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TREES, VALUATIONS AND THE
GREEN–LAZARSFELD SET

Thomas Delzant

Abstract. We study the Green–Lazarsfeld set from the point of view of
geometric group theory and compare it with the Bieri–Neumann–Strebel
invariant. Applications to the study of fundamental groups of Kähler mani-
folds are given.

1 Introduction

The aim of this paper is the study of the relationship between two objects,
the Green–Lazarsfeld set and the Bieri–Neumann–Strebel invariant, which
appeared simultaneously in 1987 ([GL1], [BiNS]). Let us recall some basic
definitions.

Let Γ be a finitely generated group, and K be a field. A 1-character
is an homomorphism from Γ to K∗; in this article we will only consider
1-characters, and call them characters. A character χ is called exceptional
if H1(Γ, χ) != 0, or more geometrically if χ can be realized as the linear
part of a fixed-point-free affine action of Γ on a K-line.

The set of exceptional characters, E1(Γ,K) is a subset of the abelian
group Hom(Γ,K∗), and our aim is to understand its geometry, in particular
if Γ is the fundamental group of a compact Kähler manifold.

Motivated by the pioneering work of M. Green and R. Lazarsfeld [GL1],
algebraic geometers studied the case where K = is the field of com-
plex numbers, and Γ = π1(X) is the fundamental group of a projective
or more generally a compact Kähler manifold. In this case, the geometry
of Hom(Γ,K∗) is well understood: it is the union of a finite set, made up
of torsion characters, and a finite set of translates of subtori. This result
has been proved in some special cases by A. Beauville [Be] and conjectured
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by A. Beauville and F. Catanese, [Be]. The fact that the components are
translates of tori was proved by Green and Lazarsfeld [GL2], and the result
about torsion by C. Simpson [Si2] for projective manifolds, and extended
by F. Campana to the Kähler case (see [C] for a detailed introduction),
and D. Arapura for the quasi-projective case [Ar]. The main tools used
by Simpson were the flat hyper-Kähler structure of Hom(Γ, ∗) and the
Schneider–Lang theorem in transcendence theory. Another proof, model
theoretic and using Deligne–Illusie Hodge theory, has been proposed by R.
Pink and D. Roessler [PR]; it concerns the geometry of line bundles over
manifolds in characteristic p != 0. See also the recent survey by A. Dimca
[Di] for other results and applications.

The definition of an exceptional class in the sense of Bieri–Neumann–
Strebel is easier to explain in the case of an integral cohomology class (an
element of H1(Γ, )). Such a class is exceptional if it can be realized as the
translation class of a parabolic, non-loxodromic action of Γ in some tree.

The link between these two notions, explained in the next section, can
be sketched as follows. Let χ be an exceptional character of Γ. Suppose
that χ(Γ) is not contained in the ring of algebraic integers of K. There
exists a discrete non-archimedean valuation on the subfield of K generated
by χ(Γ) such that v ◦ χ is a non-trivial homomorphism to . It appears
that v ◦ χ is an exceptional class in the sense of Bieri–Neumann–Strebel.
More precisely, one can find a parabolic action of Γ on the Bruhat–Tits
tree of the v completion of K, say Kv, with translation length v ◦ χ.

Due to the work of Simpson [Si3], M. Gromov and R. Schoen [GrS],
exceptional cohomology classes on Kähler manifold are well understood
(see also [D] for a detailed study of the BNS invariant of a Kähler group).
Let X be a Kähler manifold, and ω an exceptional class; there exists a
holomorphic map F from X to a hyperbolic Riemann orbifold Σ such that
ω belongs to F ∗H1(Σ, ). Recall that a complex 2-orbifold Σ is a Riemann
surface S marked by a finite set of marked points {(q1,m1), . . . , (qn,mn)},
where the m′

i’s are integers ! 2. A map F : X → Σ is called holomorphic
if it is holomorphic in the usual sense, and for every qi the multiplicity of
the fiber F−1(qi) is divisible by mi. The main result of this paper is a
description of the (generalized) Green–Lazarsfeld set of π1(X) in terms of
the finite list of its fibrations on hyperbolic 2-orbifolds.

Theorem. Let Γ be the fundamental group of a compact Kähler mani-
fold X, (Fi,Σi)1!i!n the family of fibration of X over hyperbolic 2-orbifolds.
Let K be a field of characteristic p (if p = 0, K = ), F̄p ⊂ K the
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algebraic closure of Fp in K. Then E1(Γ,K) is the union of a finite set
of torsion characters (contained in E1(Γ, F̄p) if p > 0) and the union⋃

1!i!n F ∗
i E1(πorb

1 (Σi),K∗).

Remarks. a) The study of Hom(G,K∗), with char K > 0, seems to be a
new idea. This set is abstractly (K∗)b1(G)×Φ, Φ a finite abelian group which
depends on K. It is easy to construct a group G such that the set E1(G,K)
strongly depends on the field K. For instance if G = ! Fp[t, t−1 ], with

acting on Fp[t, t−1 ] by multiplication by tn, Hom(G,K∗) = K∗ for every
field K. If char K != p the Green–Lazarsfeld set is reduced to the trivial
character, but if char K = p it is the entire group Hom(G,K∗).

b) Let Σ = (S; (qi,mi)1!i!n) be a hyperbolic 2-orbifold, and Γ =
πorb

1 (Σ) its fundamental group. By a simple computation (see Proposi-
tion 4), one checks that E1(πorb

1 (Σ),K∗)= Hom(πorb
1 (Σ,K∗))= (K∗)2g ×Φ,

where Φ is a finite abelian group, unless g = 1 and for all i, mi !≡ 0(char K).
If g = 1 and for all i mi !≡ 0(char K), E1(πorb

1 (Σ),K∗) is finite, made up
of torsion characters. This example shows the interest of considering fields
of various characteristics.

In every case, the Green–Lazarsfeld set is the union of a finite set of
torsion characters and a finite set of abelian groups which are translates of
tori; this is our generalization of Simpson’s theorem. As remarked by the
referee, the theorem gives a geometric interpretation of the translates of
subtori which, due to Beauville [Be], are the components of positive dimen-
sion of the Green–Lazarsfeld set: unless the curious exception g = 1, and
for all i, mi != 0(char K), these are the image by F ∗

i of the abelian groups
Hom(πorb

1 (Σ,K∗)) = (K∗)b1(Σ) × Φ; see also the preprint by Dimca [Di]
who goes deeper into this new point of view and gives some applications.

c) The main tool used by Simpson to prove his theorem [Si2] was the
study of algebraic triple tori; if char K != 0 no such structure is available.
Our proof furnishes a geometric (i.e. non-arithmetic) alternative to Simp-
son’s proof in the case of characteristic 0. In fact, in this case (char K = 0)
our method proves that E1(Γ,K) is made with a finite set of integral charac-
ters (in the sense of Bass [B]), and the union

⋃
1!i!n F ∗

i Hom(πorb
1 (Σi),K∗)

the conclusion follows from the study of the the absolute value |χ| of ex-
ceptional characters, which was already done by Beauville [Be].

In a recent preprint [CoS], C. Simpson and K. Corlette study the variety
of characters of a Kähler group Γ, Homss(Γ,PSl(2, )/PSL(2, ) from a
very similar point of view; they prove in particular that a Zariski dense
representation of a Kähler group which is not integral in the sense of Bass
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[B] factorizes through a fibration over a hyperbolic 2-orbifold. Their proof
is based on the same idea as ours: if a representation ρ is not integral, there
exists a valuation on the field generated by ρ(Γ) such that the action of Γ
on the Bruhat–Tits building is non-elementary. The conclusion follows by
applying the theory of Gromov–Schoen on harmonic maps with value in a
tree. Note that the same method applies for a field of positive characteristic.
Using Simpson’s work on Higgs bundles they prove further that a rigid
representation comes from a complex variation of Hodge structure; this
last part of the argument being meaningful only in the characteristic 0
case.

In section 2, we explain the relationship between the Green–Lazarsfeld
and Bieri–Neumann–Strebel invariants; in section 3 we study the Green–
Lazarsfeld set of a metabelian group: a finiteness result on this set is es-
tablished. These two sections are purely group theoretic, and no Kähler
structure is mentioned. In the section 4 we prove the main result.

Acknowledgments. I would like to thank R. Bieri for very helpful dis-
cussions on the structure of metabelian groups, and for explaining me his
paper [BiG] with J. Groves, F. Campana for his interest and comments,
and the referee for his questions and remarks.

2 From an Affine Action on a Line to a Parabolic Action
on a Tree

2.1 Affine action on the line: the Green–Lazarsfeld set. Let
K be a field. The affine group of transformation of a K-line, Aff1(K),
is isomorphic to K∗ ! K. We identify this group with the set of upper
triangular (2, 2)matrices ( ∗ ∗

0 1 ) with values in K.
Let Γ be a finitely generated group. An affine action of Γ on the line

is a morphism ρ : Γ → Aff1(K). One can write ρ(g) =
(

χ(g) θ(g)
0 1

)
. The

linear part of ρ is an homomorphism χ : Γ → K∗. Its translation part
θ : Γ→ K is a 1-cocycle of Γ with value in χ, i.e. a function which satisfies
θ(gh) = θ(g) + χ(g)θ(h). The representation ρ is conjugate to a diagonal
representation if and only if ρ(Γ) fixes a point µ ∈ K, or equivalently if and
only if there exists a µ ∈ K such that θ(g) = µ(−1+χ(g)) is a coboundary.
Definition 1. A character χ ∈ Hom(Γ,K∗)is exceptional if it can be
realized as the linear part of a fixed-point-free affine action of Γ on the line,
i.e. if H1(Γ, χ) != 0. The set of exceptional characters E1(Γ,K) is called
the Green–Lazarsfeld set of Γ.
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2.2 Parabolic action on a tree: the Bieri–Neumann–Strebel in-
variant. Let T be a simplicial tree. We endow T with its natural simpli-
cial metric, and think of T as a complete geodesic space. Let us recall the
definitions of the boundary of T , and of the Busemann cocycle associated
to a point in this boundary.

A ray in T is an isometric map r : [a,+∞[→T . Two rays r : [a,+∞[→T ,
s : [b,+∞[→ T are equivalent (or asymptotic) if they coincide after a cer-
tain time: there exists a′, b′ s.t. for all t ! 0, r(a′ + t) = s(b′ + t). The
boundary of T , denoted ∂T , is the set of equivalence classes of rays. If
α ∈ ∂T and r : [a,+∞[→ T represents α, for every point x, the func-
tion t → d(x, r(t)) − t is eventually constant. Its limit br(x) is called the
Busemann function of r. If s is equivalent to r, the difference br − bs is a
constant.
Definition 2 (Busemann cocycle). Let Γ be a group acting on T , and
α ∈ ∂T . If Γ fixes α, one define an homomorphism, the Busemann cocycle,
by the formula

ωα : Γ→ ,

ωα(g) = br ◦ g − br.

Definition 3 (Exceptional classes). The action of Γ is called parabolic if
it fixes some point at infinity. It is called exceptional if it fixes a unique
point at infinity, and if the associated Busemann cocycle is not trivial. A
class ω ∈ H1(Γ, ) is exceptional if it can be realized as the Busemann
cocycle of an exceptional action of Γ in some tree. The set of exceptional
classes is denoted E1(Γ, ).

Remark 1. A topological definition of a exceptional class can also be
given, in the case where Γ is finitely presented. Let Γ = π1(X), where X is
a compact manifold, and let ω be some class in H1(Γ, ). One represents
ω by a closed 1-form w on X and consider a primitive F : X̃ → of the
lift of w to the universal cover of X. Then ω is exceptional iff F ! 0 has
several components on which F is unbounded (see [BiS], [L], [Bro] for a
study of this important notion).

Remark 2. The notion of an exceptional class, defined by Bieri, Neumann
and Strebel, and studied by several authors, in particular [Bro], [L], is
more general: it concerns a homomorphism with value in and can be
defined along the same lines, using -trees instead of combinatorial trees.
Our point of view is that of Brown; it is interesting to remark that [Bro],
[BiNS] and [GL1] are published in the same issue of the same journal, but
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apparently nobody remarked that [Bro] and [GL1] studied the same object
from a different point of view.

2.3 Discrete valuations and Bruhat–Tits trees. In this section we
fix a field K. Let v : K∗ → be a discrete non-archimedean valuation
on K. Bruhat and Tits [BruhT] constructed a tree Tv with an action
of PGL(2,K). One should think of the action of PGL(2,K) of Tv as an
analogue of the action of PGL(2, ) on the hyperbolic space of dimension 3;
we recall below some basic facts about this action (see [S] for a detailed
study).

Let Ov ⊂ K denote the valuation ring v ! 0. The vertices of Tv are the
homothety classes of Ov-lattices, i.e. free Ov-modules of rank 2, in K2. The
boundary of this tree is the projective line P 1(K̄v) over the v-completion
of K.

By the general theory of lattices, if Λ,Λ′ are two lattices, one can find a
Ov-base of Λ such that, in this base, Λ′ is generated by (ta, 0) and (0, tb) for
some t with v(t) = 1; hence up to homothety by (1, 0) and (0, tn), for n =
b−a. Then the distance between Λ, and Λ′ is |n|, and the segment between
Λ and Λ′ is the set of lattices generated by (1, 0) and (0, tk), k = 1, n. More
generally if l, l′ are two different lines in K2, considered as points in ∂Tv ,
the geodesic from l to l′ is the set of product of lattices in l and l′.

The matrix gu = ( 1 u
0 1 ) fixes the lattice Λn generated by (1, 0) and

(0, tn) for n " v(u). The matrix gu = ( tn u
0 1 ) transforms Λm to Λm+n if

m + n " v(u).
Acting on Tv the Borel subgroup ( ∗ ∗

0 1 ) is parabolic: it fixes an end of Tv

(namely the line generated by the first basis vector), but neither a point of
Tv nor a pair of points of ∂Tv .

The Busemann cocycle of this parabolic subgroup is b
((

α β
0 1

))
= v(α).

The relationship between the Green–Lazarsfeld set and the Bieri–Neu-
mann–Strebel invariant is now simple to explain.
Proposition 1. Let χ ∈ H1(Γ,K∗). Suppose that χ ∈ E1(Γ,K∗) and let

θ ∈ H1(Γ, χ) != 0. Let ρ : Γ → Gl(2,K) be defined by ρ(g) =
(

χ(g) θ(g)
0 1

)
.

If v ◦ χ ∈ H1(Γ, ) is not 0, ρ is an exceptional action on Tv.

Proof. By construction the action of Γ on Tv fixes a point at infinity. It
contains an hyperbolic element as v◦χ != 0, but the action cannot fix a line:
the other point in the boundary P 1(K̄v) would be fixed by the group Γ,
and ρ would be conjugate to diagonalizable action. The orbit of any point
of Γ is therefore a minimal tree which is not a line. "
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3 Metabelian Groups

If Γ is a group, let Γ′ = [Γ,Γ] its derived group. Recall that a group is
metabelian if Γ′ is abelian, or Γ2 = (Γ′)′ is trivial. If Γ is a f.g. group, Γ/Γ2

is metabelian.

3.1 The Green–Lazarsfeld set of a metabelian group. If K is a
field, the Green–Lazarsfeld set E1(Γ,K) of the group Γ only depends on
its metabelianized Γ/Γ2 as it only depends of the set of representations of
Γ in the metabelian group Aff1(K) = K∗ ! K .

Let Γ be a metabelian group. We write 1 → [Γ,Γ] → Γ → Q → 1,
where Q = Γ/[Γ,Γ] is the abelianized group, and [Γ,Γ] is abelian. As an
abelian group, M = [Γ,Γ] is not necessarily f.g., however we can let Q act
on [Γ,Γ] by conjugation, so that M can be promoted to a Q module. The
following fact is basic and well-known.
Lemma 1. The module M is finitely generated as a Q module.

If g1, . . . , gr are generators of Γ, the commutators hij = [gi, gj ] gener-
ate [Γ,Γ] as a Q module: if [g, h] if h = ab we have [g, h] = [g, ab] =
gag−1a−1agbg−1b−1a−1 = [g, a]a[g, b]a−1 = [g, a]a∗[g, b], and the result fol-
lows by induction. "

Theorem 1. Let Γ be a finitely generated group. Given a prime number p
(p might be 0), there exists a finite number of fields Kν of characteristic p
and finitely generated over Fp (if p = 0, set Fp = ) and characters ξν :
Γ→ K∗

ν such that

1. H1(Γ, ξν) != 0, i.e. ξν ∈ E1(Γ,Kν);
2. If K is a field of characteristic p and χ ∈ E1(Γ,K) a Green–Lazarsfeld

character, then there exists an index ν s.t. kerχ ⊃ ker ξν .
Proof. Let Fp be the field with p elements (or if p = 0) and let Fp[Q]
the group ring of Q with Fp coefficients. Let Mp = [Γ,Γ] ⊗ Fp, J ⊂ Fp[Q]
the annihilator of Mp, and A = Fp[Q]/J . As Q is a finitely generated
abelian group, isomorphic to r×Φ, with Φ finite abelian, A is a noetherian
ring. Thus A admits a finite number of minimal prime ideals (pν)1!ν!ν0 .
Let ki be the field of fraction of A/pi, and ξi be the natural character
Γ → Q → A/pi → ki. Up to re-ordering the list of these ideals, we may
assume that, for 1 " i " ν1, H1(Γ, ξi) != 0.

Note that, by very construction the fields Kν are finitely generated
over Fp. Therefore, the Theorem 1 is a consequence of the following:
Lemma 2. Let χ ∈ E1(Γ,K) be an exceptional character, χ != 1. This
character extends to an homomorphism χ : Fp[Q] → K.
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1. The kernel of χ is a prime ideal in Fp[Q] which contains J , and defines
a ring homomorphism χ̄ : A → K.

2. Let p be a minimal prime ideal contained in ker χ̄, and Kp the field A/p.
Then, the character ξp : Γ→ kp belongs to E1(Γ, k∗

p), i.e. H1(Γ, ξ) != 0.
Let χ as in the lemma and θ ∈ H1(Γ, χ) a non-trivial cocycle: θ defines

a non-trivial morphism Mp = [Γ,Γ] ⊗ Fp → K. Let mo with θ(m0) != 0.
Let us extend χ to a ring homomorphism χ : Fp[Q] → K. If j ∈ J , as
χ(m0) = 0, we have 0 = θ(j · m0) = χ(j)θ(m0), hence χ(j) = 0. Thus, the
kernel of χ contains J , and χ descends to A. This proves 1.

Let Mp = M ⊗ Ap, and M0 = M ⊗A K = Mp/pMp. Note that M0 is
a finitely generated kp vector space, on which Γ acts by homotheties: the
action of g is the homothety of ratio ξ(g). Let π : [Γ,Γ] → M0 the canonical
map. We shall prove that H1(Γ,M) != 0.

For some g0 ∈ Γ, ξ(g0) is not 1 (as an element of kp): if not Γ = ker ξp
so χ = 1.

The map Γ → M0 defined by c(g) = π(g0gg−1
0 g−1) satisfies

c(gh) = π(g0ghg−1
0 h−1g−1) = π(g0gg−1

0 g−1) + π(gg0hg−1
0 h−1g−1) =

c(g) + ξ(g)π(g0hg−1
0 h−1) = c(g) + ξ(g)c(h). Therefore c is a 1-cocycle

of Γ with value in M .
Let us prove, by contradiction, that the cohomology class of c is not 0.
For every m ∈ M0, c(m) = (ξ(g0)m − m) = (ξ(g0) − 1)m. If c = 0, as

ξ(g0) != 1, then M0 = 0. But if M0 = 0, Mp/pMp = 0, i.e. pMp = Mp, and
Mp = 0 by the Nakayama lemma (p is the unique maximal ideal of Ap),
i.e. M = pM . But p ⊂ ker χ̄, so this would implies that M ⊗A K = 0 and
H1(Γ, χ) = 0.

If this cocycle is a coboundary we could find some m ∈ M0 s.t. c(g) =
(1 − ξ(g))m, but c(g0) = 0, and ξ(g0) != 1, so c would be 0.

In order to prove Lemma 2, we see that, for every linear map l =M0 →K,
l ◦ c is a non-trivial 1-cocycle.

This proves Theorem 1. "

Remark 3. The previous proof is a combination of arguments by [BiG]
and [Br]. In their remarkable paper R. Bieri and J. Groves describe the
BNS invariant of a metabelian group in terms of a finite set of field kν and
characters ξν : the fields kν are the fields of fractions of the minimal prime
ideals pν of the noetherian ring Q/Ann Q M , and ξν are the tautological
characters. For every such a field and every valuation v on it, v ◦ ξν is
exceptional. This provide a map from the cone of valuations on the family
of fields kν to the BNS set. This set turns out to be the union of the
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images of these cones. In [Br], Breuillard proves along the same lines,
that a metabelian not virtually polycyclic group admits a non-trivial affine
action.

4 Fundamental Groups of Kähler Manifolds

4.1 Fibering a Kähler manifold. For the general study of orbifolds
and their fundamental groups, we refer to Thurston’s book [T, Ch. 13].
Complex 2-orbifolds are 2-orbifolds with singularities modeled on the quo-
tient of the unit disk by the action of /n . The usefulness of this notion in
our context of (fibering complex manifolds to Riemann surfaces) has been
pointed out by Simpson [Si1].
Definition 4 (Complex 2-orbifold, and holomorphic maps). A complex
2-orbifold Σ is a Riemann surface S marked by a finite set of marked points
{(q1,m1) . . . , (qn,mn)}, where the m′

is are integers ! 2.
Let X be a complex manifold, f : X → Σ a map. Let x ∈ X, q = f(x).

Let m ∈ ∗ be the multiplicity of q, so that there exists an holomorphic
map u : D(0, r) ⊂ → (Σ, q) which is a ramified cover of order m of a
neighborhood of q. Then, f is called holomorphic at x, if there exists a
neighborhood U of q and a lift f̃ : U → D, holomorphic at x such that
f = u ◦ f̃ .

Definition 5 (Fundamental group). Let Σ = (S; {(q1,m1) . . . , (qn,mn)})
be a 2-orbifold. Let q ∈ S\{(q1,m1), . . . , (qn,mn)}. The fundamental group
– in the sense of orbifolds – of Σ at the point p is the quotient πorb

1 (Σ, p) =
π1(S\{q1, . . . qn})/,γmi

i -, where γi is the class of homotopy (well defined
up to conjugacy) of a small circle turning once around qi, and ,γmi

i - is
the normal subgroup generated by all the conjugates of γmi

i .

Example 1 (This is the main example, see [T, Ch. 13]). Let Γ ⊂ PSL(2, )
be a uniform (discrete co-compact) lattice. The quotient S = D/Γ of the
unit disk by the action of Γ is a Riemann surface. If p ∈ D, its stabilizer
is a finite hence cyclic subgroup of PSL(2, ). Modulo the action of Γ
there is only a finite set of points {q1, . . . , qn} with non-trivial stabilizers of
order mi. The quotient orbifold is Σ = (S; {(q1,m1), . . . , (qn,mn)}). One
proves that Γ = πorb

1 (Σ). An orbifold is called hyperbolic if it is obtained
in this way; an orbifold is hyperbolic if and only if its Euler characteristic
χorb(Σ) = χ(S) − Σ1!i!n

(
1 − 1

mi

)
is non-positive.

The following definition is useful to understand the structure of Kähler
groups (see [ABCKT]).
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Definition 6. A compact Kähler manifold X fibers, if there exists a pair
(Σ, F ) where Σ = (S; {(q1,m1), . . . , (qn,mn)}), is a hyperbolic 2-orbifold,
and F : X → Σ an holomorphic map with connected fibers. Two such
maps F : X → Σ, F ′ : X ′ → Σ′ are equivalent if the fibers of F and F ′ are
the same and images in Σ and Σ′ of singular fibers have the same order. In
this case there exists an holomorphic isomorphism from S to S′ which maps
singular points of S to singular points of S′ preserving the multiplicity.

Let π : X → S be an holomorphic map from a compact complex surface
to a curve. If q ∈ S is a singular value of π, the analytic set π−1(q) can be
decomposed in a finite union of irreducible sets, (Di). Away from a set of
complex dimension n− 2 in Di, hence of complex codimension 2 in X, the
map p can by written π(z1, . . . , zn) = zdi

1 , where di is the multiplicity of Di.
The multiplicity of the fiber π−1(q) is by definition m = pgcd(di). Let Σ
be the orbifold whose underlying space is S, singular points are singular
values of π with corresponding multiplicity.

Lemma 3. π : X → Σ is holomorphic.

By construction, locally in the neighborhood of a point of π−1(q), π(x) =
fd1
1 . . . fdk

k + cte, with m|pgcd di. "

The following finiteness theorem is well known, and implicit in the lit-
erature at several places.

Theorem 2. Let X be a compact complex manifold. There exists, up to
equivalence, a finite set of pair (Σi, Fi) where Σiis a complex hyperbolic
2-orbifold, Fi : X → Σi is holomorphic with connected fibers. "

Let us give a proof of this (well-known) fact based on the Kobayashi-
hyperbolicity of a hyperbolic 2 orbifold: there exists no holomorphic map
from to an hyperbolic 2-orbifold as there exists no holomorphic map
from to the unit disk. Thus, by the Bloch principle, as X is compact
there exists a uniform bound on the differential of an holomorphic map
F : X → Σ. Therefore the set of pairs (F,Σ) is compact (two such orbifold
are ε-close if they are close for the Gromov–Hausdorff topology, i.e. there
exists a map between them which is isometric up to an error of ε). But
this compact space has only isolated points: if F1 : X → Σ1 is given, and
the (Gromov–Hausdorff) distance of F to F1 is smaller than the diameter
of Σ1 (for instance " 1/2 diam(X) where X is endowed the Kobayashi
pseudo-metric) all the fibers of F1 are sent by F inside an open subsurface
of Σ1 therefore to a constant by the maximum principle; in other words F
factorizes through F1 and induces an isomorphism between Σ and Σ1. "
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The following is well known (see [Si1], [CaKO]).

Theorem 3. Let F : X → S be an holomorphic map with connected
fibers from the complex manifold X to a complex curve S. Let Σ be the
orbifold whose singular points are the singular values of p and multiplicity
the multiplicity of the corresponding fiber. Let Y = F−1(b) be the fiber of
a non-singular point of S. Let π′1(Y )the image in π1(X) of π1(Y ). One has
the exact sequence

1 → π′1(Y ) → π1(X) → πorb
1 (Σ) → 1 ,

in particular the kernel of F∗ : π1(X) → πorb
1 (Σ) is finitely generated. "

4.2 Valuations. The next result is a reformulation of a fibration theo-
rem of Gromov–Schoen [GrS] and Simpson [Si3] in terms of the exceptional
set in the sense of Bieri–Neumann–Strebel; see also [D] for a more gen-
eral study of the BNS invariant of a Kähler group, where ω ∈ H1(Γ, )
rather than H1(Γ, ). Let Γ be the fundamental group of a compact Kähler
manifold X.

Theorem 4. Let ω ∈ H1(Γ, ). Then ω is exceptional iff there exists
a hyperbolic orbifold Σ and an holomorphic map F : X → Σ such that
ω ∈ F ∗H1(Σ, ).

Let η be a closed holomorphic (1, 0) form whose real part is the harmonic
representative of ω. Let X̃ the universal cover of X, and F : X̃ → a
primitive of Re η. From the definition (Remark 5) of E1 we know that
F ! 0 is not connected; [Si3] applies. One can also apply the proof of
Corollary 9.2 of [GrS] to the foliation defined by the complex valued closed
(1, 0) form whose real part is the harmonic representative of ω.

To prove the converse (which will not be used), one remarks that for
every w ∈ H1(Σ, ), its pull back to H1(Σ, ) is exceptional, as πorb

1 (Σ) is
hyperbolic, and the kernel of πorb

1 (Σ) → cannot be finitely generated. "

4.3 The Green–Lazarsfeld set of a Kähler group. Let K be a
field. Recall that a character χ : Γ → K∗ is called integral in the sense of
Bass [B] if χ(Γ) ⊂ O, the ring of algebraic integers of K. In the case where
char K = p > 0, an algebraic integer is a root of unity, and an integral
character is torsion.

Proposition 2. Let X be a compact Kähler manifold, χ ∈ E1(Γ,K∗) be
a character. If χ is not integral, X fibers over a 2-orbifold Σ such that
χ ∈ F ∗E1(πorb

1 (Σ),K∗).
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Proof. Let θ ∈ H1(Γ, χ) be a non-trivial co-cycle. Consider the subfield
K1 of K generated by the coefficient of the matrices

(
χ(gi) θ(gi)

0 1

)

1!i!r
,

gi being a finite generating system of Γ. This field is finitely generated over
its prime field. Therefore, if χ is not integral, one can find a valuation v
on K1 such that ω = v ◦χ != 0 (see, for instance, [B, Lem. 6.8]). Let Γ acts
on the Bruhat–Tits tree Tv. By Proposition 1 this action is exceptional.
Applying Theorem 4 we get a pair (F,Σ) such that ω ∈ F ∗H1(Σ, ). From
the exact sequence of Theorem 3, we see that π′1(Y ) is a finitely generated
normal subgroup of Γ made up with elliptic elements. As π′1(Y ) is finitely
generated , the subtree of Tv made up with fixed points of π′1(F ) is not empty
[S, Cor. 3, p. 90]. As π′1(Y ) is normal, it is invariant by the action of Γ.
Therefore the boundary of this tree contains at least 3 distinct elements.
Thus acting on P 1(K), π′1(Y ) fixes three different points and is the identity:
π′1(Y ) ⊂ ker ρ, and ρ descends to some character on πorb

1 (Σ). "
The following proposition is a reformulation of a result by Beauville

[Be, Cor. 3.6], it will be used to study the cohomology class of v ◦χ, for the
archimedean valuation v(z) = ln |z| of a character χ : Γ→ ∗.
Proposition 3. Let X be a compact Kähler manifold, χ ∈ E1(Γ, ∗) be
character. If |χ| != 1, there exists an holomorphic map F : X → Σ from X
to a 2-orbifold Σ such that χ ∈ F ∗E1(πorb

1 (Σ),K∗).
Combining Propositions 2 and 3, we get the description of the GL set of

a Kähler manifold in terms of its fibering over hyperbolic 2-orbifolds. This
generalizes results by Green and Lazarsfeld [GL1], Beauville [Be], Simpson
[Si2], Campana [C], Pink and Roessler [PR], who studied the case where
the field K is the field of complex numbers.
Theorem 5. Let Γ be the fundamental group of a compact Kähler mani-
fold X, (Fi,Σi)1!i!n the family of fibration of X over hyperbolic 2-orbifolds.
Let K be a field of characteristic p, F̄p ⊂ K the algebraic closure of Fp in K,
or in K if p = 0. Then E1(Γ,K) is made with a finite set of torsion
characters (contained in E1(Γ, F̄p)) and the union of F ∗

i Hom(πorb
1 (Σi),K∗).

Proof. We shall prove that a character χ which is not in the union⋃
F ∗

i Hom(πorb
1 (Σi),K∗) must be a torsion character of bounded order. Let

us fix such a character χ.
From Theorem 1, we know that there exists a finite number of fields

Kν and characters ξν such that H1(Γ, ξν) != 0, and for every χ ∈ E1(Γ,K)
there exists an index ν for which ker ξν ⊂ kerχ. If ξν is not integral,
there exists a 2-orbifold Σ and a holomorphic map F : X → Σ such that
ker F∗ ⊂ ker ξv: therefore ker F∗ ⊂ kerχ and χ ∈ F ∗E1(πorb

1 (Σ)).
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Thus, as χ !∈
⋃

F ∗
i Hom(πorb

1 (Σi),K∗), χ is integral.
Let us first discuss the case of positive characteristic. If ξν is integral,

then ξν(Γ) is made with roots of unity of Kν . But Kν is finitely generated
over Fp so admits only a finite number of roots of unity (see [B, Lem. 6.8(3)]
for instance); let dν the order of the group of roots of unity in Kν . We see
that χ is a torsion character of order d dividing dν .

Suppose now that charK = 0, and ξν is integral. Thus Kν is a number
field, and ξν(Γ) is contained in the ring Oν of integers of ξν . If |ξν | != 1,
or if one of its conjugates σ(ξν) has |σ(ξν)| != 1, as H1(Γ, ξν) != 0 we know
(Proposition 3) that there exists a 2-orbifold Σ and a holomorphic map
F : X → Σ such that ker F∗ ⊃ ker ξv; the previous argument apply and
proves that χ ∈ F ∗E1(πorb

1 (Σ)). Therefore, by a theorem of Kronecker, χ
must be a torsion character. It is furthermore of bounded degree, as the
degree of the n-th cyclotomic polynomial goes to infinity with n, and as d
divides the degree of Kν . The rest of the argument is unchanged. "

Thus, the Theorem 5 reduces the computation of E1(Γ,K∗) to the case
where Γ is the fundamental group of a 2-orbifold (see also [Be]).
Proposition 4. Let Γ = πorb

1 (Σ), for Σ = (S; (qi,mi)1!i!n) a hyperbolic
2-orbifold then, E1(πorb

1 (Σ),K∗) = Hom(πorb
1 (Σ,K∗)) unless g = 1 and,

for all i, mi !≡ 0(char K).
If g = 1 and, for all i, mi !≡ 0(char K), E1(πorb

1 (Σ),K∗) is finite, made
of torsion characters.

Let χ : πorb(Σ) → K∗ be a representation. If χ = 1,H1(πorb
1 (Σ),K∗) =

Hom(πorb
1 (Σ),K∗) != 0. If g > 1, consider a simple closed curve c on S such

that c is homologous to 0 and separates S into two compact surfaces of
positive genus S1, S2, with common boundary c and such that all singular
points are in S2. We may assume g(S1) = 1; if g = 1 consider a curve c,
which bounds a disk D̄ on S containing all singular points qi, and let
S1 = S\ int(D) be the other component. One consider a representation
χ : πorb

1 (Σ) → K∗, and note that χ(c) = 1 as c is homologous to 0. We
think of χ as a local system on Σ and we will use a Mayer–Vietoris exact
sequence.

First note that if χ|π(S1) and χ|πorb(Σ2) are not 1, then H1(πorb
1 (Σ),K∗)

!= 0: let x0 ∈ K, there exists a unique 1-cocycle c such that c(g) =
x0(1 − χ(g)) is g ∈ π1(S1), c(g) = 0 if g ∈ S2.

If χ|S1 = 1, as H1(S1, ∂S1,K) = K2, one can find a 1-cocycle c whose
restriction on S2 or D is 0, and whose restriction on S1 is not trivial. In the
case where g(S) = 1 such a character is torsion.
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We are left to the case χ|S2 or χ|D = 1. If g(S2) > 0H1(πorb
1 (Σ2, ∂Σ2),K)

# K2g and the previous argument apply while interchanging the role of S1

and S2.
The remaining case is g = 1, χ|πorb

1 (D) = 1, χ|π1(S1) != 1. One has
H1(πorb

1 (Σ2),K) = {(z1, . . . , zn) ∈ K/mizi = 0}. This space is 0 unless
mi ≡ 0 (char K) for some i. On the other hand, if ρ|π1(S1) != 0 the ho-
momorphism H1(π1(Σ1), ρ) → K which sends θ to θ(c) is an isomorphism.
Using the exact sequence of Mayer–Vietoris, we see that H1(πorb

1 (Σ), χ) != 0
iff g > 1 or g = 1 and for some i, mi divides the characteristic of K. "
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[BruhT] F. Bruhat, J. Tits, Groupes réductifs sur un corps local, Inst. Hautes

Etudes Sci. Publ. Math. 41 (1972), 5–251.
[C] F. Campana, Ensembles de Green–Lazarsfeld et quotients résolubles des
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