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1. A group G is called Kéahler if it serves as the fundamental group m (V) of a
compact Kéahler manifold V. Equivalently, such a group G appears as a discrete
free co-compact isometry group of a complete simply connected Kéhler manifold
X — the Galois group acting on the universal covering of V' denoted X. To keep the
perspective (compare [De-Gr|) we indicate possible generalization of this setting.

(a) Dropping “free”, i.e. allowing discrete actions with fixed points (having finite
stabilizers).

(b) Replacing “co-compact” by a weaker smallness condition on the quotient X/G,
e.g. by requiring X/G to have finite volume (or slow volume growth) combined
with a sufficiently simple geometry at infinity in the spirit of the following two
examples.

(b’) Complete (and natural non-complete) Kéhler metrics on quasi-projective va-
rieties V and the corresponding metrics on coverings of such V.

(b”) Complete Kéhler metrics on X with bounded geometry i.e. with curvature
bounded from above and the injectivity radius from below.

(¢) Admitting (closed) non-discrete isometry groups G of X.

(d) Allowing singular spaces V and X.

(e) Replacing Kéhler groups by Kéhler groupoids that are leaf-wise Kéahler folia-
tions with transversal measures ([Gr]ppp).

1.1. Central Problem. Identify the constraints imposed by the K&ahler nature of
the space X on its asymptotic metric invariants and then express these constraints
in terms of some algebraic properties of G.

If V is projective algebraic then the structure of the profinite completion of its
fundamental group G is accounted for by finite, and hence algebraic, coverings
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of V. Here we are primely concerned with infinite coverings and issuing “transcen-
dental” constraints on G that are not expressible (at least not directly) in terms
of subgroups of finite index in G and/or finite dimensional representation of G.

1.2. The basic examples of Kéhler groups are surface groups that are the funda-
mental groups of Riemann surfaces S, i.e. complex algebraic curves, and Cartesian
products of surface groups, e.g. free Abelian groups of even rank. Less obvious ex-
amples are provided by discrete co-compact groups acting on Hermitian symmetric
spaces, such as the unit ball in C™ with the Bergman metric, for instance.

Let V C PV be a projective algebraic manifold of dimension n. Due to the Lefschetz
theorem, if V/ = V' N P is the intersection of V by a transverse projective subspace
of dimension N —n + 2, then the inclusion V’ C V induces an isomorphism on the
fundamental groups, m1 (V') ~ m1(V). However, such a surface -called Lefschetz
surface- usually is more complicated than the original V'; to see this try to visualize
such an (hyper)surface in the Cartesian product of three Riemann surfaces of
positive genera, V' C V = §1 x Sz x S3.

1.3. The above central problem is accompanied by its relative version: determine
characteristic features of homomorphisms between Kahler groups induced by holo-
morphic maps f.

Observe in this regard, that an arbitrary proper holomorphic map f : V — W fac-
tors trough a surjective holomorphic map f’: V — W' with non empty connected
fibers f~1(v),w € W, followed by a finite-to-one map W’ — W. The connected-
ness of the fibers makes f’ surjective on the fundamental groups ; furthermore,
if W is non-singular and f is onto, then the map W/ — W, being a ramified
covering, sends the fundamental group of W’ (and, hence of V') onto a subgroup
of finite index in 71 (W) (here W is assumed compact). In particular, if V fibers
over a non-singular curve (Riemann surface) of genus g, i.e. admits a surjective
holomorphic map to such curve S, then the fundamental group of V' surjects onto
a surface group m1(S’) of genus ¢’ > g¢.

A particular seemingly innocuous instance of the relative problem concerns sub-
groups in the products of surface groups, G C w1 (W = S x Sa,..., xSy). When
is such G Kéahler 7When does there exist, for some choice of conformal structures
in S;, an algebraic sub-variety V' C W (singular or non-singular) of a given di-
mension n such that the image of the fundamental group of V in 71 (W) equals
G? (Notice that for a general non-Lefschetz V' the inclusion homomorphism is not
injective on the fundamental groups.) This question seems non-trivial already for
n = 1 where it has a purely topological counterpart: find a real surface V in W
such that the projections of V' to all S;’s are ramified coverings and such that the
image of w1 (V) in m (W) equals G.

We shall see later on that some algebraic condition (existence of cuts) on an general
Kahler group makes it a subgroup in a product of surface groups.

2. The Kéahler nature of X becomes metrically discernible when X is harmonically
mapped into a (globally) H-non positive space. Here are the necessary definitions.
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2.1. The energy density F of a smooth map f between Euclidean balls at a point
x is defined as one half of the squared norm of its differential D at =,

E(z) = %traceD*D(x).

This generalizes to maps where the differential exists on a dense set of points z’,
e.g. to Lipschitz maps f, as limsup,.,_,, E(z’).

2.2. For a Lipschitz map between arbitrary metric spaces, f : X — Y, the
(Euclidean-like) energy density is defined as the infimum of those e such that,
for every two Euclidean balls By and By and arbitrary 1-Lipschitz maps By — X
and Y — Bs, where the center 0 of By goes to x, the composed map B; — Bs has
E(0) <e.

2.3. If the space X is endowed with a measure then the energy of an f, denoted
E(f) is defined as the integral of the energy density with this measure, where for
Riemannian, e.g. Kéhler manifolds one uses the ordinary Riemannian measure for
this purpose (see [Gr]ppp).

2.4. A map f is called harmonic if it is locally energy minimizing, i.e minimizing
under variations of f which are non trivial on small balls in X.

2.5. If X is a Riemann surface, i.e. a 1-dimensional complex manifold, then the
energy of an arbitrary map as well as the harmonicity obviously are conformal
invariants, i.e. are independent of the Kéhler metric compatible with the complex
structure. This allows one to define pluriharmonic maps from an arbitrary com-
plex space to a metric space as those f whose restrictions to all holomorphic curves
in X are harmonic.

One knows (this is easy, at least for Riemannian targets) that every pluriharmonic
map of a Ké&hler manifold is harmonic but for dimX = n > 1 most harmonic maps
are not pluriharmonic. For example a real valued function f on a K&hler manifold
is pluriharmonic if and only if its gradient (vector field) is Hamiltonian, i.e. pre-
serving the symplectic part w of the Kahler metric while harmonicity amounts to
preservation of the corresponding volume form w™ under the gradient flow of f.

2.6. If a space X is properly (e.g. discretely) acted upon by a group G and the
energy density F(z) of some map f is G-invariant, then the G-energy of f is
defined as the integral of E descended to the quotient space X/G. This applies,
in particular, to G-equivariant (harmonic and non-harmonic) maps between G-
spaces.

2.7. A metric G-space Y, i.e. a space Y isometrically acted upon by G, is called
(globally) H-non-positive if every G-equivariant harmonic map f of finite G-energy
from an arbitrary Kéhler G-manifold X to Y is pluriharmonic.

This definition (albeit provisional) is justified by the following fundamental (and
amazing)

2.8. Hodge Lemma (see [ABCKT]). Flat Hilbertian manifolds are H-non-positive.
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Recall that “flat Hilbertian” signifies that Y is locally isometric to a finite or
infinite dimensional Hilbert space.

2.9. Basic corollary. Let X be a complete Kdahler G-manifold and suppose the group
G is represented by isometries of a Hilbert space Y. Then every harmonic G-
equivariant map f: X — Y of finite G-energy is pluriharmonic.

Remarks.

2.10. The relevant actions on the Hilbert space Y above are affine rather than lin-
ear. For example, they may be free and discrete (Haagerup property, see [CCJV]).

2.11. If the actions of G on X and Y are discrete, then the G-energy equals
the ordinary energy of the corresponding map between the quotient spaces. In
particular, this energy is necessarily finite if the action of G on X is co-compact.

2.12. In some cases (e.g. if X is simply connected and Y is a Hilbert space) every
pluriharmonic map from X to Y analytically extends to a holomorphic map from
X to a suitable complexification of Y.

2.13. The existence of a G-equivariant harmonic map often (but not always) comes
cheap: for example, it follows in many cases from the existence of a continuous G-
equivariant map with finite G-energy. But the issuing pluriharmonic (and even
more so holomorphic) map carries a much higher price tag and the presence of
such a map imposes strong geometric restrictions on the manifolds and groups in
question.

The idea of Hermitian sectional curvature, as well as the following non-linear
Hodge Lemma has been discovered by Y.T. Siu ([Siu]), and further developed
in [Hel,[C-T],[Sam] and [Gr-Sc] ; see [ABCKT] for additional informations and
references.

2.14. Non-linear Hodge lemma (see [ABCKT]). The H-non-positivity property,
remains valid for the following non-flat target spaces Y .

(A) Metric graphs, e.g. trees (including R-trees with no local finiteness condition,).

(B) Euclidean buildings (these generalize trees).

(C) Riemannian and Hilbertian symmetric spaces of non-positive sectional cur-
vature.

(D) Riemannian and Hilbertian manifolds with point-wise 1/4-pinched negative
sectional curvature, e.g. Riemann surfaces with negative sectional curvature.

(E) Riemannian and Hilbertian manifolds with non-positive Hermitian sectional
curvature. (Riemann surfaces with non-positive sectional curvature, symmet-
ric spaces and 1/4-pinched manifolds fall into this category.)

(F) Metric spaces locally isometric to finite and infinite Cartesian products of the
above (A)—(E).

The maximal class of known H-non positive spaces Y admits a local characteri-

zation saying in effect that these are locally C AT'(0), their non-singular loci have

non-positive Hermitian sectional curvature and the singularities of Y are quasi-

regular in the sense of [Gr-Sc], i.e. they have no more negativity (of singular
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sectional) curvature than Euclidean buildings do. Observe that this class is closed
under scaling and Cartesian products but it is unclear how stable this class (and
H-negativity in general) is under conventional limits of metric spaces.

2.15. Examples. Let V' be a compact connected Kéhler manifold and Y a compact
Riemannian manifold of non-positive sectional curvature. Then every continuous
map fo: V — Y is homotopic to a (essentially unique) harmonic map f and this
f is pluriharmonic if Y is H-non-positive.

(a) For instance, if Y is a flat torus (where the harmonicity and pluriharmonicity of
f does not depend on a choice of a flat metric compatible with the affine structure)
then one obtains a harmonic, hence pluriharmonic, map f homotopic to a given fjy,
where this f is unique up to a toral translation. This applies, in particular, to the
the Jacobian (torus) of V, that is J(V)) = H,(V;R)/H1(V; Z), where one concludes
to the existence of, a unique up to a translation, pluriharmonic Abel-Jacobi map
fo : V.= J(V) that induces the identity isomorphism on the 1-dimensional real
homology (for the canonical identification of the 1-dimensional homology H; (V; R)
with the homology of the Jacobian J(V)). Furthermore, according to the Albanese-
Abel-Jacobi theorem, there exists a unique invariant complex structure on J(V)
for which fy, called Albanese map, is holomorphic and such that every holomorphic
map from V to a flat Kdhler manifold A with Abelian fundamental group (compact
complex torus) factors via the Albanese map followed by an affine holomorphic
map J(V) — A. The existence of the complex structure on the Jacobian makes the
first Betti number of V' even : this is the first basic constraint on the fundamental
group of V.

(b) If Y has constant negative curvature then harmonic maps f : V — Y, besides
being pluriharmonic, necessarily have rank (of their differentials at all point in
V) at most two ([Sam]). Moreover, every harmonic map V' — Yof rank 2 factors
via a holomorphic map of V' to a hyperbolic (i.e. of genus;1) Riemann surface,
V — S — Y, by a theorem of Sampson ([Sam]) see also [ABCKT],[C-T] for
generalizations.

(c) If Y is itself Kahler and moreover, has constant Hermitian curvature (i.e.
covered by the unit ball in C" with the Bergman metric) and if a harmonic map f
has rank > 2 at some point in V' then, by Siu’s theorem, f is either holomorphic
or anti-holomorphic. (A map f is anti-holomorphic if it maps each holomorphic
curve C' C V to a holomorphic curve C' C Y and the maps C' — C’ are conformal
and orientation reversing for the canonical orientation on holomorphic curves).

2.16. The above (a), (b), (¢) remain valid for infinite dimensional (Hilbertian)
manifolds Y (with accordingly constant curvatures), where one may needs a certain
stability conditions (depending on Y, V and the homotopy class) that ensure the
existence of a harmonic map in a given homotopy class of maps f: V — Y.

Let zp a base-point in V', and let G = m (X, x¢) acts on the universal cover Y
by f« : G — m (Y, f(z0)). Let g1,...9, be a generating system of G. One says
([Grlrwre 3.7.A’) that the action is stable if for every K > 0, any sequence
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Yn € Y stforalll <i< r,d(giyn, yn) < K admits a convergent subsequence.
This property only depends on the action of G on Y induced by f,.

We shall return on this stability condition latter on, but even in the absence of
stability one still can obtain harmonic maps starting from maps of finite energy
and by applying an energy minimizing process. Such a process, which may diverge
in ordinary sense, often (essentially always) converges in a generalized sense where
the target space Y need to be eventually replaced by a suitable limit of pointed
spaces (Y, ;) ([Mo],[Ko-Sc], [Gr]rw re)- In particular, N. Mok [Mo] proved that,
if the fundamental group of a Kéahler manifold X does not satisfy Kazhdan T
property, then the universal cover of Xcarries a non constant holomorphic func-
tion to some Hilbert space, equivariant for some affine isometric representation of
the fundamental group ; consequently the universal cover of X support a non con-
stant holomorphic function with bounded differential (and thus, of at most linear
growth).

Basic examples of infinite dimensional symmetric spaces have been introduced by
P. de la Harpe [Ha).

2.17. Strict H-negativity. This means, by definition, that Y satisfies the conclusion
of the above (b) : every harmonic map V — Y (or, in general, every harmonic
H-equivariant with finite H-energy map X — Y') of rank > 2 is of rank 2 and
factors via a holomorphic map to a hyperbolic Riemann surface S followed by a
harmonic map S — Y.

The basic examples of such Y’s are Riemannian manifold with strictly negative
Hermitian curvature. These include strictly i—pinched manifold by a Siu-Sampson-
Hernandez theorem (see [ABCKT], Chap.6 and references therein).

Furthermore, the piecewise Riemannian spaces built of simplexes of negative Her-
mitian curvature with geodesic faces and with the links of all faces of diameter
> 7 (compare the regularity assumption in [Gr-Sc]) are H-negative. Moreover, the
strictness of negativity is needed not everywhere but only on a “sufficiently large”
part of Y. For example, every 2-dimensional C AT'(0)-polyhedron with the above
assumption on the links is H-strictly negative, provided its fundamental group is
hyperbolic.

It follows, for instance, that if Y is obtained by ramified covering of a Euclidean
2-dimensional building Yj (e.g. the product of two graphs), where the ramification
locus lies away from the 1-skeleton of Yy, and meets all 2-simplexes in Yp, then
every harmonic map of a Kéhler manifold to Y factors via a holomorphic map to
a Riemann surface. Notice that the singularities of Y at the ramification points
have links of diameters> 7 (in fact > 7 but these can be smoothed and there-
fore, the H-negativity does not suffer. Similarly, the ramified covers of manifolds
of H-non-positive (H-negative) curvature along totally geodesic submanifolds of
codimension two are H-non-positive (H-negative). In fact, the presence of rami-
fication enhances H-negativity. For example, if a complex surface Yy of constant
Hermitian curvature< 0 is ramified over a totally real geodesic surface, then every
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harmonic map of X to the resulting ¥ — Y| that transversally meets the rami-
fication locus factors via a holomorphic map to some S — Y. In particular, the
fundamental group of Y itself is non-Ké&hler. Similarly one sees that the majority
of ramified coverings of Abelian varieties over unions of (mutually intersecting)
flat real codimension two sub-tori have non-Kéahler fundamental groups.

3. Let V be a compact Riemannian manifold with fundamental group G and X be
a covering of V' with the fundamental group H C G. The existence/non-existence
of a non-constant harmonic function f on X with finite energy, i.e. with a square
integrable differential, depends only on G and H C G but not on X per se.

Examples.

3.1. If H = {id}, i.e. X equals the universal covering of V, then the existence
of such f is equivalent by De Rham-Hodge theory to non-vanishing of the re-
duced 1-dimensional cohomology of V' and/or of G with coefficients in the regular
representation, H*(V;12(G)) = HY(G;12(Q)) # 0.

3.2. On reduced cohomology. When defining cohomology with infinite dimensional
coefficients one may factorize the kernel of d by the closure of the image of d,
where the resulting cohomology is referred to as reduced. For example, a square
integrable closed 1-form a on X represents a non-zero reduced cohomology class
(in HY(V;l3(@)) if and only if there exists a square integrable 1-cycle (closed 1-
current) b on X such that a(b) # 0. In what follows the cohomology is understood
as reduced unless otherwise stated.

One can express this property in terms of the stability of a certain unitary action.

Stability and reduced cohomology. Let H be a Hilbert space. Let p : G — Isom(H)
be some affine isometric action of G, and let w : G — U(H) its unitary part. Then
the following properties are equivalent :

-i The affine action p is stable in the sense of 2.16.
-ii The unitary representation w has no almost fized vector, in other words there
is no sequence &, of unit vectors such that ||p(g:)én—&nll — Ofor all 1 < i < r
-iii The unitary representation 7 has no fized vectors, and H' (G, ) = HY (G, ).

Proof. Suppose p is not stable. Then there exists a constant K and a sequence y,
s.t for alll < i <7, ||p(9i)yn — ynl| < K, but y, has no convergent subsequence.
Therefore ||7(g;)yn — yn|| < K’ for some constant K'. As the sequence y, has no
convergent subsequence for the weak topology, it is unbounded. Thus the sequence
& = HZ¢ is an almost fixed vector. Conversely, if &, is an almost fixed vector,

nll

and 7 has no fixed vectormax; ||p(g:)én — énll = €5 — 0. Let y, = €, &, then
lp(g:)yn — yn|l < 1, but y, is not bounded. This proves i<i.

Let us prove i= iii : as G is finitely generated Z'(G, ) has a structure of Hilbert
space. If 7 has no fixed vector, the boundary map 3 : H — Z(G, ) is injective
; if Imf3 is not closed, there exists a sequence y,, such that p(g:)yn — yn — b(g:)
where b is some 1-boundary not homologous to zero. Thus the sequence ¥, has
no convergent subsequence and p is not stable. The implication iii=-ii is due to
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Guichardet (Lemma page 48 in [HV)]) : if H'(G,7) = H'(G, ), B*(G,7) is closed
in Z1(G, ) and is a Hilbert space. The map 3 is thus an isomorphism of Hilbert
spaces, and if ||3(&,)|| — O then ||&,|| — 0. O

3.3. Stability at infinity. Let X be a complete connected Riemannian manifold. An
end of X is a non compact connected component of the complementary of some non
empty relatively compact open set B with smooth boundary (for instance a ball). If
E is an end, one defines (see [Gri]) its capacity : cap(E) = infyeq [,, |Vi|?, where
® is the set of smooth maps such that 0 < ¢ < 1, ¢|ge =0, and ¢ = 1 outside a
compact subset of E. If x € M let ¢(x, R) be the capacity of the complementary
of B(z, R).

Definition. The manifold X is stable at infinity if, as R — oo, ¢(x, R) — oo
uniformly in .

3.4. Example (See [Gri] Thm. 8.1). Suppose that X satisfies an isoperimetric in-

equality : for every compact domain A C X, one has (vol,,—1(9A4)) > f(vol,A), and
suppose that the integral [ oo f2d€t) is convergent. Then for every ball ¢(z, R) >
(f;gffB(I R) f,f—a))_l, and therefore X is stable at infinity if volB(z, R)) — oo
uniformly in X.

Recall also the fundamental result of Eells Sampson, also valid for harmonic maps
with values in trees ([Gr-Sc] 2.4).

3.5. Suppose M has bounded geometry and a lower bound p on the injectivity radius,
then, there exists a constant ¢ s.t. if u is an harmonic map :

SupwEB(w,p/2) |VU| < C(fB(z,p) |Vu|2dx)1/2
The stability condition insures the existence of proper harmonic maps.

3.6. Let E be some end. If cap(E) > 0, there exists a non constant harmonic map
u: E — [0,1]. If furthermore M has bounded geometry, a lower bound pon the
injectivity radius, and is stable at infinity, there exists a proper harmonic map
u: E—[0,1].

Proof. Suppose cap(E) > 0, and let F : E — [0,400[ be a proper C* map with
F~1(0) = OF, and such that F~'{n}is smooth for all n. For all n let u,, be the
solution of the Dirichlet problem u|F71(0) =0, u|F71(n) = 1, with minimal energy
e(u) = [ |Vun|* . The sequence of harmonic maps uy, is uniformly Lipschitz (3.5),
therefore converges to some harmonic function u : X — [0, 1], this convergence is
uniform on each compact subset, and the sequence |Vu,| also converges uniformly
to |Vu| on each compact set.

Let D be the Dirichlet space of function f : F — R with flgp = 0 and || f]| =
fE IVf]? < +oo. If m > n, u,, is the projection of u, to the affine subspace
flF(@)>m = 1, and u,, is also the projection of 0 on this space, thus ||u, — um||* =
2junll? + 2 umll* — 4l #2512 < 2unl® = 2lum]|*.
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The sequence ||u,||? is decreasing, hence converges to some e. Thus |[u, — u,||* —
0 asn — oo, n < m. Choose n so that ||u,||> — ¢ < . Then if m > n,
fngF(z) [Vun,|? <e.

By definition if e(u,) — 0, the capacity of E is zero. Therefore if ¢(E) # 0,
e(fn) — e # 0, and e(u) > fn>F(m) |[Vul? > e — ¢, thus e(u) = e and u is a non
constant harmonic map.

Let us suppose now that M has bounded geometry, a lower bound on the injec-
tivity radius and is stable at infinity, and let us prove that in fact u is a proper
map E — [0,1]. If not there exists a sequence zx — oo, and u(zg) — o < 1.
Let 8 = 142, Choose R such that for all z, cap(B(z,R) > (5 _i%ﬁ)ze(u). Let

€= 18‘0—61‘;(37 and choose a compact set K so that for all n, [, [Vun|* <e.
Choose k1 > ko large enough so that B(zy,, R) C K¢ Choose n; large enough

so that all the function u,, are harmonic on B(zy,, R) for n > ni, and such that

Un (g, ) < 2% for all n > ng.

On the set Q@ = {x/d(x, K) > p},the function w, are c.e = —1%&5% Lipschitz by
3.5. Thus, for all n > ng, one has | — zx| < R = |up(z) — un(xg, )| < 2B and

1000’
a+p3
=5

a+pB

un(z) <
On the ball B(zg,, R) the functionv,, = ul"__TTﬁ is negative, and this function is 1
=

outside a compact set of M. Therefore using max(vy,,0) to evaluate the capacity,
one gets cap(B(zy, R)) < (1%“)26(’%1), contradiction. O
T2

3.7. Recall that X has more than one end if the complementary of some open
relatively compact set B has several connected non compact component. This is
equivalent to the existence of a proper surjective C'°° function fy from X onto the
open interval | — 1,1[. Denote by E[fo] the energy of the proper homotopy class
[fo] of fo that is the infimum of the energies of the maps properly homotopic to
fo. The following version of the Dirichlet Riemann Kelvin theorem will be useful.

DRK Theorem. If X has bounded geometry, a lower bound on its injectivity radius
and is stable at infinity, there exists a unique proper harmonic map f: X —]—1,1]
in the same proper homotopy class than fo.

The existence follows from the argument of 3.6 ; the uniqueness follows from the
convexity of the function ¢ — e(tfy + (1 —t)f1) (which is also valid for maps f;
with values in trees, [Gr-Sc|, prop.4.1).

3.8. Let G = (M) be the fundamental group of a compact manifold M, and
H a subgroup such X = M /H has several ends. The stability of the representa-
tion [?(G/H)is equivalent to the non amenability of the Shreier graph Cay(G)/H,
where Cay(G) is the Cayley graph of G relative to a fixed system of generators X.
This is equivalent also to the fact that X (or Cay(G)/H) satisfies a strong isoperi-
metric inequality (vol,—1(0A)) > k(vol,A). This linear isoperimetric inequality
implies that X is stable at infinity. In this case we say that (G/H) is stable.
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More concretely, if R,, — oo, and B(x,, R,,) is a family of balls in this graph with
bounded capacity, there exists a family of functions f, such that f,|p(, r,) = 1,
fn=0 outside a compact set and e(f,) is bounded by some constant C. Then
Uy = H;—:” € I?(G/H) is an almost invariant vector, as e(u,) = WEgengn —

fno 9l < sty — O

Therefore the stability of the representation [?(G/H) is stronger that the stability
at infinity of X/H. For example, if G = Z", H = {e},!*(G/H) is not stable
but, if n > 3, R™ is stable at infinity as it satisfies the isoperimetric inequality
vol,—1(0A) > k(volnA)"Tfl, and 2221 > 1.

3.9. Let X be a Riemannian manifold with bounded geometry discretely acted
upon by a group G with H'(G;l2(G)) # 0. If X/G has finite volume, then X
supports a non-zero exact square integrable harmonic 1-form, i.e. the differential
of a non-constant harmonic function f with finite energy (see [Ch-Grl]).

The above concept of capacity defined via the Lo-norm of the gradient (quadratic
energy) extends to all L,, where the most studied case after p = 2 is that of the
conformally invariant energy for p = dimg(V'). ( This conformal p equals 2 for
Riemann surfaces.) What is badly missing for p # 2 is a Hodge lemma.

3.10. Questions. Let X be an infinite (not necessarily Galois) covering of a compact
manifold V' with the fundamental group H C 71 (V). When does a homotopy class
of maps X — Y have a representative fy of finite L,-energy for a given p € [1, 00|?
Here, Y may be some standard metric space, e.g. a flat torus; another possibility
is where Y = X and fj is homotopic to identity. Among examples one singles out
aspherical spaces V, e.g. those with non-positive curvature, and finitely generated
groups H such as H = Z", for instance.

A closely related question concerns the structure of the L,-subspaces in the co-
homology of X, denoted L,H*(X) C H*(X;R), of the cohomology classes of X
realizable by closed L,-forms on X. For example, can such subspace be irrational
in the case where H*(Y;R) comes with a natural Q-structure, e.g. for aspherical
X with finitely generated Abelian fundamental group H? (This subspace in the
aspherical case is determined solely by G = m1(V'), the subgroup H C G and the
number p ).

3.11. If the group G “branches”, i.e. has at least three (and hence, infinitely many)
ends, then its Cayley graph is stable (at infinity). This can be seen, for example,
by exhibiting square integrable 1-cycles b that flow (as currents) from a given non-
empty open subset of ends to another, say from J_ to d4, where the underlying
X is some manifold or polyhedron with a co-compact discrete action of G such as
the Cayley graph of G, see for instance [ABCKT] page 50. This stability implies
the existence of a harmonic function on X of finite energy separating 0_ from 04
and thus, the non-vanishing of H!(G;I2(G)). Notice, one does not use here the
Stallings theorem on groups with an infinity of ends. In fact Stallings theorem
follows from the existence of a harmonic function separating two complementary
open ends, see p.228 in [Gr]yg.
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3.12. The non-vanishing of the first l>-cohomology group H'(G;l2(G)) in other
known examples is established with a use of Atiyah-Euler-Poincaré formula applied
to the first two [2-Betti numbers of infinite Galois G-coverings X’ of connected
2-polyhedra V’,
LY (V') = b (G) = x (V')

where x(V”) is the ordinary Euler characteristics,

x(V) = (V') = b (V') + 1.
For instance, the inequality x(V’) < 0 for some V' with the fundamental group G
yields non-vanishing of Iob*(G) and hence, of H!(G;l2(G)), which amounts to the
existence of a non-zero harmonic square integrable 1-cocycle in X'.
A more convincing example is given by G obtained by adding I relations R;to
the free product of k infinite groups Gy, such that the natural homomorphisms
G, — G are injective. Then, by applying the [2-Mayer-Vietoris sequence, like in
[Ch-Gr 2], one checks that the first lo-Betti number satisfies 120! (G) > k —1 — 1.
If the maps G, — G have infinite image H,,, the same result applies : indeed, G is
the quotient of the free products of H, by the images S; of the relations R; in this
free product. This infinite image condition can be, probably, removed with a use
of Romanovskii Freiheitssatz ; on the other hand, the injectivity holds for generic

relations added to free products, by small cancellation theory over free products
[L-S].

4. Clean Functions and Maps

4.1. Let f be a pluri-harmonic function on a complex manifold X or, more gen-
erally, a pluri-harmonic map of X to a metric graph Y e.g. to a tree. Then there
exists a unique holomorphic 1-codimensional foliation Fon X such that f is con-
stant on the leaves of F. We call f clean if the leaves L of F are closed and say that
f is properly clean if the leaves are compact. Notice that “clean” = “properly
clean” if f is proper and thus has compact level sets.

Let use note that, if some leaf of F is compact, and if X is Kdhler, complete and
with bounded geometry, then f is properly clean. Furthermore, the leaves have
uniformly bounded volume and diameter.

Proof. (compare [Gr-Sc] p.240). Let us check that the set Yof points s.t the leaf
through this point is compact is an open set. If L is a compact leaf, as the restriction
of ¢dfto L is 0, L has a neighborhood where idf = dg is exact. In this neighborhood
the foliation Fis defined by an holomorphic function F : thus Y isopen. Let Y’ C Y
be the set of compact non-singular leaves. On each component of Y’ the homology
class [L;] of the leaf through z is constant. If z € Y\Y’, L, is a singular fiber, and
its homology class is %[Ly], where L, is a non singular leaf close to x and m € N
is the multiplicity. Let Y; be a connected component of the open set Y. Let us
check that Y7 is also closed. As Y} is connected, and as Y’ has codimension 2 in Y,
[Ly] = mLZ[L] for L a generic leaf in Y7. In particular the volumes of the leaves in
Y7 are uniformly bounded. Let z,, — x* be a converging sequence of points of Y7.
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As X is Kéhler with bounded geometry, the leaves L., have uniformly bounded
diameter R. Thus, for n large enough L, is in the compact set K = B(z*, R+1).
Let (B(zi,n)1<igk be a finite cover of this compact set by closed balls of radius 7,
such that on each B(z;,7n) the foliation is defined by a function F;, and such that
the balls B(z;,7/100) cover K. If L is a leaf of our foliation, and L pass through
some y € B(z;,n/100), the volume of the connected component of L N B(z;,1/2)
through y is> « for some universal constant . From the bound on the volume of
[L.,], we deduce that there exists a uniform bound on the number of connected
component of L, throughB(z;,1n/100). Thus, one can extract a subsequence such
that all of these components converge to the leaf through x which is therefore
compact O

In the special case where Y = R, the function f locally serves as the real part of
a holomorphic function on X whose level sets define the above foliation. Globally,
one has a holomorphic 1-form, say a on X with the real part df. This form becomes
exact on some Abelian covering X of X; therefore, the lift of f toX becomes clean.
As for the function f itself, it can be clean without a being necessarily exact; in fact,
f is clean iff a represents a multiple of a rational (possibly non-zero) cohomology
class on X.

4.2, If a harmonic function f : X — R is clean then (by an easy argument) there
exists, a Riemann surface S, a surjective holomorphic map with connected fibers
h : X — S and a harmonic function S — R such that f equals the composed
map X — S — R. Moreover, this remains true with an arbitrary one-dimensional
target space Y in place of R.

If f is properly clean then, clearly, the factorization map h : X — S is proper.
Furthermore, the group H of holomorphic automorphisms of X sends (compact!)
leaves to leaves. Indeed, if g € H and L is a compact leaf, then h|, 1, is holomorphic
from a compact manifold to a Stein manifold hence it is constant, and g.Lis another
leaf. Thus the group H acts on S and the map h is equivariant. For example, if
X serves as a Galois covering of a compact manifold V', then the Galois group G
acts on S and V fibers (i.e. admits a surjective holomorphic map with connected
fibers) over a Riemann surface. (See [ABCKT)] for details and references).

4.3. If rankH'(X;R) < 2, e.g. if X is simply connected, then, by the above, every
pluriharmonic function f on X is clean. Furthermore, if X is Kéhler and f has
finite energy then some (generic) leaf Lo has finite volume (due to the co-area
formula, see [Gr]grk). If X is complete and has bounded geometry then “finite
volume” = “compact” for complete holomorphic submanifolds in X. It follows
that Lo is compact; consequently all leaves L are compact (4.1). (All one needs
here of the bounded geometry is a slow decay of the convexity radius of X).

4.4. Corollary Let a countable group G discretely act on a Kdhler manifold X such
that the quotient X/G has finite volume. If H*(G,12(G)) # 0 while H*(X,R) = 0
(e.g. X is simply connected) and and if X has bounded geometry (e.g. the action
is co-compact) then X/G fibers over a Riemann surface: there is a holomorphic
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action of G on a Riemann surface S and an equivariant holomorphic map h from
X onto S with compact connected fibers.

This corollary applies, for instance, to non-singular projective varieties V and
yields the following (see [Gr]grk):

4.5. Theorem. If the fundamental group G of V has lobt # 0 or, equivalently,
HY(G;12(@G)) # 0, then G is commensurable to a surface group.

4.6. If V is singular then the above considerations can be applied to a nonsingular
G-equivariant resolution of the universal covering X of V' (induced from a resolu-
tion of V'), say to X, where the corresponding map X — S necessarily factors via
a holomorphic map X — S.

4.7. The simplest way to handle a smooth quasi-projective variety Vo = V \ W
would be by constructing a complete Kahler metric on V) such that the induced
metric on the universal covering X of V; had bounded geometry. By the Hironaka
theorem, one may assume that V; is smooth and W is a divisor with normal
crossings where handy candidates for the desired metric come readily; yet, one has
to check that the curvatures of such metrics are bounded.

5. Cleanness and branching

Let f be a proper harmonic function X —] — 1,+1[ with finite energy separating
two open ends on a Kéhler manifold X as in 3.4. Cleanness and proper cleanness,
as was mentioned earlier, are equivalent for such f; more significantly one has the
following :

5.1. First cleanness criterion. If X has at least three ends then f is properly clean.
This follows from L2-version of the Castelnuovo de Franchis theorem discussed in
[ABCKT] pp. 60-62.

5.2. There is a more general geometric version of this result. Let T be the tree
obtained by joining several (finite or infinite number of) copies of the segment
[0,1] at 0 and let a group H isometrically act on T', while fixing the origin 0,
so that T/H is a finite tree, perhaps reduced to [0, 1[. (Such an action amounts
to permuting the copies of [0,1] with finitely many orbits. This action is not
necessarily discrete, not even proper for infinite H since the action fixes 0).

Second cleanness criterion. Let H discretely and isometrically act on a Kahler
manifold X and f : X — T be a surjective H-equivariant pluriharmonic map of
H-finite energy. If the tree T has at least three branches (i.e. there are at least three
copies of [0, 1] in the above construction) and f is H-proper, i.e. the corresponding
map X/H — T/H is proper, then f is clean; moreover, f is H-properly clean, i.e.
the holomorphic leaves L from X go to compact (complex analytic) subsets in
X/H under the quotient map X — X/H.

This follows from the argument on pp 239-40 in [Gr-Sch], (see also [Si]) : note that
as the number of branches of the tree is at least three, the foliation defined by f
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must have a singular leaf (i.e a leaf whose image is a branch point of the tree).
This leaf is compact modulo H and therefore (4.1) f is properly clean.

5.3. In order to apply the second criterion one needs a useful version of the DRK-
theorem. As X/H is not a manifold but an orbifold, we must modify our assump-
tion on the geometry of X/H. We suppose that X as bounded geometry, a lower
bound on the injectivity radius p. We also assume that there exist a r < p such
that for every x in X the ball B(x,r) is the quotient of B(x,r) by a finite group of
bounded cardinality. This r plays the role of the injectivity radius in the orbifold
case. The definition of capacity and uniform stability at infinity of 3.3 remains
valid in this case, as well as the Ells-Sampson Theorem.

Theorem. If X/ H is uniformly stable at infinity, then there exists a proper H -equi-
variant harmonic map u : X — T with finite non-zero H-energy.

Proof. We explain the modifications needed in the proof of 3.6. Let T — {0} =
10, 1[xX where ¥ is some set, and let T the metric completion of T' obtained by
adjoining a point 1 to each interval [0,1]. Let F : T/H — [0,+1[ be the folding
map, so that w : Fo f: X/H — [0,1] is proper. For every n)let U, : X — T
be the unique solution of the Dirichlet problem Up|s—1([1/n,1jx0 = 1 X 0, Uy is H
invariant, and of minimal energy. By the argument of 3.6, U,, converges to some
harmonic map U : X — T. It remains to check that U(X) C T and U is proper. If
U(z) = 1 x o for some point z, by the maximum principle, U is constant of zero
energy, but the G-energy of f is the energy of U, hence the capacity of X/H is
zero and this manifold would not be stable at infinity.

Hence the harmonic map U sends X in T'. In order to prove that U is proper, let
us check that if z,, € X is such that f(x,) — 1 x o, then U(x,,) — 1 x o. If not,
there exists an a such that U(z,) remains on the complement of H x [a,1[x0.
Let e(U) be the energy of this harmonic map U, and let § = HTO‘

Let up(resp.u) : X/H — [0, 1] be the map induced from FoU,(resp.FoU).Choose

R such that for all x € X/H, cap(B(z,R) > (ﬁ)%(u). Let € = 1(‘)"0—61‘;6, and
2

choose a set K C X/H so that for all n,[,. |[Vu,|* < e. As the image of K
by u is compact, one can choose k1 > kg large enough so that B(xy,, R) C K°.
Choose ny large enough so that all the functions U,, are harmonic on B(xzy,, R)
for n > ny, and such that uy,(zg,) € [2%, 1[x 3 for all n > ng. On the set Q =

z/d(x, K) > R},the function U, are c.c = 25 Lipschitz. Thus, for all n > ng,
T000R

one his |z — 4| < R = |Un (@)~ Un (w0,)| < St and Un(z) ¢ [552,1[x3 < 442,
_otB

Let v, = ul" - if u,(x) € ["2&, 1] x o , and 0 otherwise : this function is 1
—aif

outside a compact set of X/H, and 0 on B(z,, R) . Therefore using v,, to evaluate
the capacity, one gets cap(B(z,, R)) < (1%)26(’%), contradiction. O
T2

5.4. Hyperbolic example. Let H be a quasi-convex subgroup in a hyperbolic group
G such that OG is connected and the limit set O(H) C 9(G) divides the ideal
boundary O(G) into at least three components. Then every Riemannian manifold
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X with a discrete isometric co-compact action of G admits the above H-equivariant
harmonic map f to Y. We postpone the proof to 6.3 and 6.6. Furthermore, if X
is Kéhler, 5.2 proves that f is H-properly clean.

5.5. The desired branching, i.e. the strict inequality card(mo(0(G)\O(H))) > 2, can
be always achieved in the hyperbolic case by enlarging the subgroup H according
to the following simple version of the “ping-pong” lemma.

Lemma ([Gr]g¢5.3.Cy, see also [Ar].) Let H be a quasi-convex subgroup in a non-
elementary hyperbolic group G where card(mo(0(G) \ O(H))) = 2. Let f be an
hyperbolic element such that no power of f is in H. Then for some power f*
of f the subgroup H' of G generated by f* and H is quasi-convez; if F is the
finite subgroup of H of elements commuting with f*, H' is the free product H' =
Hxp < f* < F > amalgamated along F. Furthermore, card(mo(0(G)\O(H')) = .

Note that the group H’ contains H as well as all its conjugates f™*H f~"*. In the
boundary of Gall the boundaries of these groups are disjoint (see 6.2 below) and
each of them cuts OG in (at least) two components, therefore 9G\OH’ has infinity
many of connected components.

The above lemma can be generalized to many other (e.g. “nearly hyperbolic”)
groups where H is contained in a larger subgroup H’ that usually cuts G into
more than three pieces ; yet, the overall picture remains unclear.

5.6. The above cleanness criteria deliver holomorphic fibrations of open Kahler
manifolds over Riemann surfaces with compact connected fibers, denoted f : X —
S. In the cases of interest such an X comes as a (possibly non-Galois) covering of
a compact (e.g. projective algebraic) manifold V', say p : X — V', where one can
induce the fibration f from a surface fibration of a finite covering of V' according
to the following simple lemma. (For a similar statement, see [Ca] 1.2.3 p. 490, or
[Ko] Prop. 1.2.11 ).

Lemma. Given the above f : X — S and p: X — V. Then, the normalizer G’ of
the image of the fundamental group of a generic fiber f~1(xg)is of finite indexin
m1(V,p(zg)) = G. The finite covering V' — V of group G’ fibers over a compact
Riemann surface S’ where the images of the fibers under the covering map V' — V
equal the p-images p(L) C V of the f-fibers L C X.

Proof. Let us identify X with the quotient f : X = V/H — S , for H C G =
m1(V). Let yo be some pre-image of xop and N be the image of 71 (f~*(z0), yo)in
H C G. In order to prove that the normalizer G; of N is of finite index in G,
it is enough to show that N has only a finite number of conjugate in G. Indeed,
the conjugate gINg~* is represented by the image in X of the fiber of F' through
some point in p~(p(yo)) = G/H. But all the fibers of f are analytic submanifolds
with the same volume, in a Kahler manifold of bounded geometry. So their fun-
damental groups (at the point g.zg)are generated by loops of uniformly bounded
length (independent of g). Therefore the images of these groups in 71 (V, p(z0)) is
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generated by elements of bounded length, and can only take a finite number of
values. Thus V' /N is a Galois cover of the finite cover V' of V' of group G’, and
4.2 applies. O

6. Cutting Groups by Subgroups

Given a subspace in a proper geodesic metric space, Xo C X let X_, C X be the
set of points z € X with distance > r from Xy. We take the projective limit for
r — oo of the projective system of the sets of connected components of X_, and
call this limit the space of (relative) ends of X|Xj, denoted Ends(X|Xjy). Observe
that if X is proper (bounded sets in X are relatively compact) and Xy is bounded
then the space Ends(X|Xj) equals the ordinary space of ends Ends(X).

If X is acted upon by a group H we take an orbit X, of H and set Ends(X|H) =
Ends(X|Xyo). If H serves as a subgroup of a finitely generated group G we apply
the above to X = Cayl(G) that is the Cayley graph of G and abbreviate by putting
Ends(G|H) = Ends(Cayl(G)|H), and Ends(G/H) = Ends(Cayl(G)/H).

6.1. Definitions. Say that Xy C X cuts X (at infinity) if X|X, has at least two
ends, i.e. card(Ends(X|Xp)) > 1. In future, the noun “cut” may refers to the fact
that X is being cut by Xy or to an actual division of Ends(X|Xj) into two (or
more) non-empty open subsets.

The disjoint union X U Ends(X|Xy) carries a natural topology. Thus for every
subset X’ C X one can take its closure in X U Ends(X|Xo) and then intersect
this closure with Ends(X|Xp). We denote the resulting subset by Oena(X’) C
Ends(X|Xo) and say that Xy cuts X’ in X if cardOenq(X’) > 1.

We say that a subgroup H C G cuts a group G if card(Ends(G|H)) > 1 and an
H-cut is called branched if card(Ends(G|H)) > 2. A cut of H by G is called stable
if the Schreier graph (Cayl(G)/H) is uniformly stable (at infinity) in the sense of
3.3. For this it is enough that (?(G/H) is stable by 3.8.

If H cuts G, H acts on the set of relative ends Ends(G|H). One can distinguish
Schreier cuts where the disconnectedness persists under the action of H, i.e. where
the action of H on Ends(G|H) is not transitive. Note that if H cuts G, the cut
is a Shreier cut if and only if the Schreier graph (Cayl(G)/H) is disconnected
at infinity (see also [CCJV] where such cuts are called “walls”). In particular if
Ends(G|H) is finite there exists a subgroup H’ of finite index in H such that
Ends(G/H') = Ends(G|H) = Ends(G|H'), and H' is a Schreier cut of G.

Example. Let S be a compact Riemann surface of genus > 2, C be a simple closed
curve separating S in two connected components ST. If G = 71(S, ) operates
on the hyperbolic plane D, H = m1(S™,z0), then D/H is connected at infinity,
whereas Ends(D|Hzx,) is infinite, thus H cuts G at infinity, but in fact is transitive
on the set of relative ends (see also 6.3).

Historical remarks. The set of ends of a topological space has been introduced
by Freudenthal ; for homogeneous space of Lie groups, it has been firstly studied
by Borel to prove that there are no action of a Lie group on a simply connected
manifold which is 4-transitive [Bo]. After Stalling’s famous paper on the structure
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of groups with an infinity of ends, C. Houghton [Ho] and P. Scott [Sc] began to
study ends of pairs of groups.

6.2. Induced cuts. Cuts and their properties (obviously) lift under surjective ho-
momorphisms G — G: if H cuts G the so does the pullback H C G of H to G,
furthermore, the invariance (by the action of H) and stability pass from H-cuts
to H-cuts, in other words if H is a Shreier cut of G then H is a Schreier cut of G.
Cuts also pass to subgroups G’ C G. In fact, if a finitely generated G’ C G is cut
in G by a subgroup H C G, then G’ is also cut by the intersection (subgroup)
HNG C G as follows from the following simple :

Lemma. Given subgroups G' and H in a finitely generated group with G endowed
with the word metric, there exists a function €(§) with €(§) —s— oo +00, such that
the intersection of the §-neighborhoods of G' and H in the Cayley graph of G is
contained in the e-neighborhood of the intersection G' N H .

Proof. As the ball in G of radius 26 is finite, there exists an r < oo (depending
on G’ and H) such that if some g € G’ and h € H are s.t. |g — h| < 2d,then there
exists a pair (go, ho)inG’ x H in the ball of radius r of G s.t. g~ *h = go_lho. Then
k= ggo_1 = hho_1 € G’ N H. This h is at distance < r of g, hence the result with
e=r+9. d

Thus arbitrary (non necessary surjective) homomorphisms G; — G induce cuts in
G4 from those in G.

6.3. Convex hyperbolic cuts. Let X be a proper geodesic d-hyperbolic space.
Recall (see for instance [CDP]) that subset Y C X is quasi-convex if there exists
a constant A s.t. for every pair ¥,y € Y and any point z in a geodesic segment
[y,4'], the distance of z to Y is < A. It is known that if Y is A-quasi convex, and
B > A +1006 the set Y+*B = {2/d(x,Y) < B} is 1005-quasi-convex.

Let H be a group of isometry acting on X. Recall that H is quasi-conver co-
compact if there exists a geodesic subspace Y C X which is quasi-convex and such
that the action of H on Y is discrete co-compact. This is equivalent to the fact that
the orbit H.xz( of any point is quasi-convex. In the case where X is the hyperbolic
space of constant curvature, a quasi-convexr co-compact group is a geometrically
finite group without parabolics.

If H is quasi convex co-compact, it is an hyperbolic group, and its boundary 0 H
embeds as a closed subset in 0X ; it is also the limit set of the action of H on X.
It is known (see [Coo]) that the action of H on 0X/9Y is discrete co-compact.
One says that a X is thin if there exists a constant B s.t. every point in X is at a
distance < B of a bi-infinite geodesic.

Lemma. Suppose that H is quasi-convexr co-compact in some thin proper geodesic
hyperbolic space X. Let Y = H.xg , so that Y is a quasi-convex subset of X. The
set of relative ends Ends(X|Y') is the set of “connected components“ of 0X\9Y.

Remark. Tt is possible that 90X \dYis not locally connected. Thus, the expression
“connected component” needs an explanation. If O is an open cover of 0X\9Y by
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open subsets, let |O]° be set of connected components of the nerve of this cover.
If O is finer than O, |0’|° projects onto |O|°. A limit point of this projective
system is a connected component. If O is such a cover, if one replace each O € O
by O = Uoren(0)0’, where n(O) is the set of O’ such that O" belongs to the same
connected component of |O|, we get a new cover by disjoints open sets having the
same set of connected components. So we can restrict our attention to covers by
disjoint open subsets.

Proof of the lemma. Changing the value of the hyperbolicity constant §, one may
suppose that X is d-hyperbolic, é-thin and that Yis d-quasi-convex.

One chooses a H-equivariant projection of p : X — Y such that d(z,p(z)) =
minyey d(x,y). A ray [x,y] is called a vertical ray if y is a projection of z on Y.
If w € 0X/9Y, aray p = [y, w] is called vertical if for every x € p,the point y is
a projection of z on Y. By properness and ¢ hyperbolicity every w € 0X/9Yis
the end of some ray, and two such rays are 104 close one to each other. One can
extend p to 9X/9Y by choosinf once for all and for every w a vertical ray p, = [y, w|
which ends at w, and setting p(w) = y. This choice can be make equivariant. If
w,w’ € IX/OY, let py(t), piy(t) : [0, 00[— X be two geodesic parameterizations of
the rays [p(w),w[, [p(w’), w'[. One sets < w,w’ >y = max{t/d(p(t), p'(t)) < 105}.
Let us first prove :

(1) as X is thin every point x s.t. d(z,Y") > 2004 is at the distance < 1004 to some
vertical ray [y, w[ with y € Y.

Choose some bi-infinite geodesic Jw, w'[ s.t. d(z, Jw, w’[) < §. By d-quasi convexity,
w or w' do not belong to Y. If w' € JY, and p is a projection of w on Y,
so that |p, w[is a vertical ray, the hyperbolicity proves that Jw,w’[ is 104 close to
Jw, p[U]p, w'[ therefore x is 116 close to the vertical ray Jw, p[. If neither w nor w’ are
in Y, let p and p’ be projections of w, w’ on Y, so that |p, wand |p’, w'[ are vertical
rays. The hyperbolicity proves that |w,w’[ is 10§ close to Jw, p[U]p, p'[U]p’, w'[. By
quasi-convexity, z cannot be close to |p, p’[, and is therefore close to one of the two
vertical rays Jw, p|, |p’, w'[.

Le C be a component of Y_, s.t. there exists a point in C' with d(z¢,C) > r +
100006). Let O(C) = {w: p, N C is not compact}. Let us check that O(C) # 0.
By (1) z is a the distance < 100§ of some geodesic ray [y, w] with y = p(w) € Y.
Let 2’ € [y, w[ with d(z,z’) < 1006. Then d(z',y) > r and therefore [/, w[C C. It
is easy to see that O(C) is an open set, and that the collection O, of all these sets
is a cover of X \9Y. These sets are disjoint and O, is an open cover of 9X\JY
by disjoint sets. Thus |O,| is the set of connected components of Y_,. which are
the image of a connected component of Y_,., 7/ > 7 + 100§ under the natural
projection Y° , — Y© .

Let O =(0;)icr be a H-invariant, H-finite cover of 9X/9Y by non empty disjoint
open subsets. In order to conclude, its is enough to prove the following : there
exists an r s.t. O, is finer than O.

As H is co-compact in 0X\0Y , and as our cover H-invariant, there exists an
s > 0 s.t. for every w there exist an 7 s.t if < w,w’ >y> s = w,w’ € O;.
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Let us choose such an s. Let r = s + 10006. Let C' be some component of O,.. For
each z in C, let O(z) be the (non-empty, due to (1)) set of endpoints of vertical rays
p = [y,wls.t. d(z, p) < 1004. If d(z,z") < J, then the product < wy,w,s >is bigger
than s. By connexity there exist an i s.t. for all z € C, w, € O;. Iif w € O(C) there
exist a ray [y, w[ which contains a point « of C. Then w € O;, and O(C) C O;. O

A particular instance of this is the Cayley graph X of a non-elementary word
hyperbolic group G D H.

6.4. Full systems of convex cuts. Say that a (usually infinite but with finitely
many mutually non-conjugate members) collection of convex subgroups H; in a
word hyperbolic group G fully cuts G if for every pair of distinct points in the
ideal boundary 9(G) there is some H;, among H; whose limit set O(H;,) C 0(G)
separates these points, i.e. they lie in different connected components of the com-
plement O(G) \ (H;,). (This definition can be extended to general groups and
spaces but we are mostly concerned with convex cuts in hyperbolic groups and in
CAT(0)-spaces).

Examples. (a) If some immersed compact totally geodesic hypersurfaces W; cut a
compact manifold V' of negative curvature into simply connected pieces then the
conjugates of the fundamental (sub)groups of W;’s fully and convexly cuts w1 (V).
(This, with an appropriate definition, remains valid for arbitrary C' AT (0)-spaces).

(b) If G is a reflection group then the isotropy subgroups of the walls provide a
full system of convex Schreier (as in 6.1) cuts of G (where G does not even has to
be hyperbolic for this matter, see [BJS]).

(¢) The above generalizes to cubical C AT (0)-polyhedra and their isometry groups
(see [Sa] [CCJJV]). In particular hyperbolic groups co-compactly acting on such
polyhedra admit full systems of convex Shreier cuts.

(d) There are compact (arithmetic) n-manifolds for all n > 1 of constant negative
curvature with a full system of Shreier hyperplane cuts of its universal covering
and hence, of their fundamental groups. (It is unlikely that the fundamental group
of each m-manifold of constant negative curvature admits a convex cut for n > 2
but no counter example seems to be known even for n = 3.)

(e) Dani Wise (see [Wi]) has shown that many small cancellation groups G, includ-
ing geometric C’(1/6)-groups, admit full systems of convex Schreier cuts H; with
at most finitely many mutually non-conjugate among them. In conjunction with
Sageev’s theorem his result provides, for all such G, a cubical CAT(0)-polyhedra
with fundamental groups G assuming G has no torsion.

6.5. Stability of hyperbolically induced cuts. If a f.g subgroup A C G in a word
hyperbolic group G is cut by a quasi-convex subgroup H C G then the induced
cut of A by HN A is stable unless A is virtually cyclic. It follows that the cut of an
arbitrary finitely generated group G induced from a convex cut of a hyperbolic
group by a homomorphisms G; — G is stable (hence G/H is uniformly stable at
infinity) except for the virtually cyclic image case.
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Proof. (Compare [K] for a discussion of the case where A is quasi-convex.) In order
to prove this proposition it is enough to show:

Proposition. Let A be a subgroup of a hyperbolic group G, and H be a quasi-convex
subgroup in G. If AJANH and AN H are infinite, or if A is non elementary and
AN H is finite, thenA contains a free group F such that F' meets no A-conjugate
of ANH, i.e. F freely operates in AJAN H.

If A is non elementary and A N H is finite, asA contains free subgroups, the result
is obvious. So we may assume that that A/AN H and AN H are infinite.

In order to prove this proposition, we think of G as a uniform convergence group
on its boundary dG. Our proof is therefore also valid if G is a geometrically finite
convergence group on a compact set M provided that H is fully quasi-convex in the
sense of Dahmani [Da], i.e. H is quasi-convex and meets each parabolic subgroup
of GG either in a finite group of a subgroup of finite index.

Recall that 02?(G) denotes the set of distinct pairs of elements in dG. As H is
quasi-convex it is hyperbolic, and its limit set is equivariantly homeomorphic to
OH Let A2(A) be the closure in §%(G)of the set of pairs (a*,a™) of fixed points
of hyperbolic elements in A. If A is quasi-convex, A?(A) = §%(A).

Lemma. A%(A) N 0%H is of empty interior in A%(A).

Before proving this lemma let us recall basic facts about quasi-convex subgroups
(for a proof also valid in the case of geometrically finite convergence groups and
fully quasi-convex subgroups, see [Dal).

Proposition. Let H be a quasi-convex subgroup of G, and let g, € G/H be an
infinite sequence of distinct elements.

i) The intersection Ng,OH is empty.

i) Furthermore, if g, is a representative of gn of minimal length mod H, i.e.
d(gn,H) = d(gn,e), then d(gn,e) — oo. Suppose that g, — « € 0G. Then
gnOH — o as well. In particular the set £ = U,g,0H?is closed in 0°G.

iii) Let Hy, Ha be two quasi-convex subgroups of G, then H1 N Hy is quasi-convex
and 0H,1 N OHs = O(Hy N Hy). Furthermore OHy N OHy is of empty interior
in OHy unless Hi N Hs is of finite index in H;. O

Proof of the lemma. Suppose first that A is quasi-convex . Assume that the lemma
is false ; as A is quasi-convex, the set of pairs (a*,a™),a € A, a hyperbolic is
dense in 9?A, ([Gr]pc8.2.G). Thus, in this case, A>(A) = 9?(A). But 0ANIH =
O(AN H), and this set is of empty interior in A, i.e nowhere dense, in 9A, unless
AJ/AN H is finite.

Let A be not necessary quasi-convex and assume again the lemma is false. Then
there exists an hyperbolic element u in A s.t (u™,u™ )belongs to the interior of
A2(A)NO?H. Let u = uy,ug,....... Uy, .. ..be the list of hyperbolic elements of A,
and let n be a fixed integer. For n; large enough, (u;")1 < i < n generate a free q.c
group A, : if the lemma is false, A2(A,,) NO?H is not of empty interior in A%(4,,).
Thus A, N H is of finite index in A,, and every element of A has a power in H.
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Therefore A%(A) C §%(H). Suppose AN H is not of finite index in A, and let a,, be
an infinite sequence in A/A N H. We may assume that a,0(H) converges to some
point a € G, but this is impossible as a, (I(H)?) D a,A%(A) = A%(A). O

Proof of the proposition. Let L = UzcaadH? = Uzeca(daHa1)2. This set is
closed in 9?(G),therefore its intersection with A?(A) is closed, and applying the
lemma to the family (aHa!),ca, nowhere dense in A%(A). Therefore, we can
choose an hyperbolic element a € A such that (a™,a™) € £°. Choose m € A be
some element s.t. mat # a® (for instance any element of infinite order in the infi-
nite group AN H). For N large enough, the group < a’¥,ma™m~! > has its limit
set in the neighbourhood of the four points a™,a™, ma™, ma™, and no element of
this group is conjugate in H. O

6.6. Implementation of cuts by maps into trees. A Schreier cut, i.e. a partition of
the space of ends of X/H for a Riemannian H-manifold X (or a general geodesic
space for this matter, e.g., the Cayley graph of a group G) into two open subsets,
say O_ and Oy, can be implemented by a proper function fy : X/H —]0, 1[ with
finite energy (compare 3.4) which lifts to an H-invariant function on X with finite
H-energy.

The latter function can be defined for general non-Schreier cuts with ]0, 1] replaced
by a tree Y as in 5.2. Namely, for each » > 0 we denote by Comp, the set
of connected components of the subset X_,. C X of points within distance> r
from an H-orbit Xy C X of a base point g in X (compare 6.1) and denote by
¢: X_, — Comp, the tautological map. We assign a copy of [0, 1| to each point ¢ of
Comp,., denoted [0, 1]., and choose a proper monotone function d : [0, oo[— [0, 1]
that vanishes on [0.r]. Then we construct the map f, from X to the tree Y obtained
by identifying the copies [0, 1[.,c € Comp, of [0,1] at 0 as the composition of the
maps ¢, dist(.,Xo) and d, that is each x € X goes to d(dist(z, X)) € [0,1[.C Y
for ¢ = c(x).

This map f, is H-proper as well as H-invariant and it can be easily adjusted to
have finite H-energy. Among the branches [0,1[. of Y not all are essential, i.e.
totally covered by the image of f,.. The non-essential branches can be removed by
retracting them to the root 0 of Y; as 7 — oo the number of essential branches
converges to cardEnds(X|H).

7. Cuts in Kahler groups

7.1. A Riemann surface S and its fundamental group can be cut in many ways and
these cuts pass to complex manifolds fibered over S. Conversely, by combining the
above and 5.6 (compare [De-Gr]), one conclude to the following:

7.2. Cut Kahler Theorem. Let the fundamental group G of a Kdhler manifold V
be cut by a subgroup H C G, where this cut, call it C, satisfies the following two
conditions.

(1) The cut C is stable.
(2) The cut C is branched, i.e. card(Ends(G|H)) > 2.
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Then C' is virtually induced from a Riemann surface: a finite cover V of V' admits
a surjective holomorphic map to a Riemann surface with connected fibers, V —
S, such that the pullback to m (V) C m (V) of some subgroup in m1(S) equals
Hnm (V). In particular, the kernel of the induced homomorphism w1 (V) — m1(S)
is contained in H N (V).

Remarks. (a) The stability condition is violated, for instance, for cuts of Abelian
groups G yet, the conclusion of the theorem, when properly (and obviously) mod-
ified, holds in this case. But, it remains unclear how the general non-stable picture
looks like.

(b) It seems that the desired cleanness does not truly need the branching con-
dition (introduced solely for cleanness sake) but it is unclear how to remove or
significantly relax it in the general case. However, branchings come cheap in the
hyperbolic case (see 5.5) that brings along the following corollary where there is
no explicit reference to any branching.

(¢c) In the case of a Shreier cut, this result has been proved by Napier and Ra-
machandran [N-R]

Corollary. If a Kdhler group is hyperbolic and admits a convex cut then it is com-
mensurable to a surface group. Moreover, let h : G — Go be a homomorphism
where G is a Kahler (not necessarily hyperbolic) group, Go is a hyperbolic one
admitting a full system of convex cuts, e.g. a Wise small cancellation group and
h(G)is not virtually cyclic. Then the restriction of h to a subgroup G’ C G of finite
index factors through an epimorphism G’ — m1(S") induced by a holomorphic map
V' — S’ followed by a homomorphism m1(S) — Go, where V is the finite covering
of V with the fundamental group G' and where S’ is a Riemann surface.

Proof. From a convex cut of h(G) by a subgroup H, we construct a convex branch
cut of h(G)(5.5) by a group H’, s.t. H' D H. Thus h~!(H’) is a branched stable
(6.5) cut of G, and we get a proper holomorphic map with connected fibers f :
X =V/h~Y(H') — S for some non compact Riemann surface S. By 5.6 one gets
a finite cover V’ of V and an holomorphic map to a compact Riemann surface
f V' — S’ s.t the fibers of f’ are the images of the fibers of f. But the image
of the fundamental group of the generic fiber of f’ is normal in G' = 71 (G). Its
image is a normal subgroup of h(G) contained in the convex subgroup H'. But
no convex group in a hyperbolic group contains an infinite normal subgroup of
infinite index, therefore h(S’)is of finite index in h(G). O

7.3. Remarks. (a) Probably, most hyperbolic groups, including the majority of
small cancellation ones admitting convex cuts, have lsb' = 0 and thus, at this
point conjecturally, the above applies to a much wider class of groups than the
lobt-theorem (see 4.5).

(b) There are Kéhler hyperbolic groups that admit non-convex cuts but no convex
ones. In fact, by a construction of D. Kazhdan, there are compact Kéhler manifold
of constant Hermitian curvature of any dimension n with infinite 1-dimensional
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homology groups and hence, with cuts induced from Z. These have no convex cuts
for n > 1 by the above Corollary (or by a direct application of Grauert’s solution
to the Levi problem).

7.4. sbc-Groups. Consider all stable branched cuts of a group G and denote by
K = K C G the intersection of the subgroups H C G implementing these cuts.
We call this K the sbc-kernel of G and say that it has finite type if there finitely
many subgroups among H'’s such the intersection of all conjugates of these equals
K. We say that G is of sbe-type if K equals the identity element id in G, where
“finite sbe-type” means the finiteness of the type of K = id of stability, branching
and finiteness conditions).

Example. A finitely generated subgroup G in the product of surface groups is of
finite sbe-type, unless it admits a splitting G = Gg X Z.

The above Theorem yields that the following converse to this example.

7.5. sbc-Theorem. If the sbe-kernel K of a Kdhler group G has finite type, then
a finite covering V. — V admits a holomorphic map to a finite product of Rie-
mann surfaces f:V — W = (581 X Sa,..., xSn) where the kernel of the induced
homomorphism of the fundamental groups equals K Nm (V) C m (V). Moreover,
one can choose a Galois covering V. — V and a G-equivariant map f for some
holomorphic action of the Galois group G of V.—V on W.

sbe-Corollary. Let G be a torsion free Kdhler group with no non-trivial Abelian
normal subgroups. Then G admits a subgroup G of finite index isomorphic to a
subgroup in the product of N surface groups if and only if G is of finite sbe-type.

Remark. The minimal N in this Corollary (obviously) equals the maximum of the
ranks of the free Abelian subgroups in G. There are only finitely many .S; for a
given V but the relations between these S; for different finite coverings V' seems
rather obscure.

7.6. Cut-Kahler conjecture. Probably, the stability, branching and finiteness con-
ditions are not truly needed and the above theorem could be generalized as follows.
Let K. denote the intersection of all cutting subgroups in G. Then a finite covering
of V admits a holomorphic map f : V' — W, where W is a flat Kéhler torus bundle
over the product of a several Riemann surfaces S; and where the the kernel of the
induced homomorphism of the fundamental groups equal K. N m (V). (If V is
algebraic then W is a product of S;’s with an Abelian variety). We shall return to
this problem in [De-Gr].
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