so the map F |Gv is surjective. Similarly, Lemma 6.2 implies that the
map F : G→ G is an automorphism of G. Then our initial map f : G→ G
is an automorphism too.

To finish the proof we only need to show that f |E is surjective on every
E ∈ E . As f(E) ⊂ E the conclusion is obvious when E is finite. If it is
not the case then by the uniqueness of the maximal elementary subgroup
Ẽ of G containing E we have f(Ẽ) = Ẽ as f(E) is an infinite subgroup of
both. So f |Ẽ : Ẽ → Ẽ is an automorphism. Then using the fact that any
increasing sequence of subgroups of a virtually abelian group of finite rank
must stabilize, we deduce that f(E) = E. Theorem B is proved. �

7 Necessary Condition in Theorem A

The necessary condition in Theorem A follows directly from the following
result:

Theorem D. An infinite finitely generated discrete group G ⊂ Isom+H
n

is not cohopfian if one of the two conditions below is satisfied:

1) G has an essentially non-maximal splitting

G = π1(X,Gv , Ce), where each vertex group Ce is elementary . (1′)

2) The group G splits as an amalgamated free product G = Γ ∗C C̃,
so that C̃ is a maximal elementary subgroup of G and the normal
closure of C in C̃ is a subgroup of infinite index of C̃.

We start with

Remarks 7.1. 1) In particular infinite elementary Kleinian groups are not
cohopfian (case 2 ) with Γ = C = 1.
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2) Examples of discrete geometrically finite groups in H
n which are

described in 1) and 2) of Theorem D, exist, see [OP].
3) If every elementary group over which G splits is in fact abelian and

if there exists a splitting X described in condition 2) then there is an-
other splitting over elementary subgroups which is essentially non-maximal:
the maximal elementary vertex group can be written as a central HNN-
extension with a base containing all corresponding edge stabilizers. How-
ever, this is not the case in general, as there exist (torsion-free) virtually
abelian groups with finite abelianization.

We will first study essentially non-maximal splittings of G.
Proposition 7.2. Suppose G splits as a graph of groups (1′), where one
of the edge groups Ce = E of the splitting (1′) is essentially non-maximal,
and let Ẽ be the maximal elementary subgroup of G containing E with
infinite index so that Ẽ is hyperbolic in the splitting (1′). Then there
exists an element g ∈ Ẽ so that g centralizes E and ∀n ∈ N, gn �∈ E.

Proof of 7.2. Let T be the Bass–Serre tree corresponding to the splitting
(1′). The group Ẽ contains a normal free abelian subgroup Ã of finite
index. As Ẽ acts on T hyperbolically it follows that the group Ã also does.
Hence by [S, I-6.5, Proposition 27] it follows that Ã leaves a line L ⊂ T
invariant. As Ã is normal in Ẽ the group Ẽ also leaves L invariant. Then
either Ẽ acts by translations on L; or it acts dihedrally on L (permuting
the end points of L). So, there is a projection η of Ẽ on Z or onto Z2 ∗Z2.
Moreover since the subgroup E of Ẽ fixes an edge e in T it fixes the axis
L pointwise. So we may suppose that e ⊂ L and that E is the kernel of η
(which is the kernel of the action of Ẽ on L). It follows that up to passing
to a subgroup of index 2 and retaining the notation Ẽ for it, we have the
following exact sequence:

0 −−−−→ E −−−−→ Ẽ
η−−−−→ Z −−−−→ 1 ,

Let t denote the element of Ẽ which is mapped on the generator of Z, so
we have tn �∈ E (∀n ∈ N). There exits m ∈ N so that tm ∈ Ã and up to
replacing t by tm and passing to a further subgroup of finite index we may
suppose that t ∈ Ã. Also tn �∈ E (∀n ∈ N).

Let A denote the group Ã∩E which is a normal abelian subgroup of E
of finite index. We have

0 −−−−→ A −−−−→ E
ξ−−−−→ F −−−−→ 1 , (∗)

where F is a finite group.
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Definition. An automorphism of E will be called the automorphism of
the sequence (∗) if its restriction to A is trivial and if it induces the identity
on F . The group of the automorphisms of (∗) is denoted Aut(∗).

Let s : F → E be a set theoretic cross-section of ξ and ψ ∈ Aut(∗). Put
cψ(f) = ψ(s(f))s(f)−1, ∀ f ∈ F .

Lemma 7.3. The following assertions hold:

a) cψ(f) is a 1-cocycle of F taking values in A.

b) For each f ∈ F the map ψ → cψ determines a group homomorphism

Aut(∗) → Z1(F,A) .

Proof. a) Notice first that cψ(f) ∈ A since ψ induces the identity map
on F . We have then, s(f · g) = s(f) · s(g) · α(f, g), where α(f, g) ∈ A.
ψ(s(f · g)) · (s(f · g))−1 = ψ(s(f)s(g)α(f, g)) · α−1(f, g)(s(f)s(g))−1 =
ψ(s(f))ψ(s(g))s(g)−1s(f)−1, since ψ(a) = a (∀ a ∈ A). Further we de-
rive ψ(s(f · g)) · (s(f · g))−1 = ψ(s(f))s(f)−1 + s(f)ψ(s(g))s(g)−1s(f)−1 =
ψ(s(f))s(f−1) + ρ(f)cψ(g) = cψ(f) + ρ(f)cψ(g), where ρ(f) denotes the
action of f ∈ F on A given by conjugation by s(f). This proves a) by the
definition of a cocycle (see [Br, p. 88]).

b) cψ1ψ2(f) = ψ1ψ2(s(f))s(f)−1 = ψ1[ψ2(s(f))s(f)−1s(f)]s(f)−1 =
ψ1(cψ2(f)·s(f))s(f)−1 = cψ2(f)+cψ1(f), here we used that cψ2(f) ∈ A and
that ψ1 keeps it unchanged. We have proved b). The lemma is proved. �

Proof of the proposition. Recall that tn ∈ Ã \ E (∀n ∈ N). Let ψ be
an inner automorphism of Ẽ given by the conjugation via t. As t acts
identically by conjugation on A it is easy to verify that it also induces the
identity on F , i.e.

t̂f t̂−1 = f , ∀ f ∈ F ,

where t̂ = ξ(t). So ψ is an automorphism of the sequence (∗) and we
get cψ(f) = ts(f)t−1s(f)−1. Since the group F is finite the first coho-
mology group H1(F,A) is finite too and, so there exists p ∈ N such that
cψp(f) is a coboundary. It follows that there exists a ∈ A that cψp(f) =
a − ρ(s(f)) · a = a + ρ(s(f))(−a). Writing this in the multiplicative
form we have cψp(f) = as(f)a−1s(f)−1 = tps(f)t−ps(f)−1 implying that
∀ s(f) ∈ E : a−1tps(f)t−pa = s(f). Putting g = a−1tp we obtain that g is
not trivial (tp �∈ A) and centralizes E. The proposition follows. �

Note that above we also obtained the following fact which will be used
further:
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Remark 7.4. The group of the automorphisms of the sequence (∗) is
finite modulo conjugation in E (in other words the subgroup of Out(E)
which preserves (∗) is finite).

Indeed in the above proof for some power p ∈ N of ψ ∈ Aut(∗) we will
have ψp(s(f))s(f)−1 = as(f)a−1s(f)−1. Thus ∀ e ∈ E ψp(e) = aea−1 since
e · s(f−1) ∈ A for some f ∈ F and ψp is the identity on A. �

Lemma 7.5. Suppose that the group G splits as a graph of groups G =
π1(X,Gv , Ce) with elementary edge stabilizers such that one of the edge
group E = Ce is essentially non-maximal then G splits as an amalgamated
free product or an HNN-extension,

G = A ∗K B or G = A∗K , (6)

where K is essentially non-maximal and contains E.

Proof. Let T denote the tree which is the universal covering of X and let
Ẽ be the maximal elementary subgroup of G containing E. The group
Ẽ acting on T without fixed points has an invariant line L ⊂ T (see the
beginning of the proof of Proposition 7.2). Since the subgroup E fixes a
point in T it also fixes L pointwise. Let ê ⊂ L be an edge of T and α̂ and β̂
its vertices. We first claim that the stabilizer F of the edge ê in G coincide
with the stabilizer K of ê in Ẽ (i.e. the kernel of the action of Ẽ on L).
Indeed, both groups contain the group E which is an infinite group so by the
uniqueness of the maximal elementary subgroup Ẽ containing E it follows
that F ⊂ Ẽ which implies that F = K. Similar argument shows that the
subgroup N of G leaving the line L invariant coincide with Ẽ. Indeed, the
group N is elementary which follows from the fact that it has a projection
to Z or Z2 ∗Z2 whose kernel is the elementary group K; consequently N is
an elementary group containing Ẽ, and thus Ẽ = N .

Let α, β, e denote the images in X of α̂, β̂, ê respectively under the
projection p : T → X. Let us first consider the case when e does not
separate the graph X. Then the group G is the HNN -extension G =
A∗K = 〈A, t | tKt−1 = φ(K)〉 where A is the fundamental group of the
graph of groups Y = X \ e. Denote Ŷ the component of the preimage
p−1(Y ) adjacent to the edge ê at the point α̂ ∈ T . Clearly p(Ŷ ) = Y , so
we may assume up to conjugation in G that the stabilizer of Y is A. As no
G-translate of ê is contained in Ŷ and T is a tree we have L∩ Ŷ = {α̂}. Let
h ∈ Ẽ \ E be an element acting on L by translations. As h(α̂) ∈ L \ {α̂},
so h cannot belong to the stabilizer of Ŷ . Consequently, the group Ẽ is
hyperbolic in the splitting G = A∗K .
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The case when the edge e separates X is similar: we obtain the splitting
G = A∗KB where A and B are the fundamental groups of the graphs which
are respectively connected components U and V of X \ e. Denote Û and V̂
the components of p−1(U) and p−1(V ) which are adjacent along the edge
ê in T , in particular α̂ ∈ Û and β̂ ∈ V̂ . The stabilizers Û and V̂ are up
to conjugation the groups A and B. Again we have Û ∩ L = {α} and
V̂ ∩L = {β}. There exists an element h ∈ Ẽ \K which acts by translations
on L so h(α̂) ∈ L \ {α̂}, and the same for β̂. Consequently, the element h
does not belong to the stabilizers of Û and V̂ . This shows that Ẽ is not
elliptic with respect to the splitting G = A ∗K B. The lemma is proved. �

Proof of Theorem D. Let us first consider condition 1 of the theorem
which is

1) G has an essentially non-maximal splitting.

Then it follows from Lemma 7.5 that there is a splitting (6) of G as an
amalgamated free product or an HNN-extension which is essentially non-
maximal. The edge group K is an elementary subgroup and let K̃ be the
maximal elementary subgroup of G containing K which is hyperbolic in
the splitting (6). By Proposition 7.2 it follows that there exists an element
t ∈ K̃ \K which centralizes K.

Consider first the case of amalgamated product, i.e. G = A ∗K B. Let
us define the map f : G → G so that f(a) = tat−1, and f(b) = b (∀ a ∈ A,
∀ b ∈ B). As t commutes with all elements from K, the map f is obviously
a homomorphism. Furthermore, if a ∈ A \ K then tat−1 ∈ tAt−1 \ K.
So the group G1 = f(G) is isomorphic to the amalgamated free product
tAt−1 ∗K B, and every element g ∈ G1 has the following form:

g = ta1t
−1 · b1 · . . . · takt−1 · bk or g = b1 · ta1t

−1 · . . . · bk · takt−1,

ai ∈ A \K, bj ∈ B \K . (7)

If now g = f(γ) = 1 for some γ ∈ G, then using (7) it is easy to see that
γ ∈ A or γ ∈ B. So by injectivity of f on A and B we obtain γ = 1. Thus
f : G→ G1 is an isomorphism. We need only to show that G1 � G.

The group G1 being a subgroup of G acts on the Bass–Serre G-tree T
corresponding to the splitting G = A∗K B. Denote by α and β the vertices
of T whose stabilizers are A and B. Set d = distT (t(α), α). Since t acts
without fixed points on T we also have d = distT (t(β), β). Up to replacing
t by tm we may assume that d > 1. The length d′ of the geodesic δ between
the vertices α′ = t(α) and β is equal to d− 1 or to d+1. Furthermore from
[S, I-6.5, Proposition 26] it follows that δ ∪ tait−1(δ) et δ ∪ bi(δ) are also
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geodesics. Thus distT (g(β), β) = 2kd′ as each term tait
−1 contributes 2d′

to the expression of distT (g(β), β). This implies that t �∈ G1 since d �= 2kd′

(d > 1, k ∈ N).
Consider now the case of an HNN-extension G = A∗K =

〈A,h | hKh−1 = φ(K)〉 and let T be the corresponding Bass–Serre tree.
There are two more subcases: a) h ∈ K̃ and b) h �∈ K̃. In the subcase a)
we proceed as follows. By the proof of Proposition 7.2, there exist p ∈ N

and a ∈ A(K) so that the element g = hp · a commutes with every element
of K, where A(K) is the maximal abelian subgroup of K. Now we define
the map f : G → G to be the identity on A and set f(h) = hp+1 · a. It
is easy to check that f is an injective endomorphism (since hp+1 acts by
conjugation on K in the same way as h does) which is not surjective.

In subcase b) we proceed similarly to the case of an amalgamated free
product, namely put f(a) = tat−1, ∀ a ∈ A and f(h) = h, where t is an ele-
ment in K̃\K acting hyperbolically on the tree T and centralizing K. Then
any element g of the group G1 = f(G) = tAt−1∗K = 〈tAt−1, h|hKh−1 =
φ(K)〉 can be written as
g = ta1t

−1·hε1 ·ta2t
−1·· · ··takt−1·hεk , or g = hε1 ·ta1t

−1·hε2ta2t
−1·· · ··takt−1,

(7)
where εi ∈ Z and if εi < 0 and ai ∈ K then εi+1 ≤ 0, and if εi > 0 and
ai ∈ K then εi+1 ≥ 0.

Let α be the vertex of T whose label is A and M be the line in T
which is formed by the vertices hn(α) (n ∈ Z). As h �∈ K̃ the element
t does not belong to the maximal elementary subgroup containing h, so
up to replacing t by a power we may assume that t(α) �∈ M . It is now
straightforward that the displacement d(gα, α) of the element g in (7) is
equal to 2kd+

∑k
i=1 |εi|, where d = distT (t(α), α). Indeed each term tait

−1

in (7) adds 2d to the expression of d(gα, α) and the term hεi contributes |εi|
to it. Consequently, d(gα, α) �= d, so t �∈ G1 and G1 is a proper subgroup
of G. Part 1 of Theorem D is proved.

Consider now condition 2 of Theorem D which is

2) The pair (G, E) splits as an amalgamated free product G = Γ ∗C C̃,
so that C̃ is a maximal elementary subgroup of G and the normal
subgroup of C̃ generated by C is of infinite index in C̃.

Suppose that G splits as an amalgamated free product G = Γ ∗C Ev ,
where v is vertex whose label is a maximal elementary subgroup Ev = C̃.
We are going to construct a proper monomorphism from G into G which is
the identity on Γ and which sends Ev into itself being not surjective on it.
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We denote Nv the normal subgroup of Ev generated by C; by hypothesis
|Ev : Nv| = ∞.

The group Ev is virtually abelian of finite rank, let A be a finite index
normal free abelian subgroup of Ev. Denote D = A ∩ Nv and F = Ev/A.
As Nv and A are normal in Ev the group D is normal in Ev too. Also
let s : F → Ev be a normalized cross-section of the projection of Ev onto
F . The group F acts on A by conjugation a→ s(f)as−1(f). Consider the
vector space A ⊗ Q which we equip with a scalar product invariant under
the induced action of F . As the subspace D ⊗ Q is invariant under the
induced action of F there exists a subspace V in A ⊗ Q complementary
to D ⊗ Q which is also invariant under this action. We can now find a
subgroup B of A so that V = B ⊗ Q and so A⊗ Q = (D ⊗ Q) ⊕ (B ⊗ Q).
The group B has the following properties: B∩D = {id} (since A is torsion
free); B is normal in Ev; and the group A′ = D⊕B is a normal free abelian
subgroup of Ev of finite index. Denote F ′ = Ev/A

′. Consider the map
hn : A′ → A′ defined as hn(d+ b) = d+nb for every d ∈ D and b ∈ B. One
can now find a group Hn and a homomorphism ϕn : Ev → Hn so that the
following diagram commutes:

0 −−−−→ A′ i−−−−→ Ev
p−−−−→ F ′ −−−−→ 1

hn




 ϕn






∥
∥
∥

0 −−−−→ A′ in−−−−→ Hn
pn−−−−→ F ′ −−−−→ 1 .

In fact the group Hn is the largest quotient of A′
� Ev such that the left-

hand square of the above diagram commutes (see e.g. [Br, p. 94]). Note that
ϕn is injective and not surjective since hn is (∀n ∈ N). Furthermore, ϕn is
the identity on D. We now need to show that Hn is isomorphic to Ev. Let
us define a set-theoretic cross section sn : F ′ → Hn of the projection pn (see
the diagram) to be sn = ϕn ◦ s. It is known (see e.g. [Br, III.3.12]) that the
equivalence classes of extensions of A′ by F ′ are in 1 to 1 correspondence
with the elements of H2(F ′, A′). If α ∈ H2(F ′, A′) is the element which
corresponds to the upper row of the commutative diagram then it satisfies
i(α(g, γ))s(gγ) = s(g)s(γ) (g, γ ∈ F ′). We have

sn(g)sn(γ) = ϕn(s(g))ϕn(s(γ)) = ϕn
(
s(g)s(γ)

)
= ϕn

(
i(α(g, γ))s(gγ)

)

= in
(
hn(α(g, γ))

)
sn(gγ) .

Setting αn(g, γ) = hn(α(g, γ)) we obtain from the above identity that
αn(g, γ) is an element of H2(F ′, A′). Since α(g, γ) takes its values in A′ we
can write α(g, γ) = d(g, γ) + b(g, γ) where d(g, γ) ∈ D and b(g, γ) ∈ B. We
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also have the following commutative diagram:

0 −−−−→ A′ i−−−−→ Ev −−−−→ F ′ −−−−→ 1

π1




 π2






∥
∥
∥

0 −−−−→ B = A′/D j−−−−→ Ev/D −−−−→ F ′ −−−−→ 1

where πi are the natural projections and j is the natural inclusion. Define
a section σ : F ′ → Ev/D to be σ = π2 ◦ s. Similarly we then show that
σ(g)σ(γ) = j(p2(α(g, γ)))σ(g, γ) (g, γ ∈ F ′). As b = π1 ◦α we obtain that b
is also an element of H2(F ′, A′). Since the group F ′ is finite it follows from
[Br, III.10.2] that the groupH2(F ′, A′) is annihilated by |F ′|. Choosing n to
be n ≡ 1(mod |F ′|) we obtain that b = nb and so αn = d+ bn = d+ b = α.
This implies that α and αn define the equivalent extensions and, so the
groups Ev and Hn are isomorphic. Let n0 = |F ′| + 1 then the map ϕn0 is
an endomorphism of Ev which is injective, non-surjective and is the identity
on D. Since D is an abelian normal subgroup of Nv of finite index, some
power of ϕn0 induces the identity on Nv/D. Remark 7.4 now implies that

∃ k ∈ N , ∃ a ∈ D ∀h ∈ Nv : ϕkn0
(h) = aha−1.

Setting F |Ev = a−1 ·ϕkn0
·a, we obtain an injective, not surjective endomor-

phism of Ev which is the identity on Nv. Extending now F by the identity
to the fundamental group of the graph X \{v} we obtain a monomorphism
F : G→ G which is injective and not surjective. Theorem D is proved. �

8 Cohopficity of Groups with Infinitely Many Ends

In this section we provide a criterion establishing the co-Hopf property for
multi-ended groups. We start with an abstract finitely presented group G.
Let us recall that ifG has infinitely many ends then the Dunwoody’s accessi-
bility theorem [Du] states that there exists a graph of groups decomposition
G = π1(X,Gv , Ce) such that all edge groups Ce are finite and all vertex
groups Gv are one-ended. Furthermore, the sets of vertex and edge groups
of X are unique [DuD, Proposition 7.4]. We will further call this graph
of groups DS-graph of G (referring to Dunwoody–Stallings’ theorems for
splitting of groups with infinitely many ends [Du], [St]).

We denote µ(G) the number of edges of a DS-graph of G. If G = A∗F B
(resp. G = AF ∗) and F is a finite group then max{µ(A), µ(B)} < µ(G).
Indeed as finite groups are always elliptic in any splitting we can always
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reach the terminal DS-graph of G by taking further decomposition of A
and B over finite subgroups.

Before we state the main result of this section we give a more precise
definition of an acylindrical splitting for a multi-ended group (compare with
Definition 2.5):

Definition 8.1. Let G = π1(Y ) be a splitting of a group G as a graph
of groups with finite edge stabilizers and T be the corresponding Bass–
Serre tree. We call this splitting (and respectively the tree T ) strictly
K-acylindrical if the stabilizer of each segment of T of the diameter at
least K is a proper subgroup of some edge stabilizer of T . �

We will prove the following.

Theorem E. Let G be an infinitely ended finitely presented group and
let X∗ = (X,Gv , Ce) denote its DS-graph. Suppose that every one-ended
vertex group Gv is cohopfian. Then G is cohopfian if and only if every
splitting of G over finite groups is strictly K-acylindrical for some uniform
constant K.

Proof of the sufficient condition. Assume that all splittings of G over
finite groups are K-acylindrical for some fixed K ∈ N. Note first that
this property is then also true for each vertex group of any graph of groups
decomposition of G over finite groups. Indeed, every splitting of such vertex
group Gv over finite groups refines the splitting of G. Consequently, all
splittings of Gv over finite groups are strictly K-acylindrical (for the same
constant K). This remark will be constantly used in the argument which
will mainly repeat the proof of Theorem B given in sections 5 and 6. We
will only indicate some modifications (and simplifications) which are to be
done.

Suppose by contradiction that f : G→ G is an injective endomorphism
which is not surjective. Let us prove the statement by induction on the
invariant µ( · ). Note that if µ(G) = 0 then G is one-ended which is impos-
sible by our hypothesis. So let us assume that µ(G) > 0 and the statement
is true for all groups with the value of µ( · ) less than that of G.

From among all splittings of G over finite subgroups we choose one,
G = A ∗E B or G = A∗E , for which E has a minimal order. Note that
E cannot be trivial, as every free product decomposition is not strictly K-
acylindrical for all K. Let T denote the Bass–Serre tree corresponding to
this splitting. As in section 5 we consider the sequence of G-trees Tn =
fn∗T with finite edge stabilizers. Note that if Tn is a trivial G-tree then
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arguing as in Proposition 5.1 we obtain that one of the groups A or B is not
cohopfian. By the hypothesis it follows that it is not a one-ended group.
As max(µ(A), µ(B)) < µ(G), using the induction on the invariant µ( · ), we
obtain, in a way similar to 5.1, that the trees Tn are all non-trivial G-trees.

Let l denote a path of length K in the tree Tn. Then the stabilizer of
l is a subgroup of the stabilizer l in the tree T . By the strict acylindricity
of T it now follows that its order is strictly less than the order o(E) of the
group E. As G does not split over a subgroup of order less than o(E), it
does not split over the stabilizer of l. Then by Theorem 3.1 of [D1] we
obtain finitely many G-trees τ1, . . . , τk such that every tree Ti is dominated
by one of τj’s where i ∈ N, j ∈ {1, . . . , k}. Then applying the argument of
Proposition 5.2 (which does not use the fact that the group G is Kleinian
nor one-ended) we obtain a strictly K-acylindrical G-tree τ with finite edge
stabilizers and a new monomorphism F : G → G which sends all vertex
(resp. edge) stabilizers of τ into themselves. In addition, F is surjective if
and only if f is.

The vertex groups of a DS-graph of Gv are cohopfian as they are vertex
groups of a DS-graph of G. So by the induction hypothesis the map F
restricted to every vertex stabilizer of τ is surjective. Furthermore, as
every edge stabilizer of τ is finite and is preserved by F , F restricted on
it, is surjective too. Thus to finish the proof we only need to consider the
case when G is not generated by the vertex groups of the graph τ/G.

Following now the argument given in Lemma 6.1 we obtain a HNN-
extension G = A∗H = 〈A, H | tHt−1 = ϕ(H)〉 so that F (A) = A,
F (H) = H, F (tHt−1) = tHt−1. Then the element a = t−1 · F (t) normal-
izes H. Now if a is not conjugate into A then there is an infinite path in the
Bass–Serre tree corresponding to the splitting G = A∗H whose pointwise
stabilizer is H. This is impossible as all splittings of G over finite subgroups
are strictly acylindrical. Thus up to conjugation we obtain that a ∈ A and
there is an element b ∈ A so that F (b) = a. This proves that t is in the
image of F and so F is surjective. The sufficiency is proved.

To prove the necessary condition suppose that for every K ∈ N the
group G admits a splitting over finite groups which is not strictly K-
acylindrical. Set K = 2µ(G) + 1 and let X denote such graph of groups
decomposition of G and T its Bass–Serre tree. Then there is a path l ⊂ T
whose pointwise stabilizer H is equal to the edge stabilizer of every edge
of l. The argument is now similar to the proof of Lemma 2.6. As the length
of the path l is greater than 2µ(G), it must contain at least three different
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edges e1, e2, e3 belonging to the same G-orbit. So, e1 = g(e2), e3 = h(e2)
for some distinct elements g and h in G \H. It follows that both elements
g and h normalize H.

Suppose first that one of them, say g, acts hyperbolically on the tree T .
Then replacing g by some power, we may assume that it centralizes the
group H. Considering the corresponding splitting of G over H as an amal-
gamated free product G = A ∗H B or HNN-extension G = A∗H we show
that G is not cohopfian, analogously to the proof of Theorem D (see the
part concerning condition 1).

If now both elements g and h act elliptically on T then the element
γ = gh also normalizes H and is hyperbolic. Indeed if not, g and h must
have a common fixed point [Se]. Then arguing as in Lemma 2.6 we would
obtain that g and h fix the edge e2 pointwise, which is impossible. The
proof now finishes similarly. The theorem is proved. �

The following is a slightly different version of the above theorem.
Corollary 8.2. Let G be an infinitely ended finitely presented group
and let X∗ = (X,Gv , Ce) denote its DS-graph. Suppose that every splitting
of G over finite groups is strictly K-acylindrical for a uniform constant K.
Then G is cohopfian if and only if the pair (Gv , C ∩ Gv) is cohopfian for
every vertex v, where C is the set of edge groups of X∗.

Proof. The proof of the sufficiency refines that of Theorem E by keeping
track of edge groups. Indeed the map F sends all vertex and edge stabilizers
of the tree τ into themselves. As edge stabilizers of τ are all finite, up to
replacing F by some power we may assume that F is the identity on the
set C of the edge stabilizers of the graph τ/G. If this graph is already
DS-graph we stop; if not we repeat the above procedure for every vertex
stabilizer G1

v of it. Then the acylindricity theorem of section 4 allows us
to find a new map F 1

v : G1
v → G1

v and a new decomposition of G1
v over

finite subgroups such that F 1
v sends all edge and vertex stabilizers of this

decomposition and all the subgroups in C into themselves. Again by taking
a power, if necessary, we may assume F 1

v to be the identity on each group
in C. Thus we have refined the graph τ/G by the decomposition of the
vertex group G1

v and have found a new endomorphism of G which is equal
to F on (τ/G)\{v} and to F 1

v on the above graph of groups decomposition
of G1

v. Continuing in this way we will arrive after finitely many steps
at the DS-graph X∗ = (X,Gv , Ce) and a map Φ : G → G which sends
every vertex group Gv into itself and is the identity on every edge group.
Furthermore, by construction, Φ is surjective if and only if the map F is.
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As all pairs (Gv , C ∩Gv) are cohopfian the map Φ is surjective by the proof
of Theorem E.

The necessary condition is easy. Indeed, suppose first that fv :
(Gv , C ∩ Gv) → (Gv , C ∩ Gv) is a non-surjective endomorphism. Up to
taking power we may suppose that fv is the identity on peripheral sub-
groups C ∩Gv. Then extending fv by the identity to the rest of the group
G we get a non-surjective endomorphism of G which is impossible. �

Theorems E and A allow us to get a criterion for the co-Hopf property
of infinitely ended Kleinian groups.

Theorem C. Let G ⊂ Isom+H
n be a non-elementary, geometrically finite

Kleinian group without 2-torsion. Then G is cohopfian if and only if the
following three conditions are satisfied:

1) G does not have essentially non-maximal splittings over infinite ele-
mentary subgroups.

2) G does not split as an amalgamated free product G = A∗C C̃, so that
C̃ is a maximal elementary subgroup of G and the normal closure of
the subgroup C in C̃ is of infinite index in C̃.

3) Every splitting of G over finite groups is strictly K-acylindrical for a
uniform constant K.

Remark 8.3. By Lemma 2.6, condition 1 can be replaced by the following:

1′) Each irreducible G-splitting over infinite elementary subgroups is
(M,Φ)-acylindrical for some uniform constant M > 0.

Proof. The necessity of each of these conditions was already proved. To
prove the sufficiency let us suppose that G is not cohopfian. Then by
Theorem E there exists a one-ended vertex group Gv of a DS-graph of G
which is not cohopfian. Then Theorem A implies that Gv admits a splitting
described by one of the conditions 1 or 2 (where the group G is replaced
by Gv). As all edge groups of DS-graph of G are finite this splitting of Gv
refines a DS-graph of G. Obviously this gives a splitting of G which does
not verify one of the conditions 1 or 2. Theorem C is proved. �
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