Sous-algèbres de dimension finie de l'algèbre des champs hamiltoniens.

Thomas Delzant (1)

I. Introduction.

Soit (M, σ) une variété symplectique. Rappelons qu'un champs de vecteur X sur M est localement hamiltonien si son flot préserve la structure symplectique, ou, ce qui revient au même, si $i(X)\sigma$ est une 1-forme férmée. Si cette forme est exacte on dit que X est globalement hamiltonien. Un hamiltonien de X est une fonction $x \in C^{\infty}(M)$ telle que $i(X)\sigma = dx$.

L'ensemble \mathcal{X}_{σ} des champs de vecteurs localements hamiltoniens forme une algèbre de Lie pour le crochet de Poisson. La sous-algèbre \mathcal{X}_{σ}^{h} des champs globalement hamiltoniens est un idéal de l'algèbre \mathcal{X}_{σ} des champs localement hamiltoniens, contenant l'idéal dérivé. Cela résulte de la formule de Poisson :

Si X et Y sont localement hamiltoniens, $\sigma(X,Y)$ est un hamiltonien de [X,Y].

Pour toutes ces notions, le lecteur pourra se reporter au traité de J. M Souriau ([S]), ainsi qu'à ([A], [A-M], [G-S], [L-M], [M-S], [W]).

Nous étudions les sous-algèbres de dimension finie de \mathcal{X}_{σ} , sous-l'hypothèse que M soit compacte. On peut regrouper les résultats obtenus en un énoncé.

Théorème. Soit \mathcal{G} une sous-algèbre de dimension finie de l'algèbre de Lie \mathcal{X}_{σ} des champs localement hamiltoniens, et soit $\mathcal{H} = \mathcal{G} \cap \mathcal{X}_{\sigma}^h$ la sous-algèbre des champs globalement hamiltoniens de \mathcal{G} .

- i) Si $\mathcal{G} = \mathcal{R} + \mathcal{S}$ est une décomposition de Levi, $[\mathcal{R}, \mathcal{S}] = 0$.
- ii) Si G est semi-simple, elle est compacte.
- iii) Si \mathcal{G} est nilpotente, \mathcal{H} est centrale, et \mathcal{G} est nilpotente en deux coups.
- iv) Si \mathcal{G} est résoluble, \mathcal{H} est abélienne, et \mathcal{G} est métabélienne.

II Démonstration.

Soit \mathcal{G} une sous-algèbre de dimension finie de \mathcal{X}_{σ} . Nous noterons $\mathcal{H} \subset \mathcal{G}$ l'idéal des champs globalement hamiltoniens. On a le :

Lemme 1 Soit $X \in \mathcal{G}$.

- i) Les valeurs propres de ad_X sont 0 et des nombres imaginaires purs.
- ii) Si \mathcal{G}_0 est le sous-espace de Jordan associé à la valeur propre 0, $ad_X^2: E_0: \mapsto E_0, ad_X^2 = 0$.
 - iii) Si E_{λ} est le sous-espace de Jordan associé à la valeur non nulle λ ,
 - $ad_X: E_{\lambda} \mapsto E_{\lambda}, ad_x = \lambda.Id$ est une homothétie.
 - iv) On peut décomposer $\mathcal{G} = \mathcal{G}_0 + \sum_{\lambda_k > 0} F_{\lambda_k}$, avec
 - $ad_X: F_k \mapsto F_k, ad_X^2 = -\lambda_k Id.$

⁽¹⁾ Irma, Université Louis Pasteur, 7 rue R. Descartes, F-67084 Strasbourg Cedex. e-mail: delzant@math.u-strasbg.fr

Démonstration. Soit $X \in \mathcal{G}$. Calculons la forme de Jordan de

$$ad_X^C \in End(\mathcal{G} \otimes C)$$

Si Y est un vecteur propre de cet endomorphisme et λ la valeur propre associée, on a :

$$[X, Y] = \lambda Y$$

Soit $y \in C^{\infty}(M)$ définie par :

(2)
$$\sigma(X,Y) = y$$

Comme X conserve σ , On déduit de (1) et (2) :

$$X.y = \lambda y$$

Soit ϕ_t le flot du champ de vecteur X. La fonction $y \circ \phi_t$ satisfait l'équation différentielle :

$$\frac{d}{dt}y = \lambda y$$

Comme M est compacte, cette fonction de t est bornée. On a donc nécessairement $\lambda \in iR$. Ceci établi i).

Soit \mathcal{G}_0 l'espace de Jordan associé à la valeur propre 0. Montrons que la restriction de ad_X^2 y est nulle. Sinon, il existe un vecteur cyclique Y d'ordre 3, c'est à dire un Y_0 tel que

$$[X, Y_0] = Y_1 \neq 0; [X, Y_1] = Y_2 \neq 0; [X, Y_2] = 0$$

Comme ci-dessus, on pose $y_1=\sigma(X,Y_0),\ y_2=\sigma(X,Y_1)$ de sorte que la fonction y_i est un hamiltonien de Y_i ; alors

(3)
$$\frac{d}{dt}y_1 \circ \phi_t = \sigma(X, Y_1) \circ \phi_t = y_2 \circ \phi_t$$

Comme $[X, Y_2] = 0$, la fonction y_2 est constante le long des trajectoires de X. Si cette constante est non nulle, (3) montre que y_1 est arbitrairement grand ce qui est impossible sur une variété compacte. Ainsi la fonction y_2 est identiquement nulle, et le champ hamiltonien associé Y_2 est aussi nul. Ceci établi ii).

Soit $\mathcal{G}_{i\lambda}$ l'espace de Jordan associé à la valeur propre $i\lambda$. Montrons qu'en fait c'est un espace propre. Sinon, il existe un vecteur cyclique d'ordre 2, Y, c'est-à-dire que si l'on définit Z par :

$$(4) [X,Y] = i\lambda Y + Z$$

on a

$$(5)[X,Z] = i\lambda Z$$

Comme $i\lambda \neq 0$, les formules suivantes définissent des hamiltoniens y, z de Y, Z:

(6)
$$i\lambda z = \sigma(X, Z)$$
 ; $i\lambda y + z = \sigma(X, Y)$

Comme ci-dessus, on note ϕ_t le flot de X. Les fonctions $y(t) = y \circ \phi_t$ et $z(t) = z \circ \phi_t$ sont bornées et satisfont le systèmes d'équations :

(7)
$$\frac{d}{dt}(z(t)) = i\lambda z(t) \qquad ; \frac{d}{dt}(y(t)) = i\lambda y(t) + z(t)$$

D'où la solution

$$(8)z(t) = z(0)e^{i\lambda t} ; y(t) = (y(0) + z(0)t)e^{i\lambda t}$$

Ainsi, z doit être identiquement nulle, contradiction. Ceci établi iii) et iv) en résulte. \diamond

Lemme 2 Si \mathcal{G} est nilpotente, $\mathcal{H} = \mathcal{G} \cap \mathcal{X}_{\sigma}^{h}$ est un idéal central. En particulier $[\mathcal{G}, \mathcal{G}]$ est centrale et \mathcal{G} est nilpotente en \mathcal{Z} coups.

 $D\acute{e}monstration$. Comme \mathcal{G} est nilpotente, si $X \in \mathcal{G}$ les valeurs propres de ad_X sont nulles. Si restreint à \mathcal{H} , ad_X est non nul, il existe un $Y \in \mathcal{H}$, et donc hamiltonien, tel que .

$$[X,Y] = Z \neq 0 \qquad [X,Z] = 0$$

Notons y un hamiltonien de Y. Soit $z = \sigma(X,Y)$ de sorte que X.z = cte. Cette constante doit être nulle car sur une variété compacte, z admet un point critique. Comme [X,Y]=Z, X.y est un hamiltonien de Z et X.y=z+A. Comme z est constante le long des orbites de X cela n'est possible que si z=-A identiquement : z est constante et Z est nul contradiction. \diamond

Lemme 3 Si \mathcal{G} est résoluble, $[\mathcal{G}, \mathcal{G}]$ est abélienne, autrement dit \mathcal{G} est métabélienne. Mieux, $\mathcal{H} = \mathcal{G} \cap \mathcal{X}_{\sigma}^h$ est abélienne.

Comme \mathcal{G} est résoluble, l'algèbre $[\mathcal{G}, \mathcal{G}]$ est nilpotente et contenue dans \mathcal{H} ; en appliquant le lemme 2, on voit que $[\mathcal{G}, \mathcal{G}]$ est abélienne, et \mathcal{G} est métabélienne. Pour la seconde assertion, raisonnons par l'absurde. Si \mathcal{H} est nilpotente, il n'y a rien à montrer, toujours d'après I.2. Sinon, il existe un $X \in \mathcal{H}$ tel que ad_X admette une valeur propre non nulle, donc imaginaire pure $i\lambda$. Quitte à remplacer X par $\frac{1}{\lambda}X$, on peut trouver Y et Z tels que :

$$[X,Y] = Z \qquad [X,Z] = -Y$$

Ainsi, Y et Z sont dans $[\mathcal{G},\mathcal{G}]$ et ces deux éléments commutent. Comme X est globalement hamiltonien, on peut en choisir un hamiltonien x. On pose $z=\sigma(X,Y)$. La fonction Y.z est constante car Y et Z commutent. En calculant cette constante en un extremum de z, on voit donc que Y.z=0. Comme Y.x est un hamiltonien de Z, Y.x=z+C, ou C est une constante. Comme Y.z=0 cela implique que z=-C; en dérivant, on obtient Z=0 contradiction. \diamond

Lemme 4. Si \mathcal{G} est semi-simple, \mathcal{G} est compacte.

Démonstration. En effet comme toutes les valeurs propres des opérateurs ad_X sont imaginaires pures, la forme de Killing est négative. Comme l'algèbre de Lie est semi-simple la forme de Killing est donc définie négative. \diamond .

Lemme 5 Si $\mathcal{G} = \mathcal{R} + \mathcal{S}$ est une décomposition de Levi de \mathcal{G} , alors $[\mathcal{R}, \mathcal{S}] = 0$.

Démonstration. Comme S est semi-simple, [S,S]=S et si $X\in S$, X est globalement hamiltonien. Montrons que la restriction de ad_X à \mathcal{R} n'a pas de valeurs propres imaginaires pures $i\lambda, \lambda \neq 0$. Le résultat suivra, car S étant compacte, $ad_X: \mathcal{R} \mapsto \mathcal{R}$ est diagonalisable avec des valeurs propres imaginaires pures : si il n'a que 0 comme valeur propre, il doit être nul. Sinon, quitte à remplacer X apr $\frac{X}{\lambda}$, on peut trouver deux éléments Y et Z dans \mathcal{R} tels que [X,Y]=Z,[X,Z]=-Y. Il en résulte que Y et Z sont globalement hamiltoniens et donc commutent. Mais alors X,Y,Z forment ue algèbre de Lie résoluble non commutative de champs globalement hamiltoniens, ce qui est interdit par le lemme $3. \diamond .$

Les lemmes 2,3,4,5 sont respectivement les parties iii),iv),ii) et i) du théorème annoncé dans l'introduction.

Bibliographie.

- [A-M] R. Abraham, J. Marsden, Foundations of mechanics, seconde édition, Benjamin 1978.
- [A] V. I. Arnold, Méthodes mathématiques de la mécanique classique, Mir, Moscou 1974 (1976 en français).
 - [G-S] V. Guillemin, S. Sterneberg, 1984. Symplectic technics in physics, Cambridge.
- [L-M] P. Libermann, C.-M. Marle, Symplectic geometry and analytical mechanics. D. Reidel Publishing Co., 1987.
- [M-S] D. McDuff, D. Salamon. *Introduction to symplectic topology*. Oxford Mathematical Monographs, Oxford University Press, New York, 1995.
 - [S] J.-M. Souriau, 1970 Structures des systèmes dynamiques, Dunod.
- [W] A. Weinstein, 1977 Lectures on symplectic Manifolds, CBMS Lectures notes n. 29.