# Operadic Buchberger Configuration File # -------------------------------------- # Actions: # normalise -- find a Groebner basis # count -- count the number of normal forms # with respect to the given theory actions: normalise count # -------------------------------------- # Parameters for counting # Count limit # for each arity up to the given limit, # the number of normal forms will be counted count limit: 4 # -------------------------------------- # Parameters for normalisation # Output options # initial -- show the initial theory # new -- show new rewrite rules at each stage # final -- show final theory # evaluation -- show the evaluation of each critical pair output: initial final evaluation # Time limit (seconds) # computation will be abandoned after this time # leave empty for no time limit time limit: # Arity limit (number of leaves) # computation will be abandoned upon reaching this arity # leave empty for no arity limit arity limit: 3 # -------------------------------------- # Operad specification # Field # the default field over which polynomials are taken is the rationals # to use a finite integer field instead, give a (prime) number here field: # Operad type # choose one of: shuffle / asymmetric # and one of: signed / unsigned operad type: shuffle unsigned #asymmetric unsigned #shuffle unsigned # shuffle unsigned #asymmetric unsigned #shuffle signed # Measure # a measure for ordering trees is given by a sequence of: # ar -- arity # deg -- degree or depth # lex -- lexicographic path order # perm / permr -- (reverse) leaf order # deglex / deglexr -- (reverse) degree-lexicographic path order # weighted measure: deglex perm # weighted deglexr perm # Signature # give a number of operators defined by # str (optional) -- a name # num (optional) -- a weight (for use in a weighted ordering) # + (optional) -- a positive homological degree # (num), [num], or {num} -- bracket type and arity (num) # name, weight and homological degree may be given in any order # names (if given) must be unique signature: z(2) xp(2) x(2) t(2) y(2) yp(2) #0x(2) 0xp(2) 1y(2) 1yp(2) 0z(2) 1t(2) 2f(2) 2g(2) 2h(2) 2fp(2) 2gp(2) 2hp(2) #(3) [2] #1f(1) 1a(2) 1b(2) 1[2] # 1[1] 1f(2) 1g(2) 1(2) #1b(2) 1bb(2) 0aa(2) 0a(2) # c(2) d(2) # 1f(1) 1a(2) 1b(2) 1[2] #2[2] 1(2) 5f(2) 5g(2) # 0{2} a0{2} x1(2) ax1(2) 5[2] 5(2) b5[2] c5(2) # 1f(2) 1g(2) 1h(2) 1[2] 1(1) #g(2) gg(2) a(2) aa(2) #{2} [2] (2) # f(2) ff(2) a(2) aa(2) #1d(2) 1e(2) 1f(2) 1g(2) 5gg(2) 5ff(2) 0a(2) 0aa(2) # {2} # 0[2] # 0[2] 1(2) # 0a(3) 0b(3) 0c(3) 0d(3) 0e(3) 0f(3) 0g(3) 0h(3) 0k(3) 1[2] 1(2) #0f(3) 0g(3) 0h(3) 1(2) #0+(2) 1+[3] 1+{4} # -------------------------------------- # Theory specification # Theory # a theory is given by a series of polynomials (each on a new line) # a polynomial is given by a sum of monomials, # m1 (+/-) m2 (+/-) ... (+/-) mn # a monomial is given by # x or x/y -- an integer or rational multiplier (optional) # tree -- a tree over the given signature # a tree is given by one of # num or * -- a leaf # str (tree ... tree) -- the name (str) is optional; if absent, # str [tree ... tree] -- the operator is identified by bracket type # str {tree ... tree} -- the number of (tree)s must match the arity # given by the signature # for shuffle trees, leaves must be a permutation of 1..n # for asymmetric trees, all leaves are reset to * theory: -z(z(1 2) 3) + z(z(1 3) 2) + z(1 z(2 3)) -z(x(1 3) 2) + x(z(1 2) 3) - z(1 x(2 3)) -z(x(1 2) 3) + x(z(1 3) 2) - z(1 xp(2 3)) -z(xp(1 2) 3) + z(xp(1 3) 2) + xp(1 z(2 3)) -x(x(1 2) 3) + x(x(1 3) 2) + x(1 z(2 3)) - x(1 xp(2 3)) + x(1 x(2 3)) -xp(z(1 2) 3) + xp(xp(1 2) 3) - xp(x(1 2) 3) + x(xp(1 3) 2) - xp(1 xp(2 3)) -xp(z(1 3) 2) + xp(xp(1 3) 2) - xp(x(1 3) 2) + x(xp(1 2) 3) - xp(1 x(2 3)) z(1 t(2 3)) z(t(1 3) 2) z(t(1 2) 3) z(yp(1 2) 3) z(yp(1 3) 2) z(y(1 2) 3) z(y(1 3) 2) z(1 y(2 3)) z(1 yp(2 3)) xp(1 t(2 3)) x(t(1 2) 3) x(t(1 3) 2) x(1 t(2 3)) + x(1 yp(2 3)) + x(1 y(2 3)) xp(t(1 3) 2) + xp(yp(1 3) 2) + xp(y(1 3) 2) xp(t(1 2) 3) + xp(yp(1 2) 3) + xp(y(1 2) 3) x(y(1 2) 3) x(yp(1 2) 3) x(y(1 3) 2) x(yp(1 3) 2) xp(1 y(2 3)) xp(1 yp(2 3)) -t(t(1 2) 3) + t(1 t(2 3)) -t(t(1 3) 2) + t(1 t(2 3)) -yp(t(1 3) 2) - yp(yp(1 3) 2) - yp(y(1 3) 2) + yp(1 y(2 3)) -yp(t(1 2) 3) - yp(yp(1 2) 3) - yp(y(1 2) 3) + yp(1 yp(2 3)) -y(y(1 2) 3) + y(1 t(2 3)) + y(1 yp(2 3)) + y(1 y(2 3)) -y(y(1 3) 2) + y(1 t(2 3)) + y(1 yp(2 3)) + y(1 y(2 3)) -y(yp(1 2) 3) + yp(1 y(2 3)) -y(yp(1 3) 2) + yp(1 yp(2 3)) -t(yp(1 3) 2) + yp(1 t(2 3)) -t(y(1 2) 3) + t(1 yp(2 3)) -t(y(1 3) 2) + t(1 y(2 3)) -t(yp(1 2) 3) + yp(1 t(2 3)) -y(t(1 3) 2) + t(1 yp(2 3)) -y(t(1 2) 3) + t(1 y(2 3))