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ENDOMORPHISMS OF KLEINIAN GROUPS

T. DELZANT AND L. POTYAGAILO

1 Introduction

A group G is cohopfian (or has the co-Hopf property) if any injective endo-
morphism f : G — G is surjective.

Answering a question of E. Rips, Z. Sela showed in [S2] that a torsion-
free, non-virtually cyclic word-hyperbolic group (in Gromov’s sense) is co-
hopfian if and only if it is not a non-trivial free product. The cohopficity of
3-manifold groups has been studied by many authors; see [PW] and [OP)]
where a more complete list of references on this subject is given.

A non-trivial free product A * B is never cohopfian, as it contains the
proper subgroup AxmBm~! isomorphic to A*B if m ¢ (AUB). More gener-
ally, let the group G split as an HNN-extension, G = Axc = (At | tCt™! =
©(C)), and suppose that ¢ centralizes C. Then G is not cohopfian (set
f: G — G be the identity on A and f(t) = t?; then f is injective, not sur-
jective). It is shown in [OP] that this example can be realized as a Kleinian
group. Note that in this case, the group G splits over a parabolic subgroup
C which is of infinite index in the unique maximal parabolic subgroup C' of
G containing C' (where C' = (C,t)), and C' is not conjugate into A. In such
a case we will refer to the group C' and the corresponding splitting of G over
C' as essentially non-mazimal. On the other hand it is also shown in [OP)]
that G is cohopfian if it does not split over an elementary subgroup. A nat-
ural question is whether all non-cohopfian torsion free one-ended Kleinian
groups arise only in this way, in other words is G non-cohopfian if and only
if G has essentially non-maximal splittings over parabolic subgroups? The
main result of the paper (Theorem A below) is a criterion showing that
essentially this is the case.

Let G be a one-ended, non-elementary, geometrically finite Kleinian
group. Instead of directly studying the “absolute” cohopfian property of G,
we extend this notion to the “relative” case. Let & = {Fy,...,E,} be a
fixed set of elementary subgroups of G (a “peripheral system”) and suppose
that f : G — G is an endomorphism which sends each F; into itself. Then
Theorem B below guarantees that f is a surjective if G has no essentially
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non-maximal splittings over elementary subgroups relative to the system &
(i.e. a splitting in which every &; is elliptic).

The notion of “relative cohopficity” can be easily illustrated by the
example of a surface with boundary. Let S be a compact surface of genus
g > 1 whose boundary is a finite collection of loops «; (i = 1,...,n). Let
E; be the cyclic peripheral subgroup of G = 71(S) generated by a; and £ =
{E1,...,E,}. The group G is a free group and is not cohopfian; however
it is cohopfian relatively to &, ie. if f : (G,€) — (G,€) is an injective
endomorphism sending each group E; into itself then f is surjective.

The proof of the cohopficity criterion goes as follows. Let f: (G,€) —
(G, €) be an injective, non-surjective endomorphism of a one-ended Kleinian
group G. In section 3, refining the main result of the paper [OP], we prove,
using the theory of groups acting on real trees, that the group G splits
over elementary subgroups relative to the system &£ (Proposition 3.1). Our
further goal is to find among all the trees T, a (G, E)-tree T and another
injective, non-surjective map F : (G,€) — (G, ) so that F' sends all vertex
and edge stabilizers of T into themselves. In the simplest case, when the
tree T is dual to a splitting of GG as an amalgamated product G = Axc B, we
obtain that F'(A,C) C (A,C) and F(B,C) C (B,C). An argument based
upon M. Bestvina and M. Feighn’s accessibility theorem [BF2] will then
show (section 6) that the pairs (A, (CUE)) and (B, (BUE)) are “simpler”
than (G, €&). The general case will follow by induction.

In section 7, we prove that if a group G admits an essentially non-
maximal splitting over a parabolic group, then it is not cohopfian.

In section 8 we treat the case of infinitely ended groups. The proofs
here are based on the techniques developed in the previous sections.

Let us point out that the methods of Z. Sela’s paper [S2] do not work
for geometrically finite Kleinian groups containing parabolic subgroups of
rank greater than one. The main reason is that the crucial point of many
considerations in [S2] is the so called “shortening argument” which does
not work if the injectivity radius of the space tends to zero. In the present
paper we apply different methods. We also note that most of our arguments
do not require constant negative sectional curvature, what we really use is
strict negativity of the curvature and two purely algebraic facts: elementary
groups are virtually abelian and geometrically finite groups are finitely
presentable. However the elementary subgroups of the isometry group of an
Hadamard manifold of pinched negative curvature are in general virtually
nilpotent. Note that finitely generated virtually abelian groups are always
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not cohopfian (see section 7); whereas I. Belegradek has recently shown
that nilpotent groups can be cohopfian [Be].
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McShane for reading and correcting the manuscript. The second author is
deeply grateful to the Max-Planck Institute fiir Mathematik of Bonn for
hospitality, mathematical stimulation and support during his one-year stay
at the MPI where he worked on this paper. We thank the referees for many
valuable suggestions.

2 Preliminaries and Formulations of the Results

Let H” be the real hyperbolic space of dimension n. A group G is Kleinian
if G is a discrete subgroup of the orientation preserving part of the isometry
group IsomH" of H". The limit set A(G) of G is the set of accumulation
points of some (any) orbit G(z) (z € H").

Recall that a Kleinian group H C Isom;H" is elementary if its limit set
A(H) C 8% s a finite set, and H is a finite elementary group if and only if
A(H) = (. An infinite elementary group H is lozodromic (resp. parabolic)
if the limit set A(H) contains two points (resp. one point). By Bieber-
bach’s theorems (see e.g. [R]) every elementary subgroup H of Isom H"
is a finitely generated virtually abelian group, i.e. contains a free abelian
subgroup A of finite index. The rank of the group A is called the rank of
H. A loxodromic elementary group is always virtually cyclic (2-ended). A
parabolic subgroup of rank greater than one is a one-ended group.

NoratioN.  If C' is elementary and infinite, it is conlained in a unique
maximal elementary subgroup of G. This subgroup will be denoted C' through-
out the paper.

A finitely generated Kleinian group G is geometrically finite if there
exists an € > 0 so that the hyperbolic volume of an e-neighborhood of
C(A(G))/G is finite, where C'(A(G)) C H™ is the convex hull of the limit
set of G (i.e. the smallest convex subset of H" invariant under the G-action)
is finite.

We say that G splits as a graph of groups X, = (X, (Ce)eex1, (Gy)pexo)
(where C. and G, denote respectively edge and vertex groups of the
graph X) if G is isomorphic to the fundamental group 71 (X,) in the sense
of Serre [S2]. The Bass—Serre tree T is the universal cover, in the sense of
Serre, of the graph X = T'/G. When X has only one edge, we will say that
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G splits as an amalgamated free product (resp. an HNN-extension) if X
has two vertices (resp. one vertex).
We will need the following definitions:

DEFINITION 2.1. Let G act on a tree T. A subset H of G is called elliptic
(resp. hyperbolic) in T' (and in the graph T'/G) if H fixes a point in T (resp.
does not fix a point in T'). If T' is the Bass—Serre tree of a splitting of G as
a graph of groups, H is elliptic if and only if it is conjugate into a vertex
group of this graph.

We say that G splits relative to a family of subgroups (E1, ..., E,), or
that the pair (G,E) splits as a graph of groups, if G splits as a graph of
groups such that all the groups E; are elliptic. A (G, E)-tree is a G-tree in
which E; are elliptic for all .

DEFINITION 2.2. Suppose G splits as a graph of groups
G =m(X,Ce,Gy), (1)

and suppose that edge groups (i.e. the groups C.) of this graph are ele-
mentary. We say that the edge stabilizer C, is essentially non-maximal
if the maximal elementary subgroup C, is not elliptic in the splitting (1).
The splitting (1) is essentially non-maximal if there exists at least one such
edge. Otherwise we say that the splitting (1) is essentially maximal.

Theorem A. Let G C IsomH" be a non-elementary, geometrically finite,
one-ended Kleinian group without 2-torsion. Then G is cohopfian if and
only if the following two conditions are satisfied:

1) G has no essentially non-maximal splittings.

2) G does not split as an amalgamated free product G = A x¢ C, with
C maximal elementary, such that the normal closure of the subgroup
C in C is of infinite index in C. O

Note that if C' is a non-trivial essentially non-maximal elementary sub-
group of G, then |C' : C | = co. Therefore C' is a parabolic subgroup of G,
and rank (C) < rank C.

COROLLARY 2.3. Let G be a non-elementary, geometrically finite, one-
ended Kleinian group without 2-torsion. Suppose that every elementary
subgroup C' over which G splits has a finite index in the maximal elementary
subgroup C, then G is cohopfian.

As explained in the Introduction, the proof of Theorem A is based on
the study of the relative case.
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DEFINITION 2.4. Let G be a group, and £ = (Ey,...,E,) a family of
elementary subgroups. An endomorphism of G is called an endomorphism
of the pair (G, €) if it sends each E; into itself.

The pair (G, &) is cohopfian, if any injective endomorphism of (G, &) is
surjective. We say that the pair (G, E) is one ended if (G, E) does not split
over finite subgroups.

Theorem B. Let G C IsomH" be a non-elementary, geometrically finite,
Kleinian group without 2-torsion and & = {FEi,...,Ex} be a family of
elementary subgroups of G. Suppose that the pair (G,E€) is one-ended.
Then (G, €) is cohopfian if the following two conditions are satisfied:

1) The pair (G, ) has no essentially non-maximal splitting over elemen-
tary subgroups.

2) The pair (G,€) does not split as an amalgamated free product G =
A ¢ C, with C maximal elementary and the normal closure of C' in
C is a subgroup of infinite index of C. O

REMARK. The sufficiency part of Theorem A is a special case of Theorem B
if the family £ is empty.

We will need the following definition of acylindrical splittings introduced
by Sela in the torsion free case and in [D1] in the general case:

DEFINITION 2.5. Let G split as a graph of groups G = m1(X) with ele-
mentary edge stabilizers and T' be the Bass—Serre tree dual to this splitting.

a) The torsion free case: The splitting (and the tree T') is K-acylindrical

if the stabilizer of each segment of T' of diameter at least K is trivial.

b) The general case: The G-tree T is called (K, ®)-acylindrical if the

stabilizer of each segment on T of the diameter at least K is a finite

group. (Here ® stands for “finite”.)

If G splits as a graph of groups G = m1(X) , one says that this

splitting is (K, ®)-acylindrical if the Bass—Serre tree — the universal

cover of X —is (K, ®)-acylindrical. O

Recall also (see e.g. [BF1]) that a G-tree is called irreducible if it is

minimal (i.e. there is no proper invariant subtree) and if the label of every

vertex of valence two properly contains the labels of both edges incident to

it (if the two edges are distinct). The relationship between Definitions 2.2
and 2.5 is established in the following lemma.

LEMMA 2.6. Let G be a finitely presented Kleinian group, € = {E1, ..., Ex}
be a family of elementary subgroups of G, and suppose that the pair (G, £)
is one-ended. The pair (G,€£) has no essentially non-maximal splittings



Vol. 13, 2003 ENDOMORPHISMS OF KLEINIAN GROUPS 401

iff there exists a constant K such that each irreducible (G, E)-splitting
over elementary subgroups is (K, ®)-acylindrical. In this case, every essen-
tially non-maximal splitting of (G, &) as an amalgamated free product or
an HNN-extension is (3, ®)-acylindrical.

Proof. Suppose that the pair (G, €£) has no essentially non-maximal split-
tings and let G act on a simplicial tree 1" with elementary edge stabilizers.
Then G splits as the graph of groups X = T'/G. Let m denote the number
of edges of X. We will first show that the tree T is 2m + 1-acylindrical. To
this end, suppose that [ is an embedded path in T" consisting of n successive
edges such that n > 2m+ 1. We want to show that the stabilizer C of [ is a
finite group. Arguing by contradiction suppose that the group C' is infinite.
Since n > 2m + 1 the path [ contains at least three distinct edges ey, es, e3
which are in the same G-orbit. Let C; be the stabilizer of the edge e; and
let a; and o be its vertices (i = 1,2,3). Let ea = g(e1) and ey = h(e3) for
some ¢ and h not belonging to Cy. We have C' C ﬂg’zl C; and Cy = gC1 g~ 1,
Cy = h03h_1.

As g 1Ch¢ N Cy D C and C is infinite, we deduce that ¢g~1Cag = Cs
where Cy is the unique maximal elementary subgroup of G containing Cs.
The same property holds for h. Thus the elements g and h belong to
Co which also contains C. As G does not have essentially non-maximal
splittings, it follows that Cs fixes a point on the tree T' and so there is a
vertex v € T whose stabilizer D contains C’g.

Let [of, aj11] denote the segment of the path [ between the vertices o
and a;11. A standard argument [S, 1-6.4] shows that either the element g
fixes a point x in [, as] or g acts on T without fixed points. We have
already shown that the latter case is impossible. Similarly, the element
h fixes a point y € [ah, as]. Now their common fixed point v belongs to
the same connected component of T \ ez as one of the vertices x or y,
say x. Thus h fixes the path between y and v in T. This path contains
the edge e, and so h € Cy which is impossible. Thus the group C' must be
finite. In particular, if the graph X contains only one edge, the splitting X
(i.e. amalgam or an HNN-extension) is (3, ®)-acylindrical.

By the result of Bestvina—Feighn [BF2| there is a uniform upper bound
v(G) < oo for the number of edges of all irreducible splittings of G with
elementary edge stabilizers. Thus, setting K = 2v(G) + 1 we obtain the
result. The necessary condition is proved.

Conversely, suppose that the group has an essentially non-maximal
splitting G = 71 (X, C,, G,) relatively to the system £. As the pair (G,E)
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is one ended, every edge group C. = C' of X is an infinite elementary sub-
group. Furthermore, there exists an edge e such that C' = C, is a subgroup
of infinite index of the maximal parabolic subgroup C' C G which does not
fix a point in T — universal cover of X. Since the group C is a finitely
generated virtually abelian group, it then follows from [S, 6.5, Proposition
27] that there is an element ¢ in C acting hyperbolically on 7. The group
C contains an abelian subgroup of finite index C” and, so there exists k € N
such that t* € €', and t* centralizes the group Cy = C' NC’. Therefore, the

group Cj also fixes the edges e, t*(e),...,t"(e),..., and, hence a segment
of arbitrarily big length. We see that the tree T' is not (K, ®)-acylindrical
for any K € N. The lemma follows. O

In the final section we will need a somewhat different notion of acylin-
dricity for splittings of an infinitely ended group G over finite subgroups.
We call such a splitting strictly K-acylindrical if the stabilizer of each seg-
ment of the corresponding Bass—Serre tree T' of the diameter at least K is
a proper subgroup of some edge stabilizer of T'. In section 8, we prove the
following theorem:

Theorem C. Let G C IsomH" be a non-elementary, geometrically finite
Kleinian group without 2-torsion. Then G is cohopfian if and only if the
following three conditions are satisfied:

1) G does not have essentially non-maximal splittings over infinite ele-
mentary subgroups.

2) G does not split as an amalgamated free product G = Axc C, so that
the normal closure of the subgroup C in C is of infinite index in C.

3) Every splitting of G over finite groups is strictly M-acylindrical for a
uniform constant M. O

REMARK 2.7. By Lemma 2.6, condition 1 can be replaced by the following;:

1) There exists a constant K such that each irreducible splitting of G
over an infinite elementary subgroup is (K, ®)-acylindrical. O

We now introduce some terminology which will be used in the sequel.

A G-tree T is called a resolution of a G-tree T if there exists a G-
equivariant simplicial map p : T—T.

Suppose that T is a (G, E)-tree and ¢ : (G,€) — (G,€) is a monomor-
phism. Let ¢*T denote the G-tree defined as follows: as metric space,
@*T is T, but the action of G on T is obtained from the original action by
composing with ¢,

gerr(x) = (9)r(2) .
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The stabilizer of a vertex v (edge e) of the tree p*T is equal to = 1(G,)
(respectively ¢~ 1(C.)) where G, (respectively C.) is the stabilizer of v
(respectively e) on T.

A marking of the G-tree T is a subtree ¢t of T which is a fundamental
domain for the action of the group G on T. A pair (7,t) will be called
a marked tree where t is a marking of T. If ¢ is a marking of 7" and
f : G — @ is an injective endomorphism we denote by ¢ a marking of
the tree f*T containing ¢ setwise. Two markings ¢,¢' of the tree T are
isomorphic if there exists an automorphism ¢ of G and a G-equivariant
isometry I : *T — T sending ¢ to t’. Note that if the graph T'/G is finite
there are at most finitely many different markings of 7" up to isomorphism.
We say that the G-tree T' dominates the G-tree T if there exists a resolution
p: T — o*T" for some automorphism ¢ of G. Similarly, we say that the
marked tree (T',t) dominates the marked G-tree (T”,t') if there exists a
resolution p : (T,t) — (¢*T",t') sending the marking ¢ to the marking ¢'.

3 Finding a Splitting of a Non-cohopfian Pair (G, )

Let G be a non-cohopfian Kleinian group, and f : G — G be an injective
non-surjective endomorphism, then the result of [OP] implies that G admits
a non-trivial action on a simplicial tree with elementary edge stabilizers.
The following proposition provides a relative version of this result:

ProPOSITION 3.1. Let G C IsomH" be a non-elementary, geometrically
finite Kleinian group without 2-torsion and & = {Fy,...,FEy} is a finite
family of elementary subgroups of G. Suppose that the pair (G, ) is non-
cohopfian and let f : (G,€) — (G, &) be an injective endomorphism which
is not surjective. Then (G,E) has a non-trivial splitting over elementary
subgroups.

Proof. We may assume (w.l.o.g.) that all the subgroups FE; are infinite
maximal elementary subgroups of G and F; are loxodromic for the first s
subgroups from £ (0 < s < k). Suppose also that the elements ~y; generate
the infinite cyclic subgroup (v;) of finite index of E; (i =1,...,s). Let A,
denote the invariant axis of the element ~; and distgn (-) be the hyperbolic
distance between subsets of H" (i = 1,...,s). We start with the following:

LEMMA 3.2.  Suppose that there exists i € {1,...,s} such that for all
g € G the quantity distm» (A, f™(9)(Ay,)) is bounded. Then, there exist
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natural numbers mg, ng € N and elements o, € G such that for all m > my:
) = am ™ (7 )an s kn € L.
Proof of the lemma. We will need the following result:

Uniform Klein Combination (UKC) Theorem (M. Gromov [G],
T. Delzant [D3], R.C. Alperin and G. Noskov [AN]). Suppose G is a geomet-
rically finite group, v a loxodromic element and E its maximal elementary
subgroup. Then there exists N such that for any element a € G \ E the
elements v and ay™Va~! freely generate the free group F.

Assuming this theorem we shall prove the lemma. Let v; = v and
E = E;. As the group F does not have 2-torsion it is well known [DuD,
6.12] that F = K x C where C' = () 2 Z and K is a finite group of order .
There exists k € N such that ¥ centralizes E. It is then easy to check that
there exists ¢ € N so that f(y*) = 4#4, Setting 7 = Y*V, where N is given
by the above UKC theorem, we have f(%) = 74.

By hypothesis, for every element g € G there exists a constant K < oo

such that
disten (A, f™(9)(A4)) <K (meN).

Set gm = f™(g), and choose points w,, € A, and y;, € gm(A,) so that
din (Wi, Ym) = distan (Ay, gm(A5)) (7 = 1,2; m € N). Let w}, be the point
9t (ym) € A, then dpn (Wi, gm(wh,)) < K. As the group (7) is a finite
index subgroup of E, it acts co-compactly on the axis A,. So there exist
integers k,, 7 such that wy, = 3 (z,,), w), = 3™ ), 2m, 2., € A; and
dmn (zm, 2),) < K1 < 400 for some K;. We obtain

dgn (zm,’?_k’”gmfyrm(zm)) <K+ K; <+x.

As the group G is discrete and ¥ *mg,, 3" € G (m € N), it follows that
Jmg such that Vm > mq : 5~ Fmg,, 3™ = S/_km(ngoﬁ/_rmO.

We deduce that for every g € G there exists mg € N such that Vm > mg
and there exist integers k,, and r,, such that

f(g) = A" o (g™ (5 =1,2), (%)

where ky, := kp, — kmgs Tm = —Tm — 'my- Now pick any element a € G\ E
and set ¢ = aya L.
We can also choose mq so that (*) holds not only for g but also for g2

(after replacing ki, (resp. ry,) by t, (resp. s,,)). We obtain

F™Mg%) = At (g = A e (g) T R f (g)F . ()
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As f™(E) C E, the subgroup f~™0(FE) is elementary (being isomorphic
to fMo(f~™0(E))) and contains E. By the maximality of the latter, we
get f7™(E) = E. So f™(a) is an element which does not belong to E
(Vm € N).

The UKC theorem now yields that the elements 7"V and h,,, =
fmo(a)yN fmo(a~1) freely generate the free group Fp. As 7 = 4N and
f(7) = A9, we obtain that f0(g) = (A, )9  *. Thus, the elements 7 and

f™(g) also generate a free group. Then it follows from (xx) that r,, = —ky,
and so

£7(g) =3 Fr (g = 7 0@ YT s
proving the lemma. O
Proof of the proposition. Let us choose a generating system S =
{1,y Yrsa1,...,a;} of G where ~; are generators of subgroups E; € £
and the elements a; do not belong to £ (1 <1 <1). If forsome ¢ € {1,...,s}

there exists an element b; € G such that the function distmn (A+,,f™ (b;)(A~,))
is not bounded we add the elements b; and bi’yib;1 to the system S and
retain the same notation .S for it. Consider now the following displacement
function:

— 3 m
It is proved in [OP] that if the map f is not surjective then for any gen-
erating system S the function d,,(f,S,G) is not bounded (m € N). In
this case, by the theorem of Bestvina—Paulin [B1], [P], the group G acts
stably and non-trivially on a real tree Tk with elementary edge stabilizers.
Furthermore, it is proven in [B1], [P] that

T D re(o), ©)

where I(g) = inf dgn (z, g(z)) and Lr(g) = infdgp, (z, g(z)) are the trans-
lation lengths in the hyperbolic space H™ and in the tree Tk respectively.
By Rips’ theorem [BF1] there exists a non-trivial simplicial G-tree with
elementary edge stabilizers.

Arguing by contradiction suppose that for every simplicial G-tree one
of the subgroups F; acts hyperbolically on it (i = 1,...,k). By the relative
version of Rips’ theorem [BF1, Theorem 9.6] there exists an element y € £,
which acts hyperbolically on the real tree T too, implying that the quantity
Lr(7) is strictly positive.
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After passing to a subsequence, we may choose an element g € S and a
point x,, € H" which realizes the min-max in (5),

dn(f, 8, G) = dun (T, [ (9)(2m)) »
and such that the following inequality holds:

. 1)
0< m%—u)o dign (T, f(9)(Tm))

Note that up to passing to a further subsequence we may suppose that
for every m € N the group f™(7) generates infinite virtually cyclic lox-
odromic group. Indeed if f™(y) is parabolic (Vm > myg) then (6) yields
that v fixes a point in the tree T, which is impossible. So we may assume
(wlo.g.) that v € Ey. As f™(E;) C E; the group f™(FE1) is an infinite
virtually cyclic loxodromic subgroup of G leaving the axis A, invariant
(m e N).

It follows from Lemma 3.2 that there exists an element b € G such that
the distance distgn (A4,, f™(b)(Ay)) is unbounded; otherwise the element
would act elliptically on the tree T as f™(7"°) is conjugate to the element
fmo(y™) (Vm > mg). Furthermore we may assume by construction, that
the system S contains the elements b and h = byb~!. Set h,, = f™(h) =
b f™(7)b;!. Notice that I(h,,) = I(f™(y)). To finish the proof of the
proposition we will show that « cannot act hyperbolically on Tk. There are
two cases according to whether or not the quantity D,, = distmn (2, A,)
remains bounded.

<1.

Case 1. D, is unbounded.
As v e S, so dun (f™(V)(®m), Tm) < dm(f, S, G). Let us choose a point
wy, € Ay which realizes the distance D,,. Since l[(hy,) = I(f™ (7)) we obtain

L(hm) _ I(f"(v) _ dign (W, f™(7) (W)
dn(f,5,G)  dm(f,5,G) dm(f, S, G)
< e_Dm dH" (xm7fm('7)(xm)) < e_Dm =0
B dm(f? S7 G) N ’

implying that the element h = byb~! acts elliptically on Tk and, so is v. A
contradiction.
Case 2. D, is bounded.

Since h € S, so dmn (hpm(Tm), Tm) < dm(f,S,G). Choose z,, € Ay, =
by (Ay) such that dgm (T, 2 ) = distgn (€, Ap,,) and denote this distance
Mpx. As distan (Ay,bn(Ay)) — oo we obtain that up to a subsequence
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M,, — +00 (m — +0o0). Then
[(hm) < e Mm dan (R (Tm), Tm)
dn(f, S, G) ~ dn(f, 5, G)
As before it follows that the element  acts elliptically on the tree Tk

contradicting our hypothesis. Therefore, we have shown that there exists
a non-trivial (G, E)-tree. The proposition is proved. O

— 0,

4 Accessibility of Finitely Presented Groups

In this section we collect some results about different versions of accessi-
bility (acylindrical and hierarchical) for finitely presented groups. Let G
denote an abstract (not necessarily Kleinian) group.

We will consider decompositions of finitely presented groups over so
called elementary subgroups which we now define axiomatically

DEFINITION 4.1. Let G be a finitely presented group and C a fixed
family of subgroups of G. We call the family C and every element C' € C
elementary if the following axioms are satisfied:

(1) If C € C then every subgroup and every conjugate of C' is in C.

(2) Every infinite subgroup belonging to C is contained in a unique max-
imal subgroup C so that C € C. The union of an ascending sequence
of finite elementary groups is elementary.

(3) Every subgroup of C satisfies the following fixed-point condition:
whenever C acts on a simplicial tree 7, C' preserves a point in T, or
a point on its ideal boundary Ot or a pair of points on Ot (possibly
permuting them).

(4) If C € C is an infinite maximal elementary subgroup then its normal-
izer in G is contained in C, i.e. gCg~' = C implies that g € C for all
g €aqG.

Examples of elementary families are well known in the geometry of neg-
atively curved spaces. Namely, discrete subgroups of the hyperbolic space
H" or, more generally, Hadamard spaces with a pinched negative curvature
are elementary in the classical sense if their limit set is a finite set. In this
case they are also elementary according to our axioms (1)—(4). Indeed, the
properties (1), (2) and (4) are easy exercises, the only property which is
non-trivial is axiom (3) which follows from Margulis’ lemma saying that
every such group is virtually nilpotent (abelian in the constant curvature
case) and from Tits’ theorem [Ti] implying that every virtually nilpotent
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group satisfies (3). Another important example one obtains by considering
elementary subgroups (i.e. virtually cyclic) of word-hyperbolic (Gromov)
groups which are also elementary according to the axioms (1)—(4).

A finite hierarchy of length & of the group G over elementary subgroups
is defined inductively (on k) as follows ([DP]):

DEFINITION 4.2. Let G be a group and C a family of elementary subgroups
of G. If G does not split as an amalgamated free product or an HNN-
extension over a subgroup in C, we say that G admits a hierarchy (of
length 0). We say that G admits a finite hierarchy of length k if G splits
as G* = Gl ¢ Gi or G = Gix¢ (C € C), and one of the groups G} or
G} admits a finite hierarchy of length k — 1 and the other admits a finite
hierarchy of length at most k — 1. We say that G admits a hierarchy if this
holds for some integer k (which we call the length of the hierarchy.)

We define then the number [(G) to be the minimal number of the lengths
among all hierarchies of G. Similarly [(G,E) denotes the minimal number
of the lengths of all hierarchies of G such that all the subgroups in £ are
elliptic in every decomposition appearing in this hierarchy.

Hierarchical Accessibility Theorem. Let G be a finitely presented
group without 2-torsion and C C G an elementary family of subgroups. Let
E = {E\,...,Ex} be a fixed finite subset of C. Then (G,€) has a finite
hierarchy over elementary subgroups.

In other words, either [(G,£) = 0, or there exists a decomposition of
(G,€) as an amalgamated free product (or an HNN-extension)

G=AxcB, (G=Axc),

such that
max{l(A,AﬂS),l(B,BﬁS)} <I(G,€). (3)

Proof. The proof of the main Theorem 3.6 of the paper [DP], can easily be
adapted to the relative case, by keeping track of the peripheral system &.
Let us sketch this proof. Recall that in order to prove Theorem 3.2 in
[DP] we used a version of an invariant ¢(-) (called complezity) of finitely
presented groups which first appeared in [D2]. Consider a simplicial devel-
opable orbihedron IT of dimension 2 whose fundamental group is G (see [H])
such that the vertex stabilizers of II are in C and every subgroup F; fixes
a vertex z; € Il (i = 1,...,k). We define first ¢(II,€) to be the pair
(T'(I1), b (IT)), where T'(II) is the number of 2-dimensional faces of II and
b1 (IT) is the first Betti number of the underlying topological space of II.
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Then ¢(G, ) is defined to be the infimum (for the lexicographical order)
over all such G-orbihedra II.

If T is a (G, &)-tree, the main result of [DP, Theorem 3.2] produces a
simplicial tree T and a resolution f : 7' — T so that the invariant ¢(-) of the
vertex stabilizers of 7' strictly decreases. All we need to check is that the
groups F; are still elliptic on the tree T'. To see this consider the orbihedron
universal cover P of the complex II. The axioms of Definition 4.1 allow
one to construct a G-equivariant map p : P — T U 9T (see [DP, 4.1]).
Recall that the tree 7' is constructed to be the dual tree to the lamination
A C P whose leaves are preimages under p of the midpoints of the edges
of T. Let E; € £ be an elementary subgroup which fixes a vertex x; € P.
By hypothesis it also fixes a vertex v; in the tree T. As the map f is
equivariant, every element g € F; stabilizes a component §2; of P\ A which
contains x;. Thus the group E; is contained in the stabilizer Gy, of the
vertex 0; corresponding to the component €2; which is a vertex stabilizer
of 7. The result now follows by the argument of [DP, Theorem 3.6]. m

Acylindrical Superaccessibility Theorem (relative to a subset). Let
G be a finitely presented group and Ej, ..., E, a fixed finite set of infinite
elementary subgroups of G. Suppose that the pair (G, ) is one-ended and
there is a finite bound for orders of finite subgroups of GG. Then for each
K € R there exists a finite number of G-trees T1,..., Ty such that all
subgroups E; are elliptic on T;, and for every minimal (K, ®)-acylindrical
(G, E)-tree T, there exist an automorphism ¢ of G sending each group E;
into itself and a resolution ¢*(T;) — T (i € {1,...,M}).

This theorem in the torsion-free case (i.e. for K-acylindrical splittings)
in the absolute form (i.e. without the claim about subgroups E;) was proved
by Sela [S1]. The absolute form of the case with torsion is given in [D1].
The argument of [D1] can be adapted to the relative case along the following
lines.

Proof. Let II be a finite 2-dimensional CW-complex with 71 (I) = G all of
whose 2-faces are either bigons or triangles. Suppose also that II contains
subcomplexes B; (i = 1,...,q) whose fundamental groups are isomorphic
to E;. One can construct a G-equivariant simplicial map p : P — T where
P is the universal cover of II. Let A denote a lamination of P whose leaves
are preimages under p of the midpoints of the edges of T'. By construction,
A is a G-equivariant lamination and let A denote A/G. One defines a sub-
graph Ay of A by describing its intersection with each face A of II. Namely
A N Ay are those leaves of A in A whose image under p is situated within
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a distance at least k from the images of the vertices or the center of A. It
is proven in [D1] (see Lemma 1.5) that the action on 7" of the fundamental
group of each connected component of A pointwise fixes a segment of the
length k. It follows from the hypothesis that the fundamental group of each
connected component of Ay is finite.

One can collapse all the leaves of Aj and all sub-complexes B; to
points. As the number of faces of II and leaves in A \ Ay is uniformly
bounded, we note that the number of faces and edges of the resulting orbi-
hedron II' is uniformly bounded (here one uses the minimality of the tree T
[D1, Lemmas 2.1, 2.2]). Each vertex stabilizer of II' is either finite or is
one of the groups E;. As the orders of finite subgroups of G are uniformly
bounded, there are only finitely many orbihedrons with all these proper-
ties, so II' must belong to a finite set of orbihedrons {Qy,...,Qxs}, with
M depending only on the group G and the system of its subgroups E;
(t=1,...,q).

There exists a simplicial map 0, between the complexes IT' and
(for some k € {1,...,M}). This map induces an isomorphism (). :
G — 7§ (Q) where 7¢(82) is the fundamental group of € (in the sense of
orbihedra). Notice that 6 lifts to an equivariant map 05, between P’ and
Q. which are the orbihedron universal covers of II' and 2, correspondingly.
If Oy (x;) = y; where the stabilizer of the point z; € P’ is E; and y; € Q4
(i, €{1,...,q}, ke {1,...,M}) then we have (6;).(C;) C Stab(y;) = Cj.
After possibly replacing 0 by a power we may suppose that (0;).(E;) C E;.
Following [D1, Theorem 3.1] let us consider the dual tree 7 to the lamination
which is the image of the lamination A in P’ and let T be the same for
the orbihedron 2. Arguing as in the proof of the hierarchical accessibility
theorem, we obtain that the groups FE; are elliptic in the tree 7 and there
is an equivariant simplicial map 7 — Tj. The actions of the groups G and
7{(2) on the trees 7 and T} respectively are conjugate by the map 6.
Thus we have 7 = 6" (7;,) and the theorem follows. o

DEFINITION 4.3. Let F be graph of groups decomposition of the pair
(G,E). We say that the graph Fi refines F if it is obtained from F by
replacing a vertex v € F° by a non-trivial graph of groups decomposition
Fy of the pair (G,,E N S), where S is the set of edge groups of F.

A sequence {F,} of graphs of groups decompositions of (G, &) is called
a refining sequence if for every n the graph F,, 1 refines F,,. We call the
refining sequence {F,} stabilizing if there exists ng such that F,, = F,, for
all n > ng; and non-stabilizing otherwise.
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We need another accessibility result, which we are now going to prove,
for refined sequences of splittings of finitely presented groups. Let G de-
note a finitely presented group equipped with the family £ of elementary
subgroups.

Suppose {F,} is a sequence of decompositions of the pair (G, £) so that
the graph F, 11 is obtained from F,, by making an elementary refinement;
i.e. the label of some vertex v of F, is replaced by an elementary splitting
A xc B or Axc, in which all the edge groups of the graph F,, are elliptic.
Collapsing a vertex is the inverse operation to the refinement. We call an
edge e of a graph of groups of (G,&) non-trivial if it is a loop or if the
label of both of its vertices do not coincide with the label of e, otherwise we
call e trivial. Likewise, we call a vertex v of valence two trivial if its label
coincides with the label of one of the edges incident to it. Note that the
label of a trivial vertex is necessarily an elementary subgroup of G.

Bestvina-Feighn’s accessibility theorem [BF2] ensures that there exists
m such that all edges (and vertices) in F,, \ Fy, are trivial for n > m. Indeed,
if it is not so then collapsing all the edges of the graph F,, whose labels
coincide with the label of one of its vertices, we will obtain an irreducible
graph of groups decomposition of (G,€) with elementary edge stabilizers
having an unbounded number of edges (when n — +00); this is prohibited
by [BF2].

Suppose now that the group G admits a non-stabilizing sequence {F,,}
then for some vertex v,, whose label is A,, we will have an infinite chain
of elementary refinements,

Am - Am+1 *C’m+1 Cm7 Am-‘rl - Am+2 *C’m+2 C'm-l—l 5
(4)
cAprk = Akt *Crnt ka1 Crtk -+
where C),4k is an infinite elementary subgroup of G (as G is one ended
and splits over C),4x). By Definition 4.3 each splitting in (4) is non-trivial,
so we have Cryqk £ Cpqry1. It also follows that for all but finitely many
indices |Cryyk : Crngk+1]| < 00 as the rank of the maximal elementary group
C\oii, is finite. We obtain from (4) the following splitting in which all edges
are trivial:

Am:((“'((cm *Crmg1 Cm+1)*Cm+2 Crmt2) * ... *Congk Cm+k)*cm+k+1 Am-i-k-i-l)a
VEkeN. (4"

Let &, denote the union of £ and the labels of the edges incident to the
vertex v,. We will need the following lemma.
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LEMMA 4.4. Suppose that the pair (G, ) has no essentially non-maximal
splittings and admits a non-stabilizing sequence (4). Then the pair (A, Em)

splits as ~ ~
Ay, = Axc Cp, rank C < rank Cp,,

where C' C (V51 Cmtis A C (V> Am+i; and C,, is maximal elementary
subgroup of A,, containing C'.

REMARK 4.5. We thank M. Bestvina for suggesting how to prove this
lemma. In the paper [Bo] a similar statement is proved (Theorem 6.1).

Before we give the proof of the lemma we first provide an example
of infinite non-stabilizing sequence of splittings which we borrow from
[BF1, p. 450].

EXAMPLE. Take the free group F, = F(x,y). Then we have the sequence
of non-trivial splittings (compare with (4)),

Fy = (@) 2y (2%, 9) 5 (2%,y) = (@) xay (@ 0) s (2 y) = (@) rps) (25, 9)..
Note that each of these splittings is non-trivial but altogether they give a
non-trivial splitting of F5 where all edges are trivial,

Fy = (. (@) %2y (@))% (pay) - * (g2 (z?* y)) VkeN.

The group F5 splits as (z) * (y) where the edge group is obtained as id =
Nk (z%*) and the other vertex group is

Proof of Lemma 4.4. Note that, since all edge groups of the graph F,, are
quasi-convex subgroups of G, it follows from the proof of [K, Lemma 3.5]
that every vertex group of F, is a quasi-convex subgroup of G. Then by
[Sw], we have that A,, is a geometrically finite group, in particular, it is a
finitely presented group.

For every k € N let T denote the Bass—Serre A,,-tree corresponding
to the splitting (4") (m is fixed). Let P be a simply connected complex on
which A,, acts co-compactly so that every subgroup E; € £ fixes a point
pi€P (i=1,...,q).

Proceeding now as in the proof of the acylindricity theorem, we con-
struct a A,,-equivariant simplicial map fi : P — T}. To this end for a point
po € P we set fr(po) = zo (e.g. the vertex whose stabilizer is C,,). Then
extend this equivariantly by setting fir(gpo) = gxo (9 € Ap,). Consider
now the lamination Ay of the complex P which is the pullback by fj of the
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midpoints of the tree Ty. The components of A; are called tracks. Note
that the tree T} is obtained from Ty, by collapsing the orbit of one edge.
It follows from this construction that Aj,q is obtained from Ay by adding
the A,,-orbit of the tracks dual to the added edge in Ty 1.

As the complex IT = P/A,, is finite, there exists a natural number kg
such that for all & > ko the tracks in Ay \ Ak, project into finitely many
families of mutually parallel graphs in II [Du] (see Figure 1). Let C be the
common stabilizer of an infinite sequence of such tracks. The map f; is
equivariant, so for every k there exists ny > k such that C C C,,,. As Vk
Cr C Ck—1 and k — oo, we obtain that C' C (), Ck. Collapsing all tracks
in P having the same stabilizer to one track we obtain a dual tree to this
system of tracks which gives rise to a splitting of A,, over C. Since the
sequence Cy, is strictly decreasing we also have |C), : C| = oo. Similarly, by
the equivariance of fy, it follows that the stabilizers of the complementary
components to the tracks are either subgroups of Cj or (), Ag.

A
Am
AI-H—/
Am

Figure 1: The complex IT = P/A,,

Let X,,, denote the corresponding graph of groups decomposition of A,,.
The splitting given by X, is non-trivial (as the decomposition (4') is non-
trivial for every k) and is relative to the system of subgroups &,,. So
it refines the decomposition F,, of G. As the pair (G,€) does not have
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essentially non-maximal splittings, the splitting X,,, is also essentially non-
maximal. Furthermore, by the choice of m, the graph X,,, may only contain
trivial edges and vertices. Thus, there is only one non-elementary vertex
group A C () 4, and all the other vertex groups are subgroups of C,,. Now
the maximal elementary subgroup Chy, of A,, containing C is elliptic in X,
so Cp, is conjugate either into A or into Cy,. The former case is impossible
by the non-triviality of the splitting, so Cy, = Cyn. So collapsing all vertices
of X, whose labels are elementary, we still obtain the non-trivial one edge
splitting A,, = A x¢ Cy, (note that we cannot get HNN-extension which
would be essentially non-maximal in this case). The lemma is proved. ©

It follows from the lemma that the group C is infinite as the pair (G, )
is one-ended.

5 Finding a G-tree Invariant under Endomorphism

Let G be a Kleinian group and £ = {Ey, ..., E;} be a fixed finite family of
elementary subgroups of G.

Suppose that the pair (G, £) is not cohopfian. Then Proposition 3.1 tells
us that (G, &) splits as an amalgamated free product (or an HNN-extension)
over an elementary subgroup. We get infinitely many such splittings in the
following proposition.

ProproSITION 5.1. Let G be a non-elementary, geometrically finite,
Kleinian group without 2-torsion endowed with the system £. Then the
following assertions are true:

1) If f:(G,€) — (G,€) is a non-surjective monomorphism, then there
exists a (G,E)-tree T so that for every n € N the tree f"*(7) is a
non-trivial (G, £)-tree.

2) If in addition, the pair (G, &) is one-ended and has no essentially non-
maximal splittings then there exists a (G, E)-tree J such that for all
n € N, the tree f*(J) is a non-trivial, (K, ®)-acylindrical (G, £)-tree
for some uniform constant K.

Proof. We prove the first part of the proposition by induction on the
length I(-, ) of a hierarchy of (G, ). Note that by Proposition 3.1 we have
I(G,€) > 1. By the hierarchical accessibility theorem, (G, &) splits as an
amalgamated free product or HNN, G = Ax¢ B or G = Ax¢ (C € C) with

max {l(A,A NE),I(B,BN 5)} <I(G,€).
Let T denote the Bass—Serre tree dual to this splitting. If for all n € N the
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trees f*(T') are non-trivial, let 7' = 7. If not, there exists m € N such that
up to conjugation f™(G) is a subgroup of A or B, say A. As f is injective,
the subgroup A is a non-elementary group and f(A4) & A.

As we have noticed in the previous chapter from [K], [Sw], it follows
that A and B are finitely presented groups.

So let us first check the statement of the proposition when I(G,E) = 1.
Then [(A,ANE) = 0 and a contradiction: the pair (A,€ N A) is not
cohopfian, so Proposition 3.1 applied to A implies that A splits non-trivially
relatively to ANE.

Suppose now that [(G, £) > 1; as f is a non-surjective monomorphism of
(A, ANE) and I(A,ENA) < (G, E) we can apply the induction hypothesis
to A. So there exists a non-trivial (A4,& N A)-tree T4 such that f™*(T4)
is a non-trivial (A4,€ N A)-tree for all n € N. Let 7 denote f*(T4) which
can be also considered as a G-tree (as f(G) C A). We get a sequence of
G-trees f™*(7) (n € N), which are all non-trivial A-trees when restricted
to A. Whence f"*(7) is a non-trivial G-tree (Vn € N).

If E € £ then by the induction hypothesis, the group ENA is a subgroup
of a vertex stabilizer of 7, say G,. Thus, f~"(E N A) is contained in the
vertex stabilizer f~"(G,) of the tree f™*7. Since f(FE;) C E; we obtain
E;C f7™(E;NA) C f~™(Gy). We have shown that the system & is elliptic
in the trees f™*1, and therefore f™*7 is a non-trivial (G, £)-tree for every
n € N. The first part of the proposition is proved.

The graph 7/G may be reducible. In this case we collapse in 7/G
every edge whose label is equal to the label of one of its vertices. Denote
J the universal cover (in the sense of Serre) of this new graph of groups
decomposition of G. As G acts on 7 without global fixed points, then
obviously, G also acts without global fixed points on J, and the system
£ is elliptic on J. Furthermore, as the set of the non-elementary vertex
stabilizers of the trees J and 7 is the same, it follows from part 1) that
the trees f*J are also non-trivial (G, £)-trees (Vn € N). The pair (G, €)
is one-ended and has no essentially non-maximal splittings, so Lemma 2.6
now yields that the reduced (G, €&)-tree J is (K, ®)-acylindrical for some
uniform constant K. Then the trees f™*.J are also (K, ®)-acylindrical for
the same constant K. Indeed, otherwise there is a segment [ of length K on
the tree f"*(J) whose pointwise stabilizer is an infinite subgroup C. Thus
f™(C) is an infinite subgroup fixing pointwise the segment [ on J too. This
is impossible. 0

PROPOSITION 5.2.  Suppose that the pair (G, &) is one-ended and does
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not have essentially non-maximal splittings. Let f : (G,€) — (G,&) be a
non-surjective monomorphism. Then there exist a non-trivial (G, E)-tree
T with elementary edge stabilizers and a non-surjective monomorphism
F:(G,€) — (G,E) such that F(Gs) C G5 for every vertex (resp. edge)
stabilizer G.

Proof. Suppose f : (G,€) — (G,€) is an injective non-surjective endo-
morphism. We first claim that there exist a non-surjective monomorphism
F of (G,€) and a marked (G, &)-tree (T,t) which dominates (F*T,#) (see
Preliminaries for the terminology).

To be able to apply the acylindrical superaccessibility theorem, we con-
sider the minimal G-subtree .J,, of f"*J. Let j be a marking of .J and let j,
be the marking of J, containing j. By Proposition 5.1 there exists a tree
J so that f™*(J) is a non-trivial (K, ®)-acylindrical (G, &)-tree for some
uniform constant K. Clearly, the same is true for the minimal subtree J,,.

By the acylindrical superaccessibility theorem, there exists a family
of (G,E)-trees 71,..., T, such that for every minimal (K, ®)-acylindrical
(G, E)-tree T, there exists i € {1,...,m} that the tree 7; dominates 7. Fur-
thermore, the number of possible markings of the trees 7; (i € {1,...,m}) is
finite (up to automorphism of (G, £)). So for a given resolution p; : 7; — 7
we can find a marking t; C p; '(t) of the tree 7; such that p; : (7i, ;) — (7,1).
Thus, we obtain a finite number of marked trees (71,t1),..., (Tar,tar)
(M > m) such that for every minimal marked (G, £)-tree (7,t) there exists
a marked tree (7;,t;) dominating (7,1).

Passing to a subsequence, we can assume that there is a marked tree
(7i,t;) which dominates all the trees (.J,,,j,). Note that, for every k € N
the tree f5'7; is a non-trivial (G, £)-tree, as it dominates the non-trivial
tree (f*+™)*J for some n € N.

Assuming (w.l.o.g.) that the above set of marked trees {(71,¢1),...,
(Tar,tar)} contains (J, ), consider the following order relation on the set
of indices {1,2,...,M}. We say that i« > k if there exists an injective
endomorphism F of (G, ) such that F' is surjective iff f is, and the marked
tree (7;,t;) dominates the marked tree (F*(7;),%;). Note that this relation
is transitive. Indeed, if ¢ > k then there is a resolution from the marked
tree (7;,t;) to the marked tree (¢} Fyg,%;) where #;, is a marking of the
tree ¢} F}'1;, containing ¢5. If also j > ¢ then there is a resolution (7;,t;) —
(5 F57i,t;) implying that (7,t;) resolves (¢3Fy @i FyTy, k). As each map
F; is surjective iff f is surjective, the transitivity of this relation follows.

As M < 400, we must have | > [ for some index [ € {1,2,...,M}.
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Therefore, there exists an injective endomorphism F' of (G, £) and a resolu-
tion p,, : 7 — F*7; sending the marking ¢; to the marking #;. Furthermore,
the map F is surjective iff f is. Setting T = 7, t = t;, t = {; we obtained
the marked (G, &)-tree (T,t) which dominates (F*T,t). This proves our
claim.

We have p,,(t) = t. The resolution p,, is a composition of finitely many
folds [BF1], so it does not increase the number of G-orbits of edges of T'.
As t Ct = p,(t) we obtain p,,(t) =t =t. Whence G; C F~!(G;) and so
F(Gy) C Gs for every vertex (resp. edge) stabilizer G of the tree T'. The
map F' and the tree T satisfy the conclusion of the proposition. m

6 Proof of Theorem B

Let G C Isom H" be a non-elementary Kleinian group without 2-torsion
equipped with a finite system & = {Ej,..., E;} of elementary subgroups
and suppose that F': (G,€) — (G, ) is a monomorphism of G sending each

subgroup F; into itself. Let E; denote E; if E; is finite and the maximal
elementary subgroup of G containing F; if F; is infinite.

The aim of this section is to prove

Theorem B. Suppose that the pair (G,€) is one-ended. Then (G,E) is
cohopfian if the following two conditions are satisfied:

1) The pair (G,£) has no essentially non-maximal splittings over ele-
mentary subgroups.
2) The pair (G, &) does not split as an amalgamated free product G =
A xc C, with C maximal elementary such that the normal closure of
the subgroup C' in C is of infinite index in C.
Proof. Suppose f : (G,€) — (G,€) is an injective endomorphism. If
the pair (G, &) is indecomposable over elementary subgroups then Propo-
sition 3.1 implies that f is surjective. So we may assume that (G, ) splits
non-trivially over elementary subgroups. By Proposition 5.2 we can find a
non-trivial (G, £)-tree T" and an injective endomorphism F of (G, E) send-
ing each vertex (edge) stabilizer of T into itself. We will need the following
two lemmas.

LEMMA 6.1. Suppose that there exists a graph of groups Y decomposition
of (G,€) and an endomorphism F of (G,E) sending all vertex and edge
groups of Y into themselves. If F|q, is surjective for every vertex group
G, of Y then F : G — @ is surjective too.
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Proof. If the graph Y is a tree of groups then the vertex groups G, (v € Y?)
generate the whole group G, and so the map F' is surjective. Assume then
that Y is not a tree, fix a maximal subtree of Y, and let e be an edge which
is not in the maximal subtree. By Proposition 5.2 there exists a resolution
p and marking ¢, so that p sends the marked tree (T, t) to the marked tree
(F*T,t). Let a be a vertex of e. As e does not separate T it follows that
there exists an element g € G and lifts a; and as of a to the marking ¢
such that g(a1) = az. We want to show that ¢ is in the image of F. As
the subtree t is also a marking of the tree F*T', there exists g1 € G so that
F(g1)(a1) = ag by definition of the G-action on the tree F*T'. This implies
that the element F(g1)-g~! belongs to the stabilizer Gz, of the vertex ds.
By hypothesis F' restricted to Gg, is surjective. So there exists g € G for
which F(g1) - g~ = F(g2). It follows that the element g is in the image
of F. The lemma is proved. O

The next lemma shows that we have only to worry about non-elementary
vertex groups.

LEMMA 6.2. Suppose that Y is a splitting of the pair (G, ) which is essen-
tially non-maximal and the pair (G, E) satisfies condition 2 of Theorem B.
Suppose also that F' is an injective endomorphism sending every vertex
(edge) group of Y into itself. If the map F|q, is surjective for every non-
elementary vertex group G, of Y then F : G — G is surjective.

Proof. Collapsing each edge of the graph Y = T/G whose label is equal
to the label of the vertex incident to it, we may assume that the splitting
Y is irreducible (as this operation does not modify the non-elementary
vertex stabilizers, all the assumptions of the lemma remain valid for the
new splitting). Let us now consider edge groups and elementary vertex
groups of the graph Y = T'/G. Since our group G is non-elementary, after
collapsing all pairs of adjacent neighboring vertices v; and v whose labels
are elementary groups we still get a non-trivial splitting of G satisfying all
the above properties. Similarly, if there is a vertex v whose vertex group
G, is elementary and such that there is a loop e emanating from v, then we
collapse this loop to v. The resulting vertex group will still be elementary
and the map F' sends it into itself. So we may assume that every edge
e € Y which is not a loop has at least one vertex v € de whose label is a
non-elementary group G,. Moreover, there is no loop of Y emanating from
a vertex whose label is elementary.

We can also suppose that our graph Y does not have vertex groups
which are non-maximal elementary groups. Indeed, if G, is such a group
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then, since Y is an essentially non-maximal splitting, the maximal elemen-
tary subgroup G, containing G, is contained in some other vertex group,
say G . However, the group G, is contained in the stabilizer of the edge
belonging to the path between v’ and v. This contradicts the irreducibility
of the graph Y.

Let us now prove that the restriction F|g, on every edge group G,
is surjective. Indeed, as F is injective the group F~!(G,) is elementary
(being isomorphic to F(F~1(G,)) which is a subgroup of G) and we have
F~YG.) D G, since F(G,) C G.. Let v; € de be one of the vertices
of e whose stabilizer Gy, is not elementary. Since F|g, is surjective, for
any y € G, there exists € G,, so that F(x) = y. If another vertex
v9 € Je also has a non-elementary stabilizer then, for the same reason and
the injectivity of F', we obtain that z € G, and so x € G.. Now if, G,, is
a maximal elementary subgroup of G’ we have F~1(G,,) D F~1(G¢) D G..
Thus F~Y1(G,,) = G,, since G, is infinite and is contained in the unique
maximal elementary subgroup G,,. This shows that z € G,, and again
T € Ge.

Let us prove that F' is surjective on every elementary maximal vertex
group B, (v € Y?) of the graph Y. Let e; (i = 1,...,1) be the edges incident
to v and C; be their labels. As there is no loop emanating from the vertex
v we get a decomposition G = A x¢, E,, where C,, is the elementary group
generated by C; (i = 1,...,1) and A is the group generated by labels of
the vertices of Y?\ {v}. We already know that our map F is surjective
on every edge group C; and so it is surjective on C,. Moreover applying
the previous argument to each edge stabilizer of the tree T, we conclude
that the restriction of F' on every G-conjugate of C,, is also surjective. It
now follows that F' is surjective on the normal closure N, of C, in E,.
Since F' maps the group FE, into itself, and N, onto itself, it induces an
injective map ® : E,/N, — E,/N,. By the hypothesis 2) of the theorem,
the group FE,/N, is finite, whence the map ® is surjective, and so F' is
surjective on E,. We have proved that F' is surjective on every edge and
every elementary vertex group of the graph Y. The conclusion now follows
from the previous lemma. O

The remaining part of the proof of Theorem B consists of two steps.

Step 1. Decomposition procedure. Let Y be the graph of groups
decomposition given by Proposition 5.2, and F' the injective endomorphism
of (G,&), such that F sends every vertex and edge group of Y into itself.
If F|qg, is surjective for every non-elementary vertex group G, of Y then
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Lemma 6.2 implies that F' (and so f) is surjective. We may therefore assume
that there exists a non-elementary vertex group G, of the graph Y such
that F|g, is not surjective. Then by Proposition 3.1 the pair (G, UC,)
splits non-trivially over elementary subgroups, where C, is the set of labels
of the edges of Y incident to the vertex v.

We claim now that every splitting Y;, of (G,,E UC,) is essentially non-
maximal and the pair (G, (£ UC,)) satisfies condition 2 of the theorem.
Let C denote an edge stabilizer of Y, and C be the maximal elementary
subgroup of G containing C'. We want to show that the group C, = CNG,
is conjugate into some vertex group of the splitting Y, . Let T3, and T" denote
respectively the corresponding Bass—Serre tree of the splittings Y, and Y.
As the splitting Y, = T, /G, refines the graph Y, it gives rise to a new
splitting ), of (G,&). Let 7, be the corresponding tree. The splitting Y,
of G is essentially non-maximal, so the group C stabilizes some vertex v
of T,. If vy belongs to T, there is nothing to prove. If not, v; € (7, \ {v}),
and so the group C,, fixing the vertices v; and v of the tree T, also fixes
a path between them pointwise. Thus C,, is a subgroup of an edge group
of the graph Y and by hypothesis is elliptic in the splitting Y, as was
promised. Similarly the pair (G,,€ UC,) is one-ended. As every splitting
of the pair (G, UC,) over elementary subgroups refines Y we obtain that
(Gy,E UC,) does not split as G, = A x¢ C where the normal closure of C'
in C is a subgroup of infinite index of C.

All the edge groups of the graph Y = T'/G are quasi-convex subgroups
of G. The results [K, Lemma 3.5] and [Sw| imply that every vertex sta-
bilizer G, is a geometrically finite group, and so is a finitely presented
group [R]. Proposition 5.2 applies to the vertex group G, giving an injec-
tive endomorphism F, of G, which sends all vertex (edge) groups of X,
to themselves and which is surjective iff F' is. We now decompose relative
to the edge groups all other non-elementary vertex groups of the graph Y,
and then pass to all non-elementary vertex groups obtained, further etc.
The following lemma guarantees that the decomposition procedure stops.

LEMMA 6.3.  This refining decomposition procedure stops after finitely
many steps.

Proof. By [BF2| there exists a constant v(G) such that every graph of
groups decomposition of G with elementary edge groups can contain at
most v(G) non-trivial edges and vertices. Denote by Y, the graph of
groups decomposition of (G,€) which we obtain after n refining decom-
positions described above, and let T, denote the corresponding Bass—Serre
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tree. Suppose that the sequence Y,, does not stabilize. Then there exists
ng > v(G) such that every component Y,, \ Y;,+1 (n > ng) can only contain
trivial vertices and edges (see section 4 for the definitions). So there exists
a vertex v, (mg = m(ng) > ng) of the graph Y, whose label is a non-
elementary group Gy, such that the above decomposition procedure gives
us the following refining sequence:

Gmo :Al *Cy Cl) Al :A2 *Cy CQ,"'a (5)

where A; are non-elementary and C; are elementary vertex groups and
C; € Ci1 (1 = 1,2,...). Then Lemma 4.4 implies that the pair
(G (EUCpmy NGy )) splits as

Gmo =A *C émo s (6)

where C,, is the set of the stabilizers of edges of T, incident to the
vertex v, and é’mo is the maximal elementary subgroup of G,,, con-
taining all C;. Furthermore, by Lemma 4.4, rank(C) < rank(C,,). We
are now going to replace the infinite refining sequence (5) by one splitting
(6) over a subgroup of smaller rank. To this end, we apply our machinery
described in section 5 to the splitting (6). Let F,, be the endomorphism
of Gy, obtained according to this procedure. It preserves the first splitting
Gy = A1 *¢, C in (5), sending each vertex (edge) group of it into itself.

Let t,,, denote the Bass—Serre tree corresponding to the splitting (6).
We claim that (F}, )*tm, is a non-trivial Gy, (€ U Cimg N G, ) )-tree for
all | € N (compare with Proposition 5.2). For otherwise, Fr]fm(Gmo) CcA
for some k € N. We have also Fy,(Crny) C Crng, and so Fffm(é'mo) C
(AN Cpny = C) which is impossible since rank(C) < rank(C),,) and F is
injective.

As the graph (F¥ )*tm,/Gm, refines Yy, and ng > v(G), it may contain
only one conjugacy class of non-elementary vertex stabilizers and all its
edge stabilizers are conjugate into C. Collapsing all vertices in the graph
(F@O*(tmo)) /Gm, whose labels are elementary, we reduce it to an edge of
groups such that the label of the edge is an infinite index subgroup of the
label of one of the vertices which is a maximal elementary subgroup. So
without changing the notation, we may assume (w.l.o.g.) that F,,, sends
vertex (edge) groups of the splitting (6) into themselves. We now refine the
splitting given by the graph Y,,, by replacing the vertex group G,,, by the
splitting (6) and retain the same notation Y, for the new splitting.

Similarly, if the decomposition procedure for the pair (4, (€ U Cp,, N A))
does not stop after finitely many steps there exists a decomposition
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A= Bxg K A where B is non-elementary and K is an infinite index sub-
group of the maximal elementary subgroup K4 of A containing K. We
get a splitting of G,,, which refines the splitting Y;,, giving the new graph
Y,,+1 of groups decomposition of (G,€). By the argument given before
Lemma 6.3 all these splittings are essentially non-maximal relative to the
edge groups.

The graph Y,,,41 is obtained from Y,,, by replacing the vertex labelled
by A by the edge of groups A = B xx K4. As ng > v(QG) the new edge has
to be trivial and so we obtain C'= K4 in the splitting

Gmo = émo *C (RA XK B)

This implies that rank(K) < rank(C) = rank(K4). As the graph Y, is
finite, the above decomposition procedure will necessarily terminate after
finitely many steps. The lemma is proved. O

Step 2. Surjectivity of f. Our process of decomposition of the group G
has a structure of a rooted tree which we shall describe now. By Lemma 6.3
this tree 7 is finite, and can be written as 7 = Uﬁ/[: 1 V. The initial group
G corresponds to the root vertex O. Each vertex x of 7 belongs to set V,
of vertices of level n for some n € {1,...,M}. Every vertex of level > 2
has a unique parent. The parent vertex X corresponds to a group G x with
a fixed graph of groups decomposition for which G, is one of the vertex
groups (we borrow this family terminology from the paper [BiJ]). In its
turn the vertex z will have a collection of “children” V(x) C V41 which
correspond to vertex groups of the graph of groups decomposition of the
group G,. Edges of the tree 7 indicate “family ties” between “parents”
and “children”. Furthermore, by Proposition 5.2 to each vertex x € V,, we
associate an endomorphism F, : G, — G, which preserves the splitting of
G, sending the labels of the “children” of z in V' (z) C V,,41 into themselves.
Those vertices v € V,, which are either elementary or indecomposable
over elementary subgroups (relative to the edge groups) will be terminal
vertices of the tree 7. For every non-terminal vertex x € V,, we apply the
decomposition procedure described on Step 1 to get vertex groups V(z) €
Vp+1 and the corresponding endomorphism F,, sending them to itself etc.
After descending along the tree 7 we reach the final level Vj; all of whose
vertices are terminal (of course there could be some terminal vertices of 7°
belonging to other levels). Now we are going to go up in order to prove
the surjectivity of the original map f. Each vertex w € Vj;_1 is either
terminal or there is a set of its “children” x; € V(w) C Vi which are all
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terminal. In the former case the map £, is surjective. In the latter case by
Proposition 3.1 it follows that Fy, |Gwi is surjective for every non-elementary
vertex group x; € V(w). Then by Lemma 6.2 we obtain that F, is surjective
for every w € Vjs—1. Similarly, w € V(u) for some vertex u € Vas_o (the
“parent” of w). We have by Proposition 5.2 that the corresponding maps
F.|g, and F,, are surjective or not simultaneously. Therefore, F,|q, is
surjective for all w € V(u) whose labels are non-elementary. Again by
Lemma 6.2 F, is surjective and so on.

Applying this procedure finitely many times we finally arrive at the first
level Vi of 7 corresponding to the vertices of the graph Y. We have just
shown that for all non-terminal vertices v € V; the maps F, are surjective
and, so the map F|q, is surjective. Similarly, Lemma 6.2 implies that the
map F': G — G is an automorphism of G. Then our initial map f: G — G
is an automorphism too.

To finish the proof we only need to show that f|g is surjective on every
E € £. As f(FE) C E the conclusion is obvious when FE is finite. If it is
not the case then by the uniqueness of the maximal elementary subgroup
E of G containing E we have f(E) = E as f(E) is an infinite subgroup of
both. So fl; : E — E is an automorphism. Then using the fact that any
increasing sequence of subgroups of a virtually abelian group of finite rank
must stabilize, we deduce that f(F) = E. Theorem B is proved. o

7 Necessary Condition in Theorem A
The necessary condition in Theorem A follows directly from the following
result:

Theorem D. An infinite finitely generated discrete group G C Isom H"
is not cohopfian if one of the two conditions below is satisfied:

1) G has an essentially non-maximal splitting
G =m(X,G,,C.), where each vertex group C, is elementary . (1)

2) The group G splits as an amalgamated free product G = T x¢ C,
so that C is a maximal elementary subgroup of G and the normal
closure of C in C' is a subgroup of infinite index of C.

We start with

REMARKS 7.1. 1) In particular infinite elementary Kleinian groups are not
cohopfian (case 2) withI' = C = 1.
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2) Examples of discrete geometrically finite groups in H"™ which are
described in 1) and 2) of Theorem D, exist, see [OP].

3) If every elementary group over which G splits is in fact abelian and
if there exists a splitting X described in condition 2) then there is an-
other splitting over elementary subgroups which is essentially non-maximal:
the maximal elementary vertex group can be written as a central HNN-
extension with a base containing all corresponding edge stabilizers. How-
ever, this is not the case in general, as there exist (torsion-free) virtually
abelian groups with finite abelianization.

We will first study essentially non-maximal splittings of G.

PROPOSITION 7.2. Suppose G splits as a graph of groups (1'), where one
of the edge groups C. = E of the splitting (1) is essentially non-maximal,
and let E be the maximal elementary subgroup of G containing E with
infinite index so that E is hyperbolic in the splitting (1'). Then there
exists an element g € E so that g centralizes E and Vn € N, g" ¢ F.

Proof of 7.2. Let T be the Bass—Serre tree corresponding to the splitting
(1'). The group E contains a normal free abelian subgroup A of finite
index. As E acts on T hyperbolically it follows that the group A also does.
Hence by [S, 1-6.5, Proposition 27] it follows that A leaves a line L C T
invariant. As A is normal in E the group E also leaves L invariant. Then
either E acts by translations on L; or it acts dihedrally on L (permuting
the end points of L). So, there is a projection n of FE on Z or onto Zsy x Zs.
Moreover since the subgroup E of E fixes an edge e in T it fixes the axis
L pointwise. So we may suppose that e C L and that E is the kernel of 5
(which is the kernel of the action of E on L). Tt follows that up to passing
to a subgroup of index 2 and retaining the notation E for it, we have the
following exact sequence:

0 E E-"1.7 1,

Let t denote the element of E which is mapped on the generator of Z, so
we have t" ¢ E (Vn € N). There exits m € N so that t™ € A and up to
replacing ¢ by ¢ and passing to a further subgroup of finite index we may
suppose that t € A. Also t" ¢ E (Yn € N).

Let A denote the group AN E which is a normal abelian subgroup of E
of finite index. We have

0 A E F 1, (%)

where F' is a finite group.
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DEFINITION. An automorphism of E will be called the automorphism of
the sequence (x) if its restriction to A is trivial and if it induces the identity
on F. The group of the automorphisms of (x) is denoted Aut(x).

Let s : F'— FE be a set theoretic cross-section of £ and ¢ € Aut(x). Put
cp(f) =w(s(f))s(f)H VfeF.
LEMMA 7.3. The following assertions hold:

a) cy(f) is a I-cocycle of F taking values in A.
b) For each f € F' the map 1) — ¢, determines a group homomorphism

Aut(x) — ZY(F, A).

Proof. a) Notice first that c,(f) € A since ¢ induces the identity map
on F. We have then, s(f -g) = s(f) - s(g) - a(f,g), where a(f,g) € A.
P(s(f - 9) - (s(f-9)™" = »(s(f)s(g)a(f. ) -« (f,9)(s(f)s(g) " =
D(s(f)v(s(g))s(g)ts(f)~t, since ¥(a) = a (Va € A). Further we de-
tive $(s(/ - 9) - (5(f - ) = W(s(F)s(F) " + s(F)b(s(9))s(g)~ s() ! =
SN + p(fes(s) = eol) + p(Feslg), where p(f) denotes the
action of f € F on A given by conjugation by s(f). This proves a) by the
definition of a cocycle (see [Br, p.88]).

b) cyry,(f) = ra(s(f))s(f)™" = dalva(s(F))s(f) " s(Hls(f) =
V1(cyy (F)-s(F))s(f) ™" = cyy (f)+cy, (f), here we used that ¢y, (f) € A and
that 11 keeps it unchanged. We have proved b). The lemma is proved. ©

Proof of the proposition.  Recall that t* € A\ E (Vn € N). Let ¢ be
an inner automorphism of E given by the conjugation via t. As t acts
identically by conjugation on A it is easy to verify that it also induces the
identity on F, i.e.

tftl=f, VfeF,

where £ = £(t). So % is an automorphism of the sequence (¥) and we
get cy(f) = ts(f)t71s(f)~1. Since the group F is finite the first coho-
mology group H'(F, A) is finite too and, so there exists p € N such that
cyr(f) is a coboundary. It follows that there exists a € A that cyr(f) =
a— p(s(f))-a = a+ p(s(f))(—a). Writing this in the multiplicative
form we have cyn(f) = as(f)a=ts(f)~! = tPs(f)tPs(f)~! implying that
Vs(f) € E:a 'tPs(f)tPa = s(f). Putting g = a~'#P we obtain that g is
not trivial (t? ¢ A) and centralizes E. The proposition follows. o

Note that above we also obtained the following fact which will be used
further:
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REMARK 7.4. The group of the automorphisms of the sequence (x) is
finite modulo conjugation in E (in other words the subgroup of Out(FE)
which preserves (x) is finite).

Indeed in the above proof for some power p € N of ¢ € Aut(x) we will
have ¢P(s(f))s(f)~! = as(f)a=ts(f)~!. Thus Ve € E ¢P(e) = aea™" since
e-s(f~!) € A for some f € F and 9" is the identity on A. O

LEMMA 7.5. Suppose that the group G splits as a graph of groups G =
m (X, Gy, Ce) with elementary edge stabilizers such that one of the edge
group E¥ = C. is essentially non-maximal then GG splits as an amalgamated
free product or an HNN-extension,

G=Axg B or G=Axg, (6)
where K is essentially non-maximal and contains E.

Proof. Let T denote the tree which is the universal covering of X and let
E be the maximal elementary subgroup of G containing E. The group
E acting on T without fixed points has an invariant line L C T (see the
beginning of the proof of Proposition 7.2). Since the subgroup E fixes a
point in T it also fixes L pointwise. Let é C L be an edge of T" and & and 3
its vertices. We first claim that the stabilizer F' of the edge € in G coincide
with the stabilizer K of é in E (i.e. the kernel of the action of E on L).
Indeed, both groups contain the group E which is an infinite group so by the
uniqueness of the maximal elementary subgroup E containing E it follows
that F C E which implies that F = K. Similar argument shows that the
subgroup N of G leaving the line L invariant coincide with E. Indeed, the
group N is elementary which follows from the fact that it has a projection
to Z or Zo * Zo whose kernel is the elementary group K; consequently N is
an elementary group containing F, and thus E = N.

Let a,3,e denote the images in X of d,B,é respectively under the
projection p : T — X. Let us first consider the case when e does not
separate the graph X. Then the group G is the HN N-extension G =
Axg = (At | tKt™! = ¢(K)) where A is the fundamental group of the
graph of groups ¥ = X \ e. Denote Y the component of the preimage
p~1(Y) adjacent to the edge é at the point & € T. Clearly p(Y) =Y, so
we may assume up to conjugation in G that the stabilizer of Y is A. As no
G-translate of é is contained in Y and T is a tree we have LNY = {a}. Let
h € E\ E be an element acting on L by translations. As k(&) € L\ {a},
so h cannot belong to the stabilizer of Y. Consequently, the group E is
hyperbolic in the splitting G = Axg.
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The case when the edge e separates X is similar: we obtain the splitting
G = Axi B where A and B are the fundamental groups of the graphs which
are respectively connected components U and V' of X \ e. Denote U and V
the components of p~1(U) and p 1(V) which are adjacent along the edge
é in T, in particular & € U and ﬁ € V. The stabilizers U and V are up
to conjugation the groups A and B. Again we have UNL = {a} and
VNL = {8}. There exists an element h € E )\ K which acts by translations
on L so h(a) € L\ {a}, and the same for £. Consequently, the element h
does not belong to the stabilizers of U and V. This shows that E is not
elliptic with respect to the splitting G = A xx B. The lemma is proved. o

Proof of Theorem D.  Let us first consider condition 1 of the theorem
which is
1) G has an essentially non-maximal splitting.

Then it follows from Lemma 7.5 that there is a splitting (6) of G as an
amalgamated free product or an HNN-extension which is essentially non-
maximal. The edge group K is an elementary subgroup and let K be the
maximal elementary subgroup of G containing K which is hyperbolic in
the splitting (6). By Proposition 7.2 it follows that there exists an element
t € K\ K which centralizes K.

Consider first the case of amalgamated product, i.e. G = A xx B. Let
us define the map f: G — G so that f(a) = tat™', and f(b) =b (Va € A,
Vb € B). As t commutes with all elements from K, the map f is obviously
a homomorphism. Furthermore, if @ € A\ K then tat~! € tAt~!\ K.
So the group G; = f(G) is isomorphic to the amalgamated free product
tAt~! xg B, and every element g € G4 has the following form:

g:ta1t71~b1- -taktfl-bk or g:b1~ta1t*1- -bk'taktfl,
a; € A\K, b; € B\ K. (7)

If now g = f(y) = 1 for some vy € G, then using (7) it is easy to see that
v € A or v € B. So by injectivity of f on A and B we obtain v = 1. Thus
f:G — Gy is an isomorphism. We need only to show that G1 & G.

The group G being a subgroup of G acts on the Bass—Serre G-tree T'
corresponding to the splitting G = A xx B. Denote by a and 3 the vertices
of T whose stabilizers are A and B. Set d = disty(f(«), ). Since ¢ acts
without fixed points on T we also have d = distp(¢(53), 3). Up to replacing
t by t™ we may assume that d > 1. The length d’ of the geodesic § between
the vertices o’ = t(a) and 3 is equal to d— 1 or to d+ 1. Furthermore from
[S, 1-6.5, Proposition 26] it follows that & U ta;t=1(5) et 6 U b;(8) are also
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geodesics. Thus dist7(g(3), ) = 2kd’ as each term ta;t~! contributes 2d’
to the expression of disty(g(3),3). This implies that ¢ ¢ G; since d # 2kd’
(d>1, keN).

Consider now the case of an HNN-extension G = Axg =
(A,h | RKh™! = ¢(K)) and let T be the corresponding Bass-Serre tree.
There are two more subcases: a) h € K and b) h ¢ K. In the subcase a)
we proceed as follows. By the proof of Proposition 7.2, there exist p € N
and a € A(K) so that the element g = h” - a commutes with every element
of K, where A(K) is the maximal abelian subgroup of K. Now we define
the map f : G — G to be the identity on A and set f(h) = WPt . a. It
is easy to check that f is an injective endomorphism (since h?*! acts by
conjugation on K in the same way as h does) which is not surjective.

In subcase b) we proceed similarly to the case of an amalgamated free
product, namely put f(a) = tat~!,Va € A and f(h) = h, where t is an ele-
ment in K \ K acting hyperbolically on the tree T and centralizing K. Then
any element g of the group G1 = f(G) = tAt 'xx = (tAt=1, h|hKh™! =
¢(K)) can be written as
g = tart VR tagt T - tagt TLRSR, or g = RS tartT LR 2 tagt T - tagt Y,

(7)
where ¢; € Z and if ¢; < 0 and a; € K then ¢;41 < 0, and if ¢; > 0 and
a; € K then g;41 > 0.

Let a be the vertex of T whose label is A and M be the line in T
which is formed by the vertices h"(a) (n € Z). As h ¢ K the element
t does not belong to the maximal elementary subgroup containing h, so
up to replacing ¢ by a power we may assume that t(a) ¢ M. It is now
straightforward that the displacement d(go, ) of the element g in (7) is
equal to 2kd+ Zle |e;|, where d = distr(t(a), ). Indeed each term ta;t—*
in (7) adds 2d to the expression of d(ga, &) and the term h® contributes |g;|
to it. Consequently, d(ga, ) # d, so t € G1 and Gy is a proper subgroup
of G. Part 1 of Theorem D is proved.

Consider now condition 2 of Theorem D which is

2) The pair (G,€) splits as an amalgamated free product G =T ¢ C,
so that C is a maximal elementary subgroup of G and the normal
subgroup of C generated by C' is of infinite index in C.

Suppose that G splits as an amalgamated free product G = I' x¢ E,,
where v is vertex whose label is a maximal elementary subgroup E, = C.
We are going to construct a proper monomorphism from G into G which is
the identity on I' and which sends E, into itself being not surjective on it.
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We denote N, the normal subgroup of F, generated by C; by hypothesis
|Ey : Ny| = 0.

The group F, is virtually abelian of finite rank, let A be a finite index
normal free abelian subgroup of E,. Denote D = AN N, and F = E,/A.
As N, and A are normal in E, the group D is normal in FE, too. Also
let s : F' — E, be a normalized cross-section of the projection of E, onto
F. The group F acts on A by conjugation a — s(f)as™!(f). Consider the
vector space A ® Q which we equip with a scalar product invariant under
the induced action of F. As the subspace D ® Q is invariant under the
induced action of F' there exists a subspace V in A ® Q complementary
to D ® Q which is also invariant under this action. We can now find a
subgroup B of Asothat V=B®Qandso AQ=(D®Q)ad (BxQ).
The group B has the following properties: BN D = {id} (since A is torsion
free); B is normal in E,; and the group A’ = D@ B is a normal free abelian
subgroup of E, of finite index. Denote F' = E,/A’. Consider the map
hy : A" — A’ defined as hy,(d+b) = d+nb for every d € D and b € B. One
can now find a group H, and a homomorphism ¢,, : E, — H, so that the
following diagram commutes:

0 A g P 1
ml e |
0 A g P 1.

In fact the group H,, is the largest quotient of A’ x E, such that the left-
hand square of the above diagram commutes (see e.g. [Br, p. 94]). Note that
¢p, is injective and not surjective since hy, is (Vn € N). Furthermore, ¢y, is
the identity on D. We now need to show that H,, is isomorphic to E,. Let
us define a set-theoretic cross section s,, : F' — H,, of the projection p,, (see
the diagram) to be s, = ¢y 0s. It is known (see e.g. [Br, I111.3.12]) that the
equivalence classes of extensions of A’ by F/ are in 1 to 1 correspondence
with the elements of H?(F', A’). If a € H?(F', A') is the element which
corresponds to the upper row of the commutative diagram then it satisfies

i(a(g,7))s(gv) = s(g)s(v) (9,7 € F'). We have
sn(9)sn(7) = @n(s(9))en(s(7)) = en(s(9)s(7)) = en(i(alg,7))s(g7))
=ip (hn(a(ga 7))) Sn(g’)/) :

Setting a,(9,7) = hn(a(g,7)) we obtain from the above identity that
an(g,7) is an element of H2(F’, A"). Since a(g,7) takes its values in A" we
can write a(g,v) = d(g,7v) + b(g,~) where d(g,v) € D and b(g,v) € B. We
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also have the following commutative diagram:

0 —— A ., E, F’ 1
gl - H
0 —— B=A/D —2— E,/D F 1

where 7; are the natural projections and j is the natural inclusion. Define
a section o : F/ — E,/D to be ¢ = mg 0 5. Similarly we then show that
a(g)o(v) = j(p2(alg,7)))o(g,7) (9,7 € F'). As b = m oa we obtain that b
is also an element of H?(F’, A’). Since the group F" is finite it follows from
[Br, I11.10.2] that the group H?(F’, A’) is annihilated by |F’|. Choosing n to
be n = 1(mod |F’|) we obtain that b = nb and so a, =d+b, =d+b = a.
This implies that a and «,, define the equivalent extensions and, so the
groups FE, and H,, are isomorphic. Let ng = |F’| + 1 then the map ¢y, is
an endomorphism of E, which is injective, non-surjective and is the identity
on D. Since D is an abelian normal subgroup of NN, of finite index, some
power of ¢, induces the identity on N, /D. Remark 7.4 now implies that

JkeN, JaeD VheN,:¢k (h)=aha"

Setting F|g, = a™* -<pr0 -a, we obtain an injective, not surjective endomor-
phism of E, which is the identity on N,. Extending now F' by the identity
to the fundamental group of the graph X \ {v} we obtain a monomorphism
F : G — @G which is injective and not surjective. Theorem D is proved. o

8 Cohopficity of Groups with Infinitely Many Ends

In this section we provide a criterion establishing the co-Hopf property for
multi-ended groups. We start with an abstract finitely presented group G.
Let us recall that if G has infinitely many ends then the Dunwoody’s accessi-
bility theorem [Du] states that there exists a graph of groups decomposition
G = m(X,G,,C,) such that all edge groups C, are finite and all vertex
groups G, are one-ended. Furthermore, the sets of vertex and edge groups
of X are unique [DuD, Proposition 7.4]. We will further call this graph
of groups DS-graph of G (referring to Dunwoody—Stallings’ theorems for
splitting of groups with infinitely many ends [Du], [St]).

We denote p(G) the number of edges of a DS-graph of G. If G = Axp B
(resp. G = Apx) and F is a finite group then max{u(A), u(B)} < u(G).
Indeed as finite groups are always elliptic in any splitting we can always
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reach the terminal DS-graph of G by taking further decomposition of A
and B over finite subgroups.

Before we state the main result of this section we give a more precise
definition of an acylindrical splitting for a multi-ended group (compare with
Definition 2.5):

DEFINITION 8.1. Let G = m1(Y) be a splitting of a group G as a graph
of groups with finite edge stabilizers and T' be the corresponding Bass—
Serre tree. We call this splitting (and respectively the tree T') strictly
K-acylindrical if the stabilizer of each segment of T' of the diameter at
least K is a proper subgroup of some edge stabilizer of T'. m

We will prove the following.

Theorem E. Let G be an infinitely ended finitely presented group and
let X* = (X, G,,C,) denote its DS-graph. Suppose that every one-ended
vertex group G, is cohopfian. Then G is cohopfian if and only if every
splitting of G over finite groups is strictly K-acylindrical for some uniform
constant K.

Proof of the sufficient condition.  Assume that all splittings of G over
finite groups are K-acylindrical for some fixed K € N. Note first that
this property is then also true for each vertex group of any graph of groups
decomposition of G over finite groups. Indeed, every splitting of such vertex
group G, over finite groups refines the splitting of G. Consequently, all
splittings of G, over finite groups are strictly K-acylindrical (for the same
constant K). This remark will be constantly used in the argument which
will mainly repeat the proof of Theorem B given in sections 5 and 6. We
will only indicate some modifications (and simplifications) which are to be
done.

Suppose by contradiction that f : G — G is an injective endomorphism
which is not surjective. Let us prove the statement by induction on the
invariant u(-). Note that if 4(G) = 0 then G is one-ended which is impos-
sible by our hypothesis. So let us assume that x(G) > 0 and the statement
is true for all groups with the value of p(-) less than that of G.

From among all splittings of G over finite subgroups we choose one,
G = Axg B or G = Axg, for which E' has a minimal order. Note that
E cannot be trivial, as every free product decomposition is not strictly K-
acylindrical for all K. Let T denote the Bass—Serre tree corresponding to
this splitting. As in section 5 we consider the sequence of G-trees T,, =
f™*T with finite edge stabilizers. Note that if T, is a trivial G-tree then
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arguing as in Proposition 5.1 we obtain that one of the groups A or B is not
cohopfian. By the hypothesis it follows that it is not a one-ended group.
As max(u(A), u(B)) < u(G), using the induction on the invariant p(-), we
obtain, in a way similar to 5.1, that the trees T;, are all non-trivial G-trees.

Let [ denote a path of length K in the tree T,. Then the stabilizer of
[ is a subgroup of the stabilizer [ in the tree T'. By the strict acylindricity
of T it now follows that its order is strictly less than the order o(E) of the
group E. As G does not split over a subgroup of order less than o(F), it
does not split over the stabilizer of [. Then by Theorem 3.1 of [D1] we
obtain finitely many G-trees 71, ..., 7, such that every tree T; is dominated
by one of 7;’s where i € N, j € {1,...,k}. Then applying the argument of
Proposition 5.2 (which does not use the fact that the group G is Kleinian
nor one-ended) we obtain a strictly K-acylindrical G-tree 7 with finite edge
stabilizers and a new monomorphism F' : G — G which sends all vertex
(resp. edge) stabilizers of 7 into themselves. In addition, F is surjective if
and only if f is.

The vertex groups of a DS-graph of GG, are cohopfian as they are vertex
groups of a DS-graph of G. So by the induction hypothesis the map F
restricted to every vertex stabilizer of 7 is surjective. Furthermore, as
every edge stabilizer of 7 is finite and is preserved by F', I restricted on
it, is surjective too. Thus to finish the proof we only need to consider the
case when G is not generated by the vertex groups of the graph 7/G.

Following now the argument given in Lemma 6.1 we obtain a HNN-
extension G = Axy = (A, H | tHt™' = p(H)) so that F(A) = A,
F(H)=H, F(tHt ') = tHt~!. Then the element a = ¢! - F(¢) normal-
izes H. Now if a is not conjugate into A then there is an infinite path in the
Bass—Serre tree corresponding to the splitting G = Axpy whose pointwise
stabilizer is H. This is impossible as all splittings of G over finite subgroups
are strictly acylindrical. Thus up to conjugation we obtain that a € A and
there is an element b € A so that F(b) = a. This proves that ¢ is in the
image of F' and so F' is surjective. The sufficiency is proved.

To prove the necessary condition suppose that for every K € N the
group G admits a splitting over finite groups which is not strictly K-
acylindrical. Set K = 2u(G) + 1 and let X denote such graph of groups
decomposition of G and T its Bass—Serre tree. Then there is a path [ C T
whose pointwise stabilizer H is equal to the edge stabilizer of every edge
of [. The argument is now similar to the proof of Lemma 2.6. As the length
of the path [ is greater than 2u(G), it must contain at least three different
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edges ej, e, e3 belonging to the same G-orbit. So, e; = g(e2), e3 = h(e2)
for some distinct elements g and h in G\ H. It follows that both elements
g and h normalize H.

Suppose first that one of them, say g, acts hyperbolically on the tree T
Then replacing g by some power, we may assume that it centralizes the
group H. Considering the corresponding splitting of G over H as an amal-
gamated free product G = A xyg B or HNN-extension G = Axyg we show
that G is not cohopfian, analogously to the proof of Theorem D (see the
part concerning condition 1).

If now both elements g and h act elliptically on T then the element
~v = gh also normalizes H and is hyperbolic. Indeed if not, ¢ and h must
have a common fixed point [Se]. Then arguing as in Lemma 2.6 we would
obtain that ¢ and h fix the edge es pointwise, which is impossible. The
proof now finishes similarly. The theorem is proved. o

The following is a slightly different version of the above theorem.

COROLLARY 8.2. Let G be an infinitely ended finitely presented group
and let X* = (X, G,, C) denote its DS-graph. Suppose that every splitting
of G over finite groups is strictly K-acylindrical for a uniform constant K.
Then G is cohopfian if and only if the pair (G,,C N G,) is cohopfian for
every vertex v, where C is the set of edge groups of X*.

Proof. The proof of the sufficiency refines that of Theorem E by keeping
track of edge groups. Indeed the map F' sends all vertex and edge stabilizers
of the tree 7 into themselves. As edge stabilizers of 7 are all finite, up to
replacing F' by some power we may assume that F' is the identity on the
set C of the edge stabilizers of the graph 7/G. If this graph is already
DS-graph we stop; if not we repeat the above procedure for every vertex
stabilizer G} of it. Then the acylindricity theorem of section 4 allows us
to find a new map F! : G. — G} and a new decomposition of G over
finite subgroups such that F! sends all edge and vertex stabilizers of this
decomposition and all the subgroups in C into themselves. Again by taking
a power, if necessary, we may assume F! to be the identity on each group
in C. Thus we have refined the graph 7/G by the decomposition of the
vertex group G} and have found a new endomorphism of G which is equal
to F on (7/G)\ {v} and to F! on the above graph of groups decomposition
of GL. Continuing in this way we will arrive after finitely many steps
at the DS-graph X* = (X,G,,C,) and a map ¢ : G — G which sends
every vertex group G, into itself and is the identity on every edge group.
Furthermore, by construction, ® is surjective if and only if the map F' is.
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As all pairs (G,,CNG,) are cohopfian the map @ is surjective by the proof
of Theorem E.

The necessary condition is easy. Indeed, suppose first that f, :
(Gy,C N Gy) — (Gy,C N Gy) is a non-surjective endomorphism. Up to
taking power we may suppose that f, is the identity on peripheral sub-
groups C N G,. Then extending f, by the identity to the rest of the group
G we get a non-surjective endomorphism of G which is impossible. o

Theorems E and A allow us to get a criterion for the co-Hopf property
of infinitely ended Kleinian groups.

Theorem C. Let G C Isom H" be a non-elementary, geometrically finite
Kleinian group without 2-torsion. Then G is cohopfian if and only if the
following three conditions are satisfied:

1) G does not have essentially non-maximal splittings over infinite ele-
mentary subgroups.

2) G does not split as an amalgamated free product G = Axc C, so that
C is a maximal elementary subgroup of G and the normal closure of
the subgroup C in C' is of infinite index in C.

3) Every splitting of G over finite groups is strictly K-acylindrical for a
uniform constant K.

REMARK 8.3. By Lemma 2.6, condition 1 can be replaced by the following;:

1) Each irreducible G-splitting over infinite elementary subgroups is
(M, ®)-acylindrical for some uniform constant M > 0.

Proof. The necessity of each of these conditions was already proved. To
prove the sufficiency let us suppose that G is not cohopfian. Then by
Theorem E there exists a one-ended vertex group G, of a DS-graph of G
which is not cohopfian. Then Theorem A implies that G, admits a splitting
described by one of the conditions 1 or 2 (where the group G is replaced
by G,). As all edge groups of DS-graph of G are finite this splitting of G,
refines a DS-graph of G. Obviously this gives a splitting of G which does
not verify one of the conditions 1 or 2. Theorem C is proved. o
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