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Il me semble qu’on pourrait tirer de ce travail une confirmation
des points de vue suivants : d’abord l’intérêt que présente l’étude
de groupes définis à partir d’autres structures possédant plusieurs
opérations (par exemple des algèbres de Lie). En effet, la simplicité
apparente des axiomes des groupes ne fait souvent que masquer une
extrême complexité, et d’autres structures, plus riches par le nombre
de leurs axiomes, se laissent plus facilement étudier. Il conviendrait
donc de rechercher si d’autres structures algébriques pourraient per-
mettre la construction de nouvelles catégories de groupes.

Michel Lazard, Ph.D. Thesis [86]
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Introduction

The seminal works of L. Maurer [99] and E. Cartan [21] investigating the inte-
grability of Lie algebras to Lie groups effectively introduced what differential
geometers now call the Maurer–Cartan 1-form. In this language, the Maurer–
Cartan equation

dω + 1
2 [ω,ω] = 0

becomes the flatness condition for the connection defined by that form. In gen-
eral, a flat connection in a vector bundle E → M allows one to define a twisted
de Rham differential on the sheaf of E-valued differential forms. In the case
of principal bundles, one actually deals with differential forms with values in
the structure Lie algebra, which form a differential graded Lie algebra, that
is a Lie algebra structure in the category of chain complexes. This is the con-
ceptual framework for the Maurer–Cartan equation. Its solutions are called the
Maurer–Cartan elements, in general, and they coincide with flat connections
in the case of principal bundles. Each of them produce a twisted differential
under the formula

dω(θ) = dθ + [ω, θ] .

The gauge group, consisting of the gauge transformations of a principal bun-
dle, is the group of symmetries that acts on flat connections. The Maurer–
Cartan equation, the twisting procedure, and the gauge group action constitue
the Maurer–Cartan methods, which lie at the core of gauge theory. In fact, they
make sense for differential graded Lie algebras of more abstract nature.

This material will be published by Cambridge University Press & Assessment as ‘Maurer-Cartan
Methods in Deformation Theory: the twisting procedure’ by Vladimir Dotsenko, Sergey Shadrin
and Bruno Vallette. This version is free to view and download for personal use only. Not for re-
distribution, re-sale or use in derivative works. c©Cambridge University Press & Assessment
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Introduction 7

Around 1960, the Maurer–Cartan equation started to be understood as the
structural equation in deformation theory: in the study of the deformations of
complex manifold structures by A. Frölicher and A. Nijenhuis [49], K. Ko-
daira, L. Nirenberg and D.C. Spencer [71, 72, 73], and M. Kuranishi [82], and
in the study of deformations of associative algebra structures by M. Gersten-
haber [54]. A few years later, A. Nijenhuis and R.W. Richardson [112] noticed
the omnipresence of differential graded Lie algebras in deformation theory.
Their work was one of inspirations behind that of V.P. Palamodov [114] where
deformation theories of complex structures and of commutative algebras are
brought together, following the definition of the tangent complex by G. Tyurina
(unpublished). These examples and the unifying role played by the conceptual
notion of a differential Lie algebra eventually led P. Deligne [27] and V. Drin-
feld [43] to formulate the general principle of deformation theory claiming
that over a field of characteristic 0, any deformation problem can be encoded
by a differential graded Lie algebra. To be more precise, given an underlying
“space” (manifold, chain complex, etc.) and a type of structures, there should
exist a differential graded Lie algebra such that the structures of that type on
that space are in one-to-one correspondence with the Maurer–Cartan elements
of that differential graded Lie algebra. Then, Maurer–Cartan elements in the
twisted differential graded Lie algebra should correspond to deformations of
the original structure. Finally, the Maurer–Cartan elements lying in the same
orbit under the gauge group action should correspond to equivalent structures.
This guiding principle received recently a precise statement, including a defi-
nition of what is a “deformation problem”, and a proof by J. Lurie [89] and J.
Pridham [117], see also the Bourbaki seminar given by B. Toen [132] on the
subject; this is the fundamental theorem of deformation theory.

In the 1970’s, the Maurer–Cartan methods in differential graded Lie alge-
bras were one of the building blocks used in the development of the rational
homotopy theory by D. Quillen [118] and D. Sullivan [129], see also the work
of M. Schlessinger and J. Stasheff [124]. In this context, the Maurer–Cartan
elements in the Lie models [17] of a topological space correspond to its points.
In this case, the twisting procedure creates a Lie model of the same topologi-
cal space but pointed at the given Maurer–Cartan element. Finally, the gauge
group orbits of the Maurer–Cartan elements correspond to the connected com-
ponents of the topological space.

Since then, deformation theory and rational homotopy theory grew up to-
gether and never ceased to interact with each other. This range of ideas led
to groundbreaking new results. To name but a few, let us emphasize here the
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following two beautiful and influential achievements: the deformation theory
of representations of the fundamental groups of compact Kähler manifolds
by W.M. Goldman and J.J. Millson [59] and the deformation quantisation of
Poisson manifolds by M. Kontsevich [79]. We refer the reader to the recent
exhaustive book by M. Manetti [93] on Lie methods in deformation theory for
a more thorough historical recollection.

Nowadays, one can notice that these conceptual ideas were successfully ap-
plied in many different research areas, which demonstrates the universality
of the Maurer–Cartan equation, the twisting procedure, and the gauge group
action. Let us offer a brief recollection of some of those situations, which
appeared recently. The construction of the Floer cohomology of Lagrangian
submanifolds in symplectic geometry described in [50] by K. Fukaya, Y.-G.
Oh, H. Ohta, and K. Ono, is given by first considering a curved homotopy
associative algebra and then twisting it with a Maurer–Cartan element, when
one exists, in order to produce a meaningful differential. The higher Lie the-
ory [65, 56, 121] which amounts to integrating homotopically coherent gen-
eralisations of Lie algebras (L∞-algebras) into ∞-groupoids relies on sets, or
rather, moduli spaces of Maurer–Cartan elements. In higher algebra, twisted
homotopy Lie algebras together with some notion of ∞-morphisms, provide
us with a suitable higher categorical enrichment for the categories of homo-
topy algebras over an operad [32, 33]. Finally, in quantum algebra, the twist-
ing procedure for operads themselves allowed T. Willwacher to reinterpret the
graph complex introduced earlier by M. Kontsevich in [77] and to prove that
its degree 0 cohomology group are given by the Grothendieck–Teichmüller
Lie algebra [142]. Going even further with this interpretation, T. Willwacher
was able to prove the following conjecture of M. Kontsevich [78]: the group of
homotopy automorphisms of the little disks operad is isomorphic to the (pro-
unipotent) Grothendieck–Teichmüller group, see also B. Fresse [48] for a more
stable approach.

This monograph guides the reader through various versions of the twisting
procedure, aiming to settle an extensive toolbox, including new properties, for
various applications and an elaborate survey of the said applications. The guid-
ing principle that we rely on is that Maurer–Cartan elements should be studied
through their symmetries. Needless to say, this suggestion of P. Deligne [27],
first advertised in print in work of W.M. Goldman and J.J. Millson [59], fits
perfectly into the general philosophy like that of F. Klein in his Erlangen pro-
gram [69]: symmetries play a crucial role in studying mathematical objects.
The kind of symmetries that arise in the context of the twisting procedure are
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called gauge symmetries, following the original context of gauge theory. Over
the recent years, we have pursued a research programme where we tried to de-
scribe “all” functorial procedures producing new homotopy algebra structures,
from a given one, using suitable gauge symmetries: this way, it is possible to
recover the homotopy transfer theorem [40], the Koszul hierarchy [98, 40], and
the Givental action [39, 42]. This monograph completes that programme by in-
cluding the twisting procedure into this picture for the first time. This agrees
with the ideas of M. Lazard quoted in the epigraph: arguments that seem to
rely on long and complicated calculations get a simple conceptual explanation
using group theory.

The action of gauge symmetries is defined via flows of certain vector fields,
thus, one needs to solve ordinary differential equations or, in more algebraic
terms, to integrate infinitesimal Lie algebra actions to group actions. This is
achieved by the universal Baker–Campbell–Hausdorff (BCH) formula [19, 20,
6, 61, 45, 13], which is an infinite series in the free Lie algebra on two variables.
Moreover, the homotopically coherent version of the Maurer–Cartan equation
in homotopy Lie algebras is also an infinite series itself. So, one finds them-
selves on the borderline of algebra and analysis, needing to make sense of
sums of infinite series. The way to handle it, going back to the generalisation
of the Lie theory to filtered Lie algebras and groups due to M. Lazard in his
Ph.D. thesis [86], is to consider filtered chain complexes whose topology, de-
fined by a basis of open neighbourhoods of the origin consisting of decreasing
sub-modules, is required to be complete. Nowadays this type of topology has
become omnipresent in commutative algebra, algebraic geometry, deformation
theory, rational homotopy theory, and microlocal analysis. Our approach, in-
formed by the operad theory, makes use of the general symmetric monoidal
properties of filtered and complete differential graded modules.

An important feature of differential graded Lie algebras arising in the defor-
mation theory of algebras encoded by operads is that they come from pre-Lie
algebras of convolution type, see [88, Chapter 10]. The notion of a pre-Lie al-
gebra sits between those of an associative algebra and of a Lie algebra: any as-
sociative algebra is a pre-Lie algebra and the skew-symmetrisation of the pre-
Lie binary product renders a Lie bracket. In [40], we showed, under a strong
weight graded assumption, that the integration of a Lie algebra coming from
a pre-Lie algebra can be done by closed combinatorial formulas that are more
managable than the generic BCH formula. The symmetric monoidal proper-
ties mentioned above ensure that most of that integration theory for pre-Lie
algebras adapts without much change to the complete setting. This integration
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theory of complete pre-Lie algebras is perhaps the part of our work that has
the strongest connection to the seminal work of M. Lazard [86]. The upshot
of our approach is the largest deformation gauge group of algebraic structures
modelled by operads that we are aware of.

The intrinsic meaning of the twisting procedure for differential graded Lie
algebras admits the following bright interpretation. First, one moves from dif-
ferential graded Lie algebras to homotopically coherent and more general L∞-
algebras. The structure of an L∞-algebra on a chain complex V is, under certain
finiteness assumptions, encoded by a differential on the exterior algebra of the
linear dual chain complex V∗. Such a differential, interpreted geometrically,
is a vector field, satisfying a relation called homological, on the supermani-
fold given by V with the homological degrees shifted by one. If that homo-
logical vector field vanishes at the origin, one obtains the usual notion of an
L∞-algebra, otherwise, one arrives at the definition of a curved L∞-algebra.
The twisting procedure may be viewed as a change of coordinates moving the
origin to the point where the homological vector field vanishes; this vanishing
condition is encoded by the Maurer–Cartan equation.

We provide this geometric intuition with a precise and conceptual algebraic
counterpart using the large deformation gauge group mentioned above: the ac-
tion of the simplest gauge symmetries of the convolution algebra controlling
curved L∞-algebra structures produce the twisting procedure. This allows us
to reprove in a straightforward and short way its various properties, notably
the crucial ones related to complete (curved) L∞-algebras used in deformation
theory, like in [56, 31]. A similar twisting procedure is available in the case
of (curved) A∞-algebras, that is algebras associative up to a infinite system
of coherent homotopies. In fact, we choose to present the results for (curved)
A∞-algebras in more detail since that formalism seems less known, since its
presentation is simpler, and since the corresponding results for (curved) L∞-
algebras are then obtained mutatis mutandis. Finally, these two examples of
twisting procedures lead us to ask the following natural question: why can
one twist L∞-algebras and A∞-algebras and what about the other types of
algebras? The conceptual understanding of the twisting procedure mentioned
above also allows us to give a criterion explaining when a given type of alge-
bras admits a meaningful twisting procedure. Heuristically speaking, a cate-
gory of homotopy algebras over a quadratic operad can be twisted if and only
if the Koszul dual category of algebras admits a coherent notion of a unit.

The topic which originally motivated us to understand the twisting proce-
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dure in detail is that of the operadic twisting introduced by T. Willwacher in
his seminal work on the Grothendieck–Teichmüller Lie algebra and M. Kont-
sevich’s graph complexes [142]. It was later studied in detail by V. Dolgu-
shev and T. Willwacher in [29], see also the survey by V. Dolgushev and C.
Rogers [30]. This theory relies on twisting an operad by one of its Maurer–
Cartan elements, and it turns out that the language developed in this mono-
graph allows us to encode the operadic twisting procedure in a very direct and
straightforward new way. We note that this approach to the operadic twisting
was first suggested by J. Chuang and A. Lazarev in [23]. A salient point of
the operadic twisting procedure lies in the fact that it naturally gives rise to
meaningful graph complexes, recovering some of the seminal ones originally
introduced by M. Kontsevich in [74, 77].

We hope that our monograph gives exactly the kind of a gentle introduction
which is needed to make the theory of operadic twisting accessible to a much
wider audience: it offers a concise and conceptual way of thinking about the
twisted operad and a sufficient source of motivating examples related to graph
homology. We recover known computations of graph homology but with more
direct methods and we introduce some new ones related to the noncommu-
tative analogues of Gerstenhaber and Batalin–Vilkovisky algebras introduced
in our recent work [38]. We also survey the key role played by the operadic
twisting procedure in the understanding of the Grothendieck–Teichmüller Lie
algebra, the Deligne conjecture, and its Lie version.

We conclude this book by offering the reader with short surveys of some
recent applications of the twisting procedure and more generally, the Maurer–
Cartan methods. It is however important to emphasise that the twisting pro-
cedure appears in too many mathematical contexts to hope for an exhaustive
survey of all possible applications. Topics like deformation theory of algebras
over properads, the twisting procedure for homology of hairy graph complexes
and its applications, models for the homology of fibered spaces, the role of the
twisting procedure in studying the “mozaic operad” and many others remained
outside our scope.

Organisation of the monograph

Chapter 1 begins with a survey on gauge theory, which is the differential-
geometric origin of the Maurer–Cartan equation, and continues with basic but
extensive recollections on the Maurer–Cartan elements and their symmetries
in differential graded Lie algebras. In Chapter 2, we establish the various sym-
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metric monoidal properties of filtered and complete differential graded mod-
ules in order to develop their operadic theory. We settle the integration theory
for complete differential graded left-unital pre-Lie algebras in Chapter 3; this
gives rise to a large gauge group which is shown to govern the deformation
theory of homotopy algebras over an operad. Chapter 4 contains the first im-
mediate application of the previous chapter: the action of the arity 0 elements
of the deformation gauge group is shown to give the twisting procedure for
(curved homotopy) associative algebras and (curved homotopy) Lie algebras.
From this conceptual interpretation, we easily derive “all” the properties of the
twisting procedure. In Section 4.5, we give a criterion on a quadratic operad
that ensures that the corresponding category of homotopy algebras admits a
meaningful twisting procedure. In Chapter 5, we present a concise conceptual
treatment of T. Willwacher’s operadic twisting procedure. Chapter 6 discusses
some examples of the operadic twisting, especially those relevant for graph ho-
mology, and their applications to the Grothendieck–Teichmüller Lie algebra,
the Deligne conjecture, and a Lie version of this latter one. The last Chap-
ter 7 provides the literature with short surveys on some of the seminal applica-
tions of the twisting procedure in a wider mathematical context: fundamental
theorem of deformation theory, higher Lie theory, rational homotopy theory,
simplicial theory of homotopy algebras, and Floer cohomology of Lagrangian
submanifolds.

Conventions

Objects studied in this book are k-modules; for simplicity, we work over a field
k of characteristic zero though many results still hold over an arbitrary ring.
The rule of thumb to use when deciphering necessary assumptions is as fol-
lows: k is a ring when working with algebras over nonsymmetric operads (for
example, with A∞-algebras), and k is a field of characteristic zero when work-
ing with algebras over symmetric operads (for example, with L∞-algebras).

We work in the underlying category of chain complexes, so that all differen-
tials have degree −1. To accommodate that, we grade cohomology groups in
negative degrees, when working with the cohomology of a topological space
or a manifold (with an exception to the rule for the very first section 1.1 where
we stick to the classical conventions). The linear dual of a chain complex is un-
derstood component-wise

(
V∨

)
n B (V−n)∨. Homological degrees of elements

and operations create signs when evaluating operations on their arguments, ac-
cording to the usual Koszul sign rule and convention, see [88, Section 1.5.3].
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For operad theory, we use the same conventions and notations than the book
[88]. For instance, we use the abbreviation “dg” to mean “differential graded”
and “ns” to mean “nonsymmetric”. Somewhat abusing terminology, we use
the term “cooperad” for the algebraic structure defined by partial/infinitesimal
decomposition maps ∆(1) : C → C ◦(1) C, see [88, Section 6.1.4]. In the non-
symmetric case, the upshot of such maps is a linear combination of elements
of the form µ ◦i ν, where this convention stands for the 2-vertex tree with one
internal edge linking the root of the corolla ν to the ith-leaf of the corolla µ.

Since many differentials of various types appear throughout the text, we
chose the following notations to clarify the situation: the underlying differ-
entials are denoted by d, the differentials of operads are denote by d, and the
differentials of mapping spaces are denoted by ∂. More precisely, for two chain
complexes (A, dA) and (B, dB), the differential on Hom(A, B) is given by

∂ f B dB ◦ f − (−1)| f | f ◦ dA ,

for homogenous maps f : A→ B.
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Maurer–Cartan methods

The purpose of this chapter is to give a rather exhaustive survey on the Maurer–
Cartan equation and its related methods, which lie at the core of the present
monograph. We first give a recollection of the Maurer–Cartan equation and its
gauge symmetries in differential geometry. This chapter is viewed as a motiva-
tion for the rest of the book, which consists of higher algebraic generalisations
of the key notions of gauge theory. Reading it is not mandatory to understand
what follows but this might help the reader to get some concrete pictures in
mind before passing to a more abstract treatment. Then, we establish the gen-
eral theory of the Maurer–Cartan equation in differential graded Lie algebras.
With that in hand, we discuss the philosophy of deformation theory suggesting
that studying Maurer–Cartan elements of differential graded Lie algebras, as
well as the symmetries of those elements, is the central question of any de-
formation theory problem in characteristic 0 . In the last chapter 7, we shall
discuss more recent developments making that philosophy precise by means
of higher category theory.

Throughout this chapter, various infinite series arise. For simplicity, we work
with the strong assumption that the various differential graded Lie algebras are
nilpotent, so that all these series are actually finite once evaluated on elements.
We refer to the treatment of complete algebras give in the next chapter 2 for
the correct setup in which convergence is understood in the rest of the text.

This material will be published by Cambridge University Press & Assessment as ‘Maurer-Cartan
Methods in Deformation Theory: the twisting procedure’ by Vladimir Dotsenko, Sergey Shadrin
and Bruno Vallette. This version is free to view and download for personal use only. Not for re-
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1.1 Maurer–Cartan equation in differential geometry 15

1.1 Maurer–Cartan equation in differential geometry

In this section, we give a short outline of the differential geometric notions
of which the subject of this book is a far reaching algebraic generalisation. We
review the fundamental objects and the classical results of gauge theory: vector
and principal bundles, connections, and curvatures. Nowadays, these notions
play a key role in analysis, geometry, and topology [106, 35, 109, 5]; they also
provide physicists with the suitable conceptual language to express modern
theories [94, 108, 60].

Throughout this section, we work over the field of real numbers and we de-
note by M a smooth manifold. We assume the reader familiar with the basic
notions of differential manifolds, as treated in [138], for instance. For more
details on this section, we refer the reader to the textbooks [70, 133].

Given a smooth vector bundle E → M, one considers the space

Ω•(M, E) B Γ (Λ•T ∗M ⊗ E) � Ω•(M) ⊗Ω0(M) Γ(E)

of differential forms with values in E. In order to extend the de Rham differen-
tial map to E-valued differential forms, one is led to the following notion.

Definition 1.1 (Connection) A connection of a smooth vector bundle E → M
is an R-linear map

∇ : Ω0(M, E) � Γ(E)→ Ω1(M, E) � Γ(T ∗M ⊗ E)

satisfying the Leibniz rule

∇( f s) = d f ⊗ s + f∇s ,

for all f ∈ Ω0(M) and all s ∈ Γ(E) .

Lemma 1.2 For any connection ∇, there is a unique R-linear operator

d∇ : Ω•(M, E)→ Ω•+1(M, E)

satisfying

(i) d∇ = ∇ , for • = 0,
(ii) and the generalised Leibniz rule

d∇(α ∧ ω) = dα ∧ ω + (−1)kα ∧ d∇ω , (1.1)

for any α ∈ Ωk(M) and any ω ∈ Ωl(M, E) .
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Proof It is given by the following definition

d∇(α ⊗ s) B dα ⊗ s + (−1)kα ∧ ∇s ,

for all α ∈ Ωk(M) and all s ∈ Γ(E) . �

Let us now look for a condition implying that d∇ is a differential, that is
squares to zero. In this direction, we first consider the composite

d∇ ◦ ∇ : Ω0(M, E)→ Ω2(M, E) ,

which is actually Ω0(M)-linear.

Definition 1.3 (Curvature) The curvature of a connection ∇ is the End(E)-
valued 2-form

θ ∈ Ω2(M,End(E))

obtained from d∇ ◦ ∇ under the isomorphism

HomΩ0(M)

(
Ω0(M, E),Ω2(M, E)

)
� Ω2(M,End(E)) .

Definition 1.4 (Flat connection) A connection ∇ is called flat when its cur-
vature is trivial, i.e. θ = 0 .

This condition is necessary to get a differential; it is actually enough.

Lemma 1.5 The composite d∇ ◦ d∇ : Ω•(M, E)→ Ω•+2(M, E) is equal to(
d∇ ◦ d∇

)
(α ⊗ s) = α ∧

(
d∇ ◦ ∇

)
(s) ,

for α ∈ Ω•(M) and s ∈ Γ(E) .

Proof The generalised Leibniz rule (1.1) gives(
d∇ ◦ d∇

)
(α ⊗ s) = d∇

(
dα ⊗ s + (−1)kα ∧ ∇s

)
= α ∧

(
d∇ ◦ ∇

)
(s) ,

where k stands for the degree of α. �

Proposition 1.6 For any flat connection ∇ , the operator d∇ squares to zero.

Proof This is a direct corollary of Lemma 1.5. �

Definition 1.7 (Twisted de Rham differential/complex) The differential d∇

on the space of E-valued differential forms associated to a flat connection ∇ is
called the twisted de Rham differential. The cochain complex

(
Ω•(M, E), d∇

)
is called the twisted de Rham complex.

Remark 1.8 One recovers the classical de Rham differential on Ω•(M) by
considering the trivial line bundle.
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Let us now look at the local situation. Using the local trivialisation of the
vector bundle π : E → M above an open subset U ⊂ M, any basis (v1, . . . , vn)
of the typical (finite dimensional) fiber V induces a collection e = (e1, . . . , en)
of sections, with ei ∈ Γ(E|U) , such that (e1(x), . . . , en(x)) is a basis of the fiber
Ex B π−1(x) . Such a collection is called a local frame over U. In such a
local frame, the data of the connection ∇ is equivalent to a collection of local
1-forms ωi j ∈ Ω1(U) such that

∇e j =

n∑
i=1

ωi j ⊗ ei .

Definition 1.9 (Local connection form) The local connection form with re-
spect to the frame e = (e1, . . . , en) is the matrixωe B

(
ωi j

)
i, j=1,...,n

∈ gln
(
Ω1(U)

)
.

Proposition 1.10 The curvature is given locally by

θe � dωe + ω2
e = dωe + 1

2 [ωe, ωe]

in gln
(
Ω2(U)

)
.

Proof It is obtained by the following straightforward computation:

d∇ ◦ ∇(ei) =

n∑
i=1

d∇(ωi j ⊗ ei) =

n∑
i=1

dωi j ⊗ ei −

n∑
i=1

ωi j ∧ ∇ei

=

n∑
i=1

dωi j −

n∑
k=1

ωk j ∧ ωik

 ⊗ e j =

n∑
i=1

dωi j +

n∑
k=1

ωik ∧ ωk j

 ⊗ ei .

�

In other words, the twisted map d∇ is a differential if and only the local con-
nection forms satisfy the following first kind of “Maurer–Cartan equation”

dωe + ωe · ωe = dωe + 1
2 [ωe, ωe] = 0 .

Such an equation does not depend of the choice of local frames as the
property for a connection to be flat is global. Explicitly, a change of local
frame over U from e = (e1, . . . , en) to e′ =

(
e′1, . . . , e

′
n
)

is an invertible matrix
A ∈ GLn

(
Ω0(U)

)
such that e′ = eA .

Proposition 1.11 The local connection form with respect to the frame e′ is
given by the matrix

ωe′ = A−1dA + A−1ωeA

in gln
(
Ω1(U)

)
.
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Proof This follows from the straightforward computation:

∇
(
e′j

)
=

n∑
k=1

∇
(
Ak j ek

)
=

n∑
k=1

(
dAk j ⊗ ek + Ak j∇ek

)
=

n∑
i=1

 n∑
k=1

A−1
ik

(
dAk j

)
+

n∑
k,l=1

A−1
il ωlk Ak j

 e′i .

�

This is the first instance of “gauge group action” on solutions to the Maurer–
Cartan equation.

Any vector bundle E induces a linear dual bundle E∗ and an endomorphism
bundle End(E) . In turn, any connection ∇ on E gives rise to canonical con-
nections on E∗ and End(E) as follows. Let us first recall the non-degenerate
pairing

( , ) : Ωi(M, E) ⊗Ω j(M, E∗)
∧
−→ Ωi+ j(M) ⊗Ω0(M) Γ(E ⊗ E∗)

〈 , 〉
−−→ Ωi+ j(M) ,

where 〈 , 〉 stands for the linear paring, that is

(α ⊗ s, β ⊗ t) B (α ∧ β) ⊗ 〈s, t〉 ,

for α ∈ Ωi(M), β ∈ Ω j(M), s ∈ Γ(E), and t ∈ Γ(E∗) . To any connection ∇ on
E, one associates a connection ∇∗ on E∗ characterised by

(s,∇∗t) = d(s, t) − (∇s, t)

and then a connection ∇̂ on End(E) � E ⊗ E∗ given by

∇̂(s ⊗ t) B ∇s ⊗ t + s ⊗ ∇∗t .

Proposition 1.12 The twisted de Rham differential on the endomorphism
bundle End(E) is locally given by

d∇̂ f = d f + ωe f − (−1)k fωe = d f + [ωe, f ]

in gln
(
Ωk+1(U)

)
, for any f ∈ gln

(
Ωk(U)

)
.

Proof Using the local frame over U, one can write

f =

n∑
i, j=1

fi j ⊗ δi j ,

where δi j = ei ⊗ e∗j ∈ Γ(End(E)|U) sends e j to ei and where fi j ∈ Ωk(U) . By
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definition, we have

∇̂(δi j) = ∇̂
(
ei ⊗ e∗j

)
= ∇ei ⊗ e∗j + ei ⊗ ∇

∗e∗j

=

 n∑
l=1

ωli ⊗ el

 ⊗ e∗j − ei ⊗

 n∑
l=1

ω jl ⊗ e∗l

 =

n∑
l=1

ωli ⊗ δl j −

n∑
l=1

ω jl ⊗ δil .

The generalised Leibniz rule (1.1) gives

d∇̂ f = d∇̂
 n∑

i, j=1

fi j ⊗ δi j

 =

n∑
i, j=1

d fi j ⊗ δi j + (−1)k
n∑

i, j=1

fi j ⊗ ∇̂(δi j)

=

n∑
i, j=1

d fi j ⊗ δi j + (−1)k
n∑

i, j,l=1

fi j ∧ ωli ⊗ δl j − (−1)k
n∑

i, j,l=1

fi j ∧ ω jl ⊗ δil

=

n∑
i, j=1

d fi j +

n∑
l=1

ωil ∧ fl j − (−1)k
n∑

l=1

fil ∧ ωl j

 ⊗ δi j .

�

For the first time, we encounter a “differential twisted by a solution to the
Maurer–Cartan equation”.

Let us now pass from the local picture to the global one. To this extend, one
needs an extra action of a Lie group of the fiber bundle, leading to the notion of
a principal bundle. Developing the notions of connection and curvature at this
level will make even more noticeable the role played by the methods from Lie
theory. The two theories of vector and principal bundles are essential equiva-
lent: any vector bundle induces a canonical principal bundle, called the frame
bundle, and one can associate vector bundles, like the adjoint bundle, to any
principal bundle. Let G be a real Lie group with Lie algebra g.

Definition 1.13 (Principal bundle) A principal G-bundle is a fiber bundle
P → M equipped with a smooth (right) action of G which is free, transitive,
and fiber preserving.

The definition implies the identifications Px � G, for the fibers, and P/G �

M, for the orbit space.

Example 1.14 The toy model of principal bundle is the frame bundle Fr(E)→
M associated to any vector bundle E → M: elements of its fibers are ordered
bases of the fibers of E. In this case, the structure Lie group G = GLn is the
general linear group, where n is the dimension of the fibers of E .

In differential geometry, a distribution is a subbundle of the tangent bundle.
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Definition 1.15 (Vertical distribution) The vertical distribution T vP ⊂ T P of
a principal bundle P is defined by

T v
pP B ker Dp π , for any p ∈ P ,

where Dp π : TpP → Tπ(p)M stands for the derivative of the structural projec-
tion π : P→ M .

One can see that each fiber of the vertical distribution is isomorphic to the
tangent Lie algebra T v

pP � g .

Definition 1.16 (Horizontal distribution) A horizontal distribution T hP ⊂
T P of a principal bundle P is a distribution complementary to the vertical dis-
tribution:

T vP ⊕ T hP = T P .

Notice the discrepancy between these two notions: the vertical distribution is
uniquely and canonically defined while there exists possibly many horizontal
distributions. Any horizontal distribution gives rise to a g-valued 1-form ω on
P defined by

ωp : TpP = T v
pP ⊕ T h

pP
proj
−−−→ T v

pP � g ,

for any p ∈ P , where the first map is the projection on T v
pP along T h

pP . In or-
der to make explicit its properties, we need first to recall the following notions.

Let us denote by R: P×G → P the right action of G on the principal bundle
P . (We will use the simpler notation Rg(−) B R(−, g) for the right action of an
element g ∈ G.) The fundamental vector field Xξ associated to ξ ∈ g is defined
by

Xξ
p B D(p,e) R(0, ξ) ∈ T v

pP ,

for any p ∈ P . The adjoint representation

Adg B DeCg : g→ g

is given by the derivation at the unit e of the Lie group G of the conjugation
map Cg(x) B gxg−1, for any g, x ∈ G .

Definition 1.17 (Connection on a principal bundle) A connection on a prin-
cipal bundle P is a g-valued 1-form ω ∈ Ω1(P, g) = Ω1(P) ⊗ g satisfying the
following properties:

vertical vector field: ωp

(
Xξ

p

)
= ξ , for any p ∈ P and ξ ∈ g ,

equivariance: Adg

(
R∗g ω

)
= ω , for any g ∈ G .
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The first conditions says that a connection restricts to the identity map of g
under the identification T v

pP � g .

Proposition 1.18 The data of a horizontal distribution on a principal bundle
is equivalent to the data of a connection.

Proof The left-to-right assignment is defined above. In the other way round,
given a connection ω, one defines a horizontal distribution as its kernel T h

pP B

kerωp . We refer the reader to [133, Section 28] for complete details about this
proof. �

Example 1.19

(i) The Maurer–Cartan connection ωG ∈ Ω1(G, g) on the trivial principal bun-
dle G → ∗ is defined by

ωG B DgLg−1 : TgG → TeG � g ,

where Lg−1 : G → G is the left multplication by g−1 , for g ∈ G .
(ii) Given a connection ∇ on a vector bundle E → M, there is a canonical way

[133, Section 29] to define a connection ω on the associated frame bundle
Fr(E) → M such that the pullback along a local frame e : U → Fr(E)|U
gives back the local connection form: e∗ω = ωe .

The graded vector space Ω•(P, g) B Ω•(P)⊗ g of g-valued differential forms
on P acquires a canonical differential graded Lie algebra structure (Defini-
tion 1.40) as the tensor product of a differential graded commutative algebra
with a Lie algebra. This is the relevant algebraic context to express the proper-
ties of connections on principal bundle.

Definition 1.20 (Curvature) The curvature of a connection ω on a principal
bundle is the g-valued 2-form defined by

Ω B dω + 1
2 [ω,ω] .

Proposition 1.21 For any connection ∇ on a vector bundle E → M, the
pullback along a local frame e : U → Fr(E)|U of the induced curvature of the
frame bundle Fr(E)→ M is equal to the local curvature form:

e∗Ω = θe .

Proof It follows from the direct computation

e∗Ω = e∗ (dω) + 1
2 e∗[ω,ω] = d (e∗ω) + 1

2 [e∗ω, e∗ω] = dωe + 1
2 [ωe, ωe] = θe ,



22 Maurer–Cartan methods

since the pullback preserves the differential and the Lie bracket (second equal-
ity), since e∗ω = ωe (third equality), and by Proposition 1.10 (forth equal-
ity). �

Any connection on a principal bundle induces a decomposition T P = T vP⊕
T hP of the tangent bundle by Proposition 1.18. The associated vertical and
horizontal components of a vector field X ∈ Γ(T P) are respectively denoted by
X = Xv + Xh .

Theorem 1.22 The curvature associated to any connection on a principal
bundle satisfies the following properties:

horizontalilty: Ω(X,Y) = dω
(
Xh,Yh

)
, for any X,Y ∈ Γ(T P) ,

equivariance: Adg

(
R∗g Ω

)
= Ω , for any g ∈ G ,

bianchi identity: dΩ = [Ω, ω] .

Proof The proof of the first point is a direct consequence of the definition of
the curvature and the fact that the connection ω vanishes on horizontal vectors.
The second point is showed by the same type of computation as in the proof
of the above proposition 1.21. The third point is obtained by the following
“differential graded Lie” type computation

dΩ = 1
2 d[ω,ω] = [dω,ω] =

[
Ω − 1

2 [ω,ω], ω
]

= [Ω, ω] ,

since the differential is a derivation (second equality) and by the Jacobi identity
(last equality). �

Definition 1.23 (Flat connection) A connection ω on a principal bundle is
called flat when its curvature is trivial:

Ω = dω + 1
2 [ω,ω] = 0 .

This is the global form of the Maurer–Cartan equation mentioned above.
Geometrically, this property is equivalent to the integrability of the horizontal
vector fields.

Theorem 1.24 A connection on a principal bundle is flat if and only if the
horizontal vector fields are preserved by the Lie bracket, i.e.[

Xh,Yh
]

= [X,Y]h , for any X,Y ∈ Γ(T P) .

Proof This is a straightforward consequence of the formula

Ω(X,Y) = −ω ([X,Y]) ,

for horizontal vector fields X,Y ∈ Γ
(
T hP

)
. We refer the reader to [107, Sec-

tion 3.1] for complete details. �
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The following construction allows us to come back to vector bundles.

Definition 1.25 (Associated vector bundle) The vector bundle associated to a
principal bundle P and to a (finite-dimensional) representation ρ : G → GL(V)
is defined by the coequalizer P ×ρ V , that is the quotient of P × V under the
equivalence relation (p · g, v) ∼ (p, ρg(v)), for any p ∈ P, v ∈ V , and g ∈ G .

It is straightforward to check that the associated bundle P ×ρ V defines a
vector bundle over M with fibers isomorphic to V .

Example 1.26

(i) The vector bundle P×Adg associated to the adjoint representation Ad: G→
GL(g) is called the adjoint bundle.

(ii) The vector bundle associated to the frame bundle Fr(E) and the identity
representation is isomorphic to the original vector bundle E . This shows
that any vector bundle is a vector bundle associated to a principal bundle.

The V-valued differential forms on P, that is Ω•(P,V) B Ω•(P)⊗V , coincide
with the differential forms on P with values in the trivial vector bundle P × V ,
that is Ω•(P, P × V) under the notation introduced at the beginning of this
section. Let us now make explicit the differential forms on M with values in
the associated bundle E B P ×ρ V in terms of the V-valued differential forms
on P .

Definition 1.27 (Tensorial differential forms) A V-valued differential form
α ∈ Ωk(P,V) on a principal bundle P is called tensorial when it is:

horizontal: for any p ∈ P, we have αp(u1, . . . , uk) = 0, when at least one
tangent vector is vertical, i.e. ui ∈ T v

pP, for some 1 6 i 6 k ,

equivariant: ρg

(
R∗g α

)
= α , for any g ∈ G .

We denote the graded vector space of tensorial differential forms by Ω•ρ(P,V) .

Example 1.28

(i) Theorem 1.22 shows that the curvature of a connection on a principal bun-
dle is tensorial with respect to the adjoint representation, i.e. Ω ∈ Ω2

Ad(P,
g) .

(ii) The set of connections on a principal bundle forms an affine space directed
by Ω1

Ad(P, g) .

Proposition 1.29 The graded vector space of tensorial V-valued differential
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forms on P is isomorphic to the graded vector space of E-valued differential
forms on M:

Ω•ρ(P,V) � Ω•(M, E) ,

where E = P ×ρ V is the associated vector bundle.

Proof The isomorphism from left to right is given as follows. Let α ∈ Ωk
ρ(P,

V) , x ∈ M , and v1, . . . , vk ∈ TxM . We choose a point p ∈ Px in the fiber
above x and we choose lifts u1, . . . , uk ∈ TpP for the vectors v1, . . . , vk , that
is Dpπ(ui) = vi , for 1 6 i 6 k . We denote by fp : V → Ex the linear
isomorphisms defined by v 7→ (p, v) . The image of the tensorial differential
form α is given by

(v1, . . . , vk) 7→ fp

(
αp(u1, . . . , uk)

)
,

which lives in Ωk(M, E) . Since α is equivariant, this definition does not depend
on the choice of the point p ∈ Px and since α is horizontal, this definition does
not depend on the choices of the lifts u1, . . . , uk ∈ TpP .

In this other way round, let β ∈ Ωk(M, E) , p ∈ P , and u1, . . . , uk ∈ TpP . The
image of the E-valued differential form β on M under the reverse isomorphism
is given by

f −1
p

(
βπ(p)

(
Dpπ(u1), . . . ,Dpπ(uk)

))
,

which is clearly a tensorial V-valued differential form on P . �

Since the differential d fails to preserve horizontal V-valued differential
forms on P, one is led to the following definition.

Definition 1.30 (Covariant derivative) The covariant derivative associated to
a connection ω on a principal bundle is defined by

dω(α)(X1, . . . , Xk+1) B (dα)
(
Xh

1 , . . . , X
h
k+1

)
,

for α ∈ Ωk(P,V) and X1, . . . , Xk+1 ∈ Γ(T P) .

Example 1.31 In terms of the covariant derivative, the first point of Theo-
rem 1.22 asserts that Ω = dω(ω) .

Lemma 1.32 The covariant derivative restricts to tensorial V-valued differ-
ential forms on P:

dω : Ω•ρ(P,V)→ Ω•+1
ρ (P,V) .

Proof It is enough to check that the differential d preserves equivariant V-
valued differential forms on P . �
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Proposition 1.29 implies that the covariant derivative induces a degree 1 lin-
ear operator on Ω•(M, E) . From the explicit isomorphisms given in the above
proof, one can see that the image of dω : Ω0

ρ(P,V) → Ω1
ρ(P,V) gives a map

∇ρ : Ω0(M, E) → Ω1(M, E) which satisfies the Leibniz rule (Definition 1.1);
so it defines a connection on the associated vector bundle. Furthermore, one
can see that the covariant derivative dω corresponds to the twisted de Rham
differential d∇ρ . These two differentials can be expressed in Lie theoretical
terms as follows.

The infinitesimal version of the group representation ρ : G → GL(V) pro-
duces a Lie algebra representation De ρ : g → gl(V) . This latter one defines
an action of the differential graded Lie algebra Ω•(P, g) on the graded vector
space Ω•(P,V) under the formula:

(τ · α)p (v1, . . . , vk+l) B
1

k!l!

∑
σ∈Sk+l

sgn(σ) De ρ
(
τp

(
vσ(1), . . . , vσ(k)

)) (
αp

(
vσ(k+1), . . . , vσ(k+l)

))
,

for τ ∈ Ωk(P, g) , α ∈ Ωl(P,V) , p ∈ P , and v1, . . . , vk+l ∈ TpP .

Proposition 1.33 On tensorial V-valued differential forms α ∈ Ω•ρ(P,V) on
P, the covariant derivative is equal to

dω(α) = dα + ω · α .

Proof We refer the reader to the proof of [133, Theorem 31.19]. �

In the case of the adjoint bundle, the infinitesimal Lie action is given by

ad B DeAd: g → gl(g)
x 7→ [x,−] .

So we get the formula

dω(α) = dα + [ω, α] ,

which is the global form of the example of a differential twisted by a Maurer–
Cartan element.

Example 1.34 Using this property, the Bianchi identity of Theorem 1.22
amounts to dω(Ω) = 0 .

Corollary 1.35 When the connection ω is flat, the covariant derivative dω

squares to zero.
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Proof This follows from the following formula:

(dω ◦ dω) (α) = dω (dα + ω · α) = d(ω · α) + ω · (dα + ω · α)

= dω · α − ω · dα + ω · dα + 1
2 [ω,ω] · α

= (dω) · α + 1
2 [ω,ω] · α

= Ω · α ,

since the action · is by a differential graded Lie algebra (second line). �

Corollary 1.35 is the exact analogue for the covariant derivative of principal
bundles of Proposition 1.6 for the twisted de Rham differential of vector bun-
dles. It implies the following result: when a connection ω of a principal bundle
is flat, then so is the connection ∇ρ on any associated vector bundle.

Let us now study the group of symmetries of a principal bundle and its action
on the above-mentioned notions. Its name is motivated by its applications in
physics.

Definition 1.36 (Gauge group) The gauge group G (P) of a principal bun-
dle π : P → M is the group consisting of all fiber-preserving and equivariant
diffeomorphisms of P, called gauge transformations:

G (P) B
{

f : P
�
−→ P | f ◦ π = π ; f

(
Rg(p)

)
= Rg( f (p)) ,∀p ∈ P ,∀g ∈ G

}
.

Remark 1.37 In the physics literature, the structure group G is called the
gauge group. In the mathematical literature, the above mentioned group G (P)
is also called the group of gauge transformations. We chose the present termi-
nology in order to match with the general definition of the gauge group given
in the next section 1.2.

Proposition 1.38 The gauge group is isomorphic to the group of equivariant
G-valued functions on P:

G (P) � C∞(P,G)G .

Proof We consider here the conjugation action on G, so an equivariant G-
valued function on P is a smooth map σ : P→ G such that

σ(Rg(p)) = Cg−1 (σ(p)) = g−1σ(p)g ,

for any p ∈ P and g ∈ G . Given a gauge transformation f : P → P, one
considers the equivariant G-valued function σ f : P→ G defined by

F(p) = RσF (p)(p) .

�
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The gauge group is in general infinite dimensional and it acts on g-valued
differential forms α ∈ Ω•(P, g) on the left by pullback:

f . α B
(

f −1
)∗
α .

This action restricts naturally to (flat) connections. Let us give it a more explicit
description.

Theorem 1.39 The action of a gauge transformation f : P → P on a (flat)
connection ω is given by

f . ω = Adσ f ◦ ω +
(
σ−1

f

)∗
ωG .

Proof We refer the reader to [70, Chapter II] for details. �

This is the global form of the “gauge action” formula given in Proposi-
tion 1.11.

Let us denote the affine space of connections on the principal bundle P by
C(P) and the set of flat connections by MC(P) . The associated moduli spaces

C (P) B C(P)/G (P) and MC (P) B MC(P)/G (P)

of (flat) connections under the gauge group are of fundamental importance in
mathematics [4, 34, 35, 5] and in physics [94, 60]. In mathematics, the moduli
space of flat connections is isomorphic to the character variety Hom(π1(M),
G)/G , where π1(M) stands for the fundamental group of M . In physics termi-
nology, connections are called gauge fields and their moduli spaces represent
the configuration spaces of quantum field theories on which Feynman path in-
tegrals are “defined” and “evaluated”.

1.2 Maurer–Cartan equation in differential graded Lie
algebras

The expression dω+ 1
2 [ω,ω] for the curvature of the g-valued 1-form defining

a connection ω in a principal bundle P makes sense since the space Ω•(P, g) of
all g-valued forms has a richer structure than merely a chain complex: it is a
differential graded Lie algebra. In this section, we recall the general formalism
for studying the Maurer–Cartan equation and the symmetries of its solutions
in differential graded Lie algebras. From now on, we switch from the coho-
mological degree convention to the homological degree convention, and work
over a ground field k of characteristic 0.
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Definition 1.40 (Differential graded Lie algebra) A differential graded (dg)
Lie algebra is the data g = (A, d, [ , ]) of a chain complex, that is a collection
of vector spaces A = {An}n∈Z with linear maps d : An → An−1 of degree −1
satisfying d2 = 0, equipped with a degree-preserving linear map [ , ] : A⊗2 →

A, called the Lie bracket, satisfying the following properties

derivation: d([x, y]) = [dx, y] + (−1)|x|[x, dy] ,

skew-symmetry: [x, y] = −(−1)|x||y|[y, x] ,

Jacobi identity: [[x, y], z] + (−1)|x|(|y|+|z|)[[y, z], x] + (−1)|z|(|x|+|y|)[[z, x], y] = 0 ,

where the notation |x| stands for the degree of homogeneous elements x ∈ A|x| .

Definition 1.41 (Maurer–Cartan element/equation) Let g = (A, d, [ , ]) be a
dg Lie algebra. A Maurer–Cartan element ω if an element of A−1 that is a
solution to the Maurer–Cartan equation

dω + 1
2 [ω,ω] = 0 . (1.2)

The set of Maurer–Cartan elements in g is denoted by MC(g).

The intuition behind the formulas that we are about to write comes from the
situation where the dg Lie algebra g is finite-dimensional, so that the Maurer–
Cartan equation is actually a collection of actual polynomial equations in a
finite-dimensional vector space, and the Maurer–Cartan set is a variety (inter-
section of quadrics).

Lemma 1.42 In a (finite dimensional) dg Lie algebra g, the tangent space
Tω(MC(g)) of the Maurer–Cartan variety MC(g) at a point ω consists of ele-
ments η ∈ A−1 satisfying

dω(η) B dη + [ω, η] = 0 . (1.3)

Proof The Maurer–Cartan variety is the zero locus of the curvature function

Ω : ω ∈ A−1 7→ dω + 1
2 [ω,ω] ∈ A−2 .

Its derivative at ω is equal to Dω Ω (η) = dη+ [ω, η] . Finally, the tangent space
of MC(g) at ω is the zero locus of this derivative. �

Considering the adjoint operator

adω B [ω,−] ,

the abovementioned map is equal to the sum dω = d + adω .
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Proposition 1.43 For any Maurer–Cartan element ω ∈ MC(g) of a dg Lie
algebra g, the map dω is a derivation satisfying

dω ◦ dω = 0 .

Proof The Jacobi identity is equivalent to the fact that the adjoint operator is
a derivation:

adω([x, y]) = [ω, [x, y]] = (−1)1+|y|(|x|+1)[y, [ω, x] + (−1)1+|x|+|y|[x, [y, ω]]

= [adω x, y] + (−1)|x|[x, adω y] .

The linear map dω = d + adω is a derivation as a sum of derivations. Then, the
image of any element η of A under the composite dω ◦ dω is given by

dω◦dω(η) = d2(η)︸︷︷︸
=0

+ d([ω, η]) + [ω, dη]︸                 ︷︷                 ︸
=[dω,η]

+ [ω, [ω, η]]︸      ︷︷      ︸
=

1
2 [[ω,ω],η]

=
[

dω + 1
2 [ω,ω]︸          ︷︷          ︸
=0

, η
]

= 0 ,

using the properties of a dg Lie algebra (differential, derivation and Jacobi
identity) and the Maurer–Cartan equation. �

Definition 1.44 (Twisted differential and twisted dg Lie algebra) For any dg
Lie algebra g and any Maurer–Cartan element ω ∈ MC(g), the differential

dω = d + adω = d + [ω,−]

is called the twisted differential. The associated dg Lie algebra

g
ω B (A, dω, [ , ]) .

is called the twisted dg Lie algebra.

Remark 1.45 The terminology was chosen by analogy with the twisted de
Rham differential mentioned in Section 1.1.

Lemma 1.42 and Proposition 1.43 show that, for each ω ∈ MC(g) and each
λ ∈ A0, the element dω(λ) = dλ+[ω, λ] ∈ Tω(MC(g)) lives in the tangent space
at ω. In other words, any element λ ∈ A0 induces to a vector field

Υλ ∈ Γ(T (MC(g)))

given by

Υλ(ω) := dλ + [ω, λ] .

Definition 1.46 (Gauge symmetries of Maurer–Cartan elements) The flows
associated to vector fields Υλ for λ ∈ A0 are called the gauge symmetries of
Maurer–Cartan elements. Two Maurer–Cartan elements α and β are said to be
gauge equivalent if there exists an element λ ∈ A0 for which the flow of the
vector field Υλ relates α to β in finite time.
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We shall now introduce a useful method for simplifying calculations in dg
Lie algebras, like the explicit expression for the integration of the gauge flow.
The differential d of a dg Lie algebra g = (A, d, [ , ]) is said to be internal if
there exists an element δ in A−1 such that d = adδ .

Definition 1.47 (Differential trick) Let g = (A, d, [ , ]) be a dg Lie algebra.
The differential trick amounts to considering the one-dimensional extension

g
+ := (A ⊕ kδ, d, [ , ]) ,

where |δ| B −1 , d(δ) B 0 , [δ, x] B dx , and [δ, δ] B 0 .

The dg Lie algebra g+ is the universal extension of g which makes its differ-
ential an inner derivation. The canonical map

ι : g �
� // g+

x � //
{
δ + x , for |x| = −1 ,
x for |x| , −1 ,

embeds g inside g+. The fact that this map is not a morphism of dg Lie algebras
is surprisingly useful: as we shall now see, as a consequence, it alters and
simplifies various equations and formulas. The main simplification is that an
element ω ∈ A−1 is a Maurer–Cartan element in g if and only if δ + ω is a
square-zero element

[δ + ω, δ + ω] = 0

in the extension g+. Let us denote by Sq(g+) the set of degree −1 square-zero
elements in g+ of the form δ + ω. The above embedding provides us with a
canonical identification of the sets (or varieties in the finite dimensional case)

MC(g) � Sq(g+)

and thus of tangent spaces. However the formulas in the latter case are much
simpler: the arguments given above show that adδ+ω = [δ + ω,−] is a square-
zero derivation of g+, for any δ +ω ∈ Sq(g+), and that the tangent space at this
point is given by

TωMC(g) � Tδ+ωSq(g+) = {η ∈ A−1 | [δ + ω, η] = 0} .

In the extension g+, the formula for the vector field induced by any λ ∈ A0 is

Υ+
λ (δ + ω) := [δ + ω, λ] = ad−λ(δ + ω) .
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Definition 1.48 (Nilpotent dg Lie algebra) A dg Lie algebra g = (A, d, [ , ]) is
called nilpotent when there exists an integer n ∈ N such that

[x1, [x2, . . . , [xn−1, xn] . . .]] = 0

for any x1, . . . , xn ∈ A .

This nilpotency condition is enough to ensure that all the infinite series of
brackets we will now consider make sense. Such a condition is too strong to
cover all the examples that we have in mind: in the next chapter 2, we will
settle the more general framework of complete dg Lie algebras inside which fit
all our examples and for which all the results below also hold.

Proposition 1.49 Let g = (A, d, [ , ]) be a nilpotent dg Lie algebra. The inte-
gration of the flow associated to the vector fields Υ−λ , for λ ∈ A0, starting at
α ∈ MC(g) gives at time t:

id− exp(t adλ)
t adλ

(t dλ) + exp(t adλ)(α) .

Proof We use the differential trick and work in the extension g+. The differ-
ential equation

d(δ + γ(t))
dt

= Υ+
−λ(δ + γ(t)) = adλ(δ + γ(t))

associated to the flow Υ+
−λ is then easy to solve since there is now no more

constant term. The adjoint operator being a linear map, the solution to this
differential equation is given by the following exponential:

exp(t adλ)(δ + α) = exp(t adλ)(δ) + exp(t adλ)(α)

= δ + (exp(t adλ) − id)(δ) + exp(t adλ)(α)

= δ +
id− exp(t adλ)

t adλ
(t dλ) + exp(t adλ)(α) .

�

Remark 1.50 This formula is the algebraic counterpart of the formula for the
action of the gauge transformations on connections of principal bundles given
in the previous section 1.1.

The universal formula underlying the integration of finite dimensional real
Lie algebras into Lie groups is the following one.

Definition 1.51 (Baker–Campbell–Hausdorff formula) The Baker–Campbell–
Hausdorff (BCH) formula is the element in the associative algebra of formal
power series on two variables x and y given by

BCH(x, y) B ln (exey) .
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It is straightforward to notice that the BCH formula is associative and unital:

BCH(BCH(x, y), z) = BCH(x,BCH(y, z)) and BCH(x, 0) = x = BCH(0, x) .

The celebrated theorem of Baker, Campbell, and Hausdorff, see [13], states that
this formula can be written using only the commutators [a, b] = a ⊗ b − b ⊗ a:

BCH(x, y) = x + y + 1
2 [x, y] + 1

12 [x, [x, y]] + 1
12 [y, [x, y]] + · · · .

It can thus be applied to any nilpotent Lie algebra.

Definition 1.52 (Gauge group) The gauge group associated to a nilpotent
dg Lie algebra g = (A, d, [ , ]) is the group obtained from A0 via the Baker–
Campbell–Hausdorff formula:

Γ := (A0, x · y := BCH(x, y), 0.) ,

The name “gauge group” is justified by the following proposition.

Theorem 1.53 Let g = (A, d, [ , ]) be a nilpotent dg Lie algebra. The formula

λ.α B
id− exp(adλ)

adλ
(dλ) + exp(adλ)(α)

for the gauge action defines a left action of the gauge group Γ on MC(g) .

Proof We use the differential trick to simplify the calculations: we have to
show that the assignment

λ.(δ + α) B exp(adλ)(δ + α)

defines an action of the gauge group Γ on Sq(g+) . Since adλ is a derivation,
then exp(adλ) is a morphism of graded Lie algebras. This implies that λ.(δ+α)
is again a square-zero element:

[λ.(δ + α), λ.(δ + α)] =
[
exp(adλ)(δ + α), exp(adλ)(δ + α)

]
= exp(adλ)([δ + α, δ + α]) = 0 .

It is straightforward to check that the action of 0 is trivial

0.(δ + α) = exp(ad0)(δ + α) = id(δ + α) = δ + α .

The BCH formula satisfies the relation

exp(adBCH(x,y)) = exp(adx) ◦ exp(ady) .

(The BCH formula is actually characterised by this relation, see [121, Proposi-
tion 5.14].) To prove it, let us work in the associative algebra of formal power
series in three variables x, y, z. Notice that for any element a, the adjoint oper-
ator ada = la − ra is equal to the difference of the left multiplication by a with
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the right multiplication by a. Since the underlying algebra is associative, these
two linear maps commute and thus

exp(ada)(b) = exp(la) ◦ exp(r−a)(b) = ea b e−a .

Using this, we get

exp(adBCH(x,y))(z) = eBCH(x,y) z e−BCH(x,y)

= (exey) z (exey)−1 = ex(ey z e−y)e−x

= exp(adx) ◦ exp(ady)(z) .

Finally, with this relation implies

λ.(µ.(δ + α)) = exp(adλ)(exp(adµ)(δ + α))

= (exp(adλ) ◦ exp(adµ))(δ + α)

= exp(adBCH(λ,µ))(δ + α)

= (λ · µ).(δ + α) .

�

Definition 1.54 (Moduli space of Maurer–Cartan elements) The moduli space
of Maurer–Cartan elements is the set of equivalence classes of Maurer–Cartan
elements under the gauge group action:

MC (g) B MC(g)/Γ .

This moduli space loses the data provided by the gauge symmetries them-
selves. One may instead consider the following main protagonist of deforma-
tion theory.

Definition 1.55 (Deligne groupoid) Let g = (A, d, [ , ]) be a nilpotent dg
Lie algebra. The Deligne groupoid associated to g has the Maurer–Cartan set
MC(g) as its set of objects, and the gauge symmetries λ such that λ.α = β as
the set of (iso)morphisms from α to β.

1.3 Deformation theory with differential graded Lie algebras

The purpose of this section is to explain how one can study deformation theory
with dg Lie algebras using Maurer–Cartan elements and their gauge symme-
tries. This will provide us with a transition from this chapter to the next chapter
as infinitesimal deformations are controlled by nilpotent objects while formal
deformations are controlled by complete objets.
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As mentioned in the previous section, one can twist a dg Lie algebra g =

(A, d, [ , ]) with any Maurer–Cartan element

ϕ ∈ MC(g) B
{
ϕ ∈ A−1 | dϕ + 1

2 [ϕ, ϕ] = 0
}

to produce a twisted dg Lie algebra

g
ϕ B (A, dϕ B d + [ϕ, ], [ , ]) .

The relationship between dg Lie algebras and deformation theory relies ul-
timately on the following key property, which says that deformations of a
Maurer–Cartan element coincide with Maurer–Cartan elements of the twisted
dg Lie algebra.

Lemma 1.56 Let g be a dg Lie algebra and let ϕ ∈ MC(g) be a Maurer–
Cartan element. The following equivalence holds

α ∈ MC
(
g
ϕ) ⇐⇒ ϕ + α ∈ MC(g) .

Proof While we shall see a conceptual explanation in Lemma 4.9, see also
Corollary 4.10, it is easy to prove this result directly by showing that both
conditions are equivalent to

dα + [ϕ, α] + 1
2 [α, α] = 0 .

�

The fundamental theorem of deformation theory recently proved by J. P. Prid-
ham [117] and J. Lurie [89] claims that any deformation problem over a field
k of characteristic zero can be encoded by a dg Lie algebra. We shall give its
precise statement in Section 7.1, but let us now explain what it means heuristi-
cally. Given an underlying “space” V , a type of structure P that it can support,
and an equivalence relation on P-structures on V , there should exist a dg Lie
algebra g = (A, d, [ , ]) such that its set of Maurer–Cartan elements is in one-to-
one correspondence with the set of P-structures on V and such that the action
of the gauge group Γ on MC(g) coincides with the equivalence relation consid-
ered on P-structures.

Example 1.57 When V is a finite dimensional vector space and when P
stands for associative algebra structures up to isomorphisms, the deformation
dg Lie algebra is given by the Hochschild cochain complex

C•(V,V) B

∏
n≥1

Hom
(
V⊗n,V

)
, 0, [ , ]

 ,
where the Lie bracket is the one defined by Gerstenhaber [54] (see Section 4.1)
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and where the homological degree of the factor Hom
(
V⊗n,V

)
is equal to 1−n .

In this case, a Maurer–Cartan element is precisely a binary associative product,
and gauge equivalence is an isomorphism.

There are two possible viewpoints one can adopt here: one can either ensure
convergence of deformations by working locally with complete “spaces” V
and complete dg Lie algebras g (as will be done in Chapters 3 and 4) or work
globally, inspired by the functors of points in algebraic geometry, as follows.
Let R be a local (commutative) ring with the maximal ideal m and with the
residue field k, that is R � k ⊕ m . Given any dg Lie algebra g = (A, d, [ , ]),
one can consider its R-extension defined by

g ⊗ R B (A ⊗ R, d, [ , ]) ,

where d(ζ ⊗ x) B dζ ⊗ x and where [ζ ⊗ x, ξ ⊗ y] B [ζ, ξ] ⊗ xy. The other
way round, one recovers the original dg Lie algebra g from its R-extension
g ⊗ R � g ⊕ g ⊗m by reducing modulo m .

Definition 1.58 (R-deformation) An R-deformation of a Maurer–Cartan ele-
ment ϕ ∈ MC(g) is a Maurer–Cartan element Φ ∈ MC(g⊗R) of theR-extension
of g such that its reduction modulo m is equal to ϕ . The set of such deforma-
tions is denoted by Defϕ(R).

Proposition 1.59 The set of R-deformations of a Maurer–Cartan ϕ ∈ MC(g)
is in natural bijection with the set of Maurer–Cartan elements of the twisted
dg Lie algebra gϕ ⊗ m :

Defϕ(R) � MC(gϕ ⊗m) .

Proof Notice first that, for any Maurer–Cartan element ϕ ∈ MC(g), the R-
extension of g twisted by ϕ is isomorphic to

(g ⊗ R)ϕ � gϕ ⊗ R � gϕ ⊕ gϕ ⊗m .

The result is then a direct application of Lemma 1.56: any element

Φ = ϕ + Φ̄ ∈ g ⊕ g ⊗m

is an R-deformation of ϕ if and only if Φ̄ is Maurer–Cartan element of the
twisted dg Lie algebra gϕ ⊗m . �

Example 1.60 An R-deformation of an associative algebra structure ϕ on V
is anR-linear associative algebra structure Φ on V⊗Rwhose reduction modulo
m is equal to ϕ. This comes from the formula

Homk(V⊗n,V) ⊗ R � HomR
(
(V ⊗ R)⊗n,V ⊗ R

)
.
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For the case when the ring R is Artinian, that is when there exists K ∈ N
such thatmK = 0, all series we ever consider will converge automatically since
the dg Lie algebra g⊗m is nilpotent. The case of complete algebras considered
in Chapter 3 corresponds to the case when R is complete with respect to its
m-adic topology; it is then a limit of local Artinian rings. In both cases, the
BCH formula produces a convergent series, and the gauge group Γ̄ B (A0 ⊗

m,BCH, 0) is well defined. Its action

λ.Φ B
id− exp(adλ)

adλ
(dλ) + exp(adλ)(Φ)

on R-deformations Φ = ϕ + Φ̄ is also well defined.

Definition 1.61 (Moduli space of R-deformations) The moduli space of R-
deformations is the set of classes

De fϕ(R) B Defϕ(R)/Γ̄

of R-deformations modulo the action of the gauge group Γ̄ .

The first seminal example is given by the algebra of dual numbers

R = k[t]/
(
t2)

which is an Artinian local ring.

Definition 1.62 (Infinitesimal deformation) An infinitesimal deformation of
a Maurer–Cartan element ϕ ∈ MC(g) is a Maurer–Cartan element of the form

Φ = ϕ + Φ̄t ∈ MC
(
g ⊗ k[t]/

(
t2)) .

Infinitesimal deformations are related to the homology group of degree −1
of the twisted Lie algebra as follows.

Theorem 1.63 There are canonical bijections

Defϕ
(
k[t]/

(
t2)) � Z−1

(
g
ϕ) and De fϕ

(
k[t]/

(
t2)) � H−1

(
g
ϕ) .

Proof Any degree −1 element Φ = ϕ+ Φ̄t ∈ g⊗ k[t]/
(
t2) is a Maurer–Cartan

element if and only if is satisfies the equation

dϕ + 1
2 [ϕ, ϕ]︸         ︷︷         ︸

=0

+
(

d
(
Φ̄
)

+
[
ϕ, Φ̄

]︸          ︷︷          ︸
=dϕ(Φ̄)

)
t = 0 .

So infinitesimal deformations coincide with cycles of degree −1 in the twisted
dg Lie algebra.
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Two infinitesimal deformations Φ1 = ϕ+Φ̄1t and Φ2 = ϕ+Φ̄2t are equivalent
if there exists an element λ ∈ A0 such that

λt.
(
ϕ + Φ̄1t

)
= ϕ +

(
dλ + [ϕ, λ] + Φ̄1

)
t = ϕ + Φ̄2t .

This latter equation is equivalent to Φ̄2 − Φ̄1 = dϕ(λ) . This proves that two
infinitesimal deformations are equivalent if and only if they are homologous in
the twisted dg Lie algebra. �

The other seminal example is given by the algebra of formal power series

R = k[[t]]

which is a complete local ring.

Definition 1.64 (Formal deformation) A formal deformation of a Maurer–
Cartan element ϕ ∈ MC(g) is a Maurer–Cartan element of the form

Φ = ϕ + Φ1t + Φ2t2 + · · · ∈ MC
(
g ⊗ k[[t]]

)
.

The obstructions to formal deformations are related to the homology group
of degree −2 of the twisted dg Lie algebra as follows.

Theorem 1.65 If H−2
(
gϕ

)
= 0, then any cycle of degree −1 of gϕ extends to a

formal deformation of ϕ .

Proof In the present case, the Maurer–Cartan equation dΦ + 1
2 [Φ,Φ] = 0

splits with respect to the power of t as

dΦn + [ϕ,Φn] + 1
2

n−1∑
k=1

[Φk,Φn−k] = 0 (∗)

for any n > 1 . For n = 1, the equation (∗) gives

dΦ1 + [ϕ,Φ1] = dϕ(Φ1) = 0 ,

so the first term of a formal deformation coincides with a cycle of degree −1
of the twisted dg Lie algebra.

Let us now consider such a degree −1 cycle Φ1 and let us assume that we
have H−2

(
gϕ

)
= 0 . We show, by induction on n > 1, that there exist elements

Φ1, . . . ,Φn ∈ A−1 satisfying the equations (∗) up to n . The case n = 1 obvi-
ously holds true. Assume that this statement holds true up to n − 1. The first
two terms of Equation (∗) at n are equal to dϕ(Φn); let us show that the third
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term is degree −2 cycle with respect to the twisted differential:

dϕ
n−1∑

k=1

[Φk,Φn−k]

 =

n−1∑
k=1

([
dϕ(Φk),Φn−k

]
−

[
Φk, dϕ(Φn−k)

])
= 2

n−1∑
k=1

[
dϕ(Φk),Φn−k

]
= −

n−1∑
k=1

k−1∑
l=1

[
[Φl,Φk−l],Φn−k

]
= −

∑
a+b+c=n
a,b,c>1

[
[Φa,Φb],Φc

]
= 0 ,

by the Jacobi identity. Since H−2
(
gϕ

)
= 0, there exist Φn ∈ A−1 satisfying

Equation (∗) at n, which concludes the proof. �

The homology group of degree −1 of the twisted dg Lie algebra detects the
Maurer–Cartan elements that are rigid, that is the ones that cannot be deformed
nontrivially.

Theorem 1.66 If H−1
(
gϕ

)
= 0, then any formal deformation of ϕ is equivalent

to the trivial one.

Proof We once again use the differential trick and work in the extension(
g ⊗ k[[t]]

)+
= g ⊗ k[[t]] ⊕ kδ .

Given a formal deformation Φ = ϕ +
∑

n>1 Φntn of ϕ, let us try to find, by
induction, an element

λ = λ1t + λ2t2 + · · · ∈ A0 ⊗ k[[t]]

satisfying

exp(adλ)(δ + ϕ) = δ + Φ (∗∗)

in
(
g ⊗ k[[t]]

)+ . For n = 1, the relation satisfied by the coefficients of t in
Equation (∗∗) is

adλ1 (δ + ϕ) = −dϕ(λ1) = Φ1 .

Recall that Equation (∗) in the proof of Theorem 1.65 shows that Φ1 is cycle
of degree −1 for the twisted differential; since H−1

(
gϕ

)
= 0, it is also a bound-

ary, so we may find such an element λ1 ∈ A0 . Suppose now that there exist
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elements λ1, . . . , λn−1 ∈ A0 satisfying Equation (∗∗) modulo tn and let us look
for an element λn ∈ A0 satisfying it modulo tn+1. Under the notations

λ̃ B λ1t + · · · + λn−1tn−1 and exp(adλ̃)(δ + ϕ) =

∞∑
n=0

(
exp(adλ̃)(δ + ϕ)

)
n

tn ,

the relation satisfied by the coefficients of tn in Equation (∗∗) is

adλn (δ + ϕ) +
(
exp(adλ̃)(δ + ϕ)

)
n

= −dϕ(λn) +
(
exp(adλ̃)(δ + ϕ)

)
n

= Φn .

The assumption H−1
(
gϕ

)
= 0 ensures that such an element λn exists provided

that Φn and
(
exp(adλ̃)(δ + ϕ)

)
n

have the same image under the twisted differ-

ential dϕ. We consider the element Φ̃ B Φ1t + · · · + Φn−1tn−1 . Equation (∗)
guarantees that

dϕ(Φn) = − 1
2

([
Φ̃, Φ̃

])
n
.

On the other hand, Equation (∗∗) implies[
Φ̃, Φ̃

]
≡

[
exp(adλ̃)(δ + ϕ) − (δ + ϕ), exp(adλ̃)(δ + ϕ) − (δ + ϕ)

]
(mod tn+1)

≡ −2
[
(δ + ϕ), exp(adλ̃)(δ + ϕ)

]
(mod tn+1)

≡ −2 dϕ
(
exp(adλ̃)(δ + ϕ)

)
(mod tn+1) ,

since exp(adλ̃) is a morphism of Lie algebras. In the end, we get

dϕ(Φn) = − 1
2

([
Φ̃, Φ̃

])
n

=
(
dϕ

(
exp(adλ̃)(δ + ϕ)

))
n

= dϕ
((

exp(adλ̃)(δ + ϕ)
)

n

)
,

which concludes the proof �

The present proof shows how the differential trick works heuristically: it
states that “if a property holds true in a graded Lie algebra with trivial differ-
ential, then it holds true in any dg Lie algebras”.
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Operad theory for filtered and complete modules

In algebra, one has to consider infinite series on many occasions. In order to
make sense, these formulas require an extra topological assumption on the un-
derlying module. In this chapter, we first recall the notion of filtered and then
complete modules which provides us with such a complete topology. This type
of topology considered in many research areas such as algebraic geometry,
deformation theory, rational homotopy theory and microlocal analysis, finds
its source in the generalisation of the Lie theory to filtered Lie algebras and
groups due to M. Lazard in his Ph.D. thesis [86]. It became later omnipresent
in commutative algebra, see N. Bourbaki [14].

In this chapter, we establish the various properties for the monoidal struc-
tures on the categories of filtered modules and complete modules and for their
associated monoidal functors. The main goal is to develop the theory of oper-
ads and operadic algebras in this context. First, this allows us to compare the
various categories of filtered and complete algebras and recover conceptually
the various known definitions of filtered complete algebras that one can find in
the literature. Then, as we will see in the next chapters, this allows us to get for
free operadic results on the complete setting since the previously performed
operadic calculus still hold in this generalised context, as it is in any monoidal
category satisfying the monoidal properties mentioned above.

This present exposition shares common points with that of P. Deligne [28,
Section 1], and that of M. Markl [97, Chapter 1]; it is close to the treatment

This material will be published by Cambridge University Press & Assessment as ‘Maurer-Cartan
Methods in Deformation Theory: the twisting procedure’ by Vladimir Dotsenko, Sergey Shadrin
and Bruno Vallette. This version is free to view and download for personal use only. Not for re-
distribution, re-sale or use in derivative works. c©Cambridge University Press & Assessment

40



2.1 Filtered algebras 41

of B. Fresse [47, Section 7.3], though one does not find there all the results
needed in the present treatment. For simplicity, we work over a ground field k
though many results hold in a more general context.

2.1 Filtered algebras

Definition 2.1 (Filtered module) A filtered module (A,F) is a k-module A
equipped with a filtration of k-submodules

A = F0A ⊃ F1A ⊃ F2A ⊃ · · · ⊃ FkA ⊃ Fk+1A ⊃ · · ·

This condition implies that the subsets {x + FkA | x ∈ A, k ∈ N} form a neigh-
bourhood basis of a first-countable topology on A, which is thus a Fréchet–
Urysohn space and so a sequential space. Since this topology is induced by
submodules, any filtered module is trivially a topological module, that is the
scalar multiplication and the sum of elements are continuous maps, when one
considers the discrete topology on the ground field k.

Example 2.2 Let I be an ideal of a k-algebra A . The submodules FkA B IkA,
for k ≥ 0, form a filtration of A and the associated topology is called the I-adic
topology of A.

Lemma 2.3 The subsets FkA, for k ∈ N, are closed with respect to this topol-
ogy.

Proof Let {xn ∈ FkA}n∈N be a sequence converging to x ∈ A. There exists
N ∈ N such that, for all n ≥ N, we have xn − x ∈ FkA. Since the element xN

lives in FkA, which is a submodule of A, this implies that x lives in FkA too. �

Let (A,F) and (B,G) be two filtered modules. We consider the following
induced filtration on the mapping space Hom(A, B):

Fk Hom(A, B) B { f : A→ B | f (FnA) ⊂ Gn+kB , ∀n ∈ N} .

This filtration endows hom(A, B) B F0 Hom(A, B) with a filtered module
structure. We invite the reader to check that while any map in Fk Hom(A, B)
is continuous with respect to the associated topologies, not every continuous
map is of this form.

Definition 2.4 (Filtered map) A filtered map f : (A,F)→ (B,G) between two
filtered modules is an element f ∈ hom(A, B), that is a linear map preserving
the respective filtrations: f (FnA) ⊂ GnB, for all n ∈ N.
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The induced filtration on the tensor product of two filtered modules is given
by the formula

Fk(A ⊗ B) B
∑

n+m=k

Im
(
FnA ⊗ GmB→ A ⊗ B

)
.

Lemma 2.5 The category of filtered modules with filtered maps, equipped
with the internal hom and the filtration of tensor products, forms a bicomplete
closed symmetric monoidal category, whose monoidal product preserves col-
imits.

Proof Given a collection
(
Ai,Fi

)
i∈I

of filtered modules, their coproduct is
given by A B

⊕
i∈I Ai with filtration

FkA B
{
ai1 + · · · + ain | ai j ∈ Fi j

k Ai j , ∀ j ∈ {1, . . . , n}
}

and their product is given by B B
∏

i∈I Ai with filtration

GkB B
{
(ai)i∈I | ai ∈ Fi

kAi, ∀i ∈ I
}
.

Cokernels of filtered maps f : (A,F) → (B,G) are given by p : B � B/ Im f
equipped with the filtration p(Gk) � GkB/(Im f ∩ GkB). Since this category is
(pre)additive, all coequalizers of pairs ( f , g) are given by cokernels of differ-
ences f −g. So this category admits all colimits. In the same way, kernels of fil-
tered maps f : (A,F)→ (B,G) are given by f −1(0) with filtration f −1(0)∩FkB.
Since this category is (pre)additive, all equalizers of pairs ( f , g) are given by
kernels of differences f − g. So this category admits all limits. Notice that this
category, though additive, fails to be Abelian: in general, maps do not have
categorical images.

Finally, it is straightforward to check that the various structure maps of the
(strong) symmetric closed monoidal category of modules are filtered. From
the above description of coproducts and cokernels, it is easily seen that the
monoidal product preserves them, so it preserves all colimits. �

The properties of Lemma 2.5 ensures that one can develop the operadic cal-
culus in the symmetric monoidal category of filtered modules, see [88, Chap-
ter 5]. An operad in this context will be referred to as a filtered operad.

Example 2.6 For a filtered module (A,F), the associated filtered endormor-
phism operad is the part of the endomorphism operad of A consisting of filtered
maps, that is

endA B
{
hom(A⊗n, A)

}
n∈N

.

An element of the filtered endomorphism operad is thus a linear map

f : A⊗n → A
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satisfying

f
(
Fk1 A ⊗ · · · ⊗ Fkn A

)
⊂ Fk1+···+kn A .

The full induced filtration on its underlying collection is given by

f ∈ Fk endA(n) when f
(
Fk1 A ⊗ · · · ⊗ Fkn A

)
⊂ Fk1+···+kn+kA .

Definition 2.7 (Filtered P-algebra) Let P be a filtered operad and let (A,F)
be a filtered module. A filtered P-algebra structure on (A,F) amounts to the
data of a filtered morphism of operads

P → endA .

We denote the category of modules by Mod and the category of filtered
modules by FilMod.

Proposition 2.8 The functort : FilMod→ Mod, which forgets the filtration,
admits a left adjoint full and faithful functor

Dis : Mod FilMod : t⊥

given by the trivial filtration:

Dis(A) B (A, A = Ftr
0 A ⊃ 0 = Ftr

1 A = Ftr
2 A = · · · ) ,

which induces the discrete topology. These two functors are strictly symmetric
monoidal.

Proof It is straightforward to check the various properties. �

The monoidal part of this proposition ensures that the underlying collection,
without the filtration, of any filtered operad is an operad. For instance, the
filtered endomorphism operad endA is a strict suboperad of the endomorphism
operad EndA. In the other way round, any operad can be seen as a filtered
operad equipped with the trivial filtration, that is with discrete topology.

Example 2.9 Definition 2.7, applied to the ns operad As of associative al-
gebras, produces the classical notion of filtered associative algebra, see [86,
Section I.3], [14, Chapter 3], or [118, Appendix A.1]. In the case of the op-
erad Lie, we recover the notion of filtered Lie algebras of M. Lazard [86].
All the operadic constructions therefore hold in this setting. For instance, the
morphism of symmetric operads Lie → Ass, viewed as a morphism of fil-
tered operads produces automatically the universal enveloping Lie algebra in
the filtered world by [88, Section 5.2.12].



44 Operad theory for filtered and complete modules

Definition 2.10 (Filtered differential graded module) A filtered differential
graded module is a differential graded module in the category of filtered mod-
ules. Such a data amounts to a collection {An}n∈Z of filtered modules equipped
with a square-zero degree −1 filtered map d.

All the results above hold mutatis mutandis for filtered dg modules. For
instance, this operadic definition allows us to recover naturally the following
notions of filtered homotopy algebras structures present in the literature.

Example 2.11 A filtered curved A∞-algebra structure on a filtered graded
module (A,F) amounts to the data of curved A∞-algebra structure

(m0,m1,m2, · · · )

on A according to Definition 4.3 below such that the various structure maps
satisfy

mn(Fk1 A, . . . ,Fkn A) ⊂ Fk1+···+kn A .

This definition corresponds to the one given by Fukaya–Oh–Ohta–Ono in [50],
with the only difference that these authors consider modules with the so called
energy filtration, indexed by non-negative real numbers R+, see Section 4.1 for
further operadic details.

The present operadic definition of a filtered (shifted) curved L∞-algebra
given in Definition 4.12 recovers the usual one, which is used for instance
by Dolgushev–Rogers in [31, 32] (with the further constraint F0A = F1A).

2.2 Complete algebras

Any decreasing filtration A = F0A ⊃ F1A ⊃ · · · induces a sequence of surjec-
tive maps,

0 = A/F0A A/F1A
p0oooo A/F2A

p1oooo A/F3A
p2oooo · · ·oooo ,

where pk is the reduction modulo FkA. Its limit, denoted by

Â B lim
k∈N

A/FkA ,

is defined by the formula

Â =
{
(x0, x1, x2, . . .) | xk ∈ A/Fk, pk(xk+1) = xk

}
.

If we consider the structure maps

qk : Â� A/FkA, (x0, x1, x2, . . .) 7→ xk,
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then the limit module Â is endowed with the canonical filtration

F̂kÂ B ker qk = {(0, . . . , 0, xk+1, xk+2, . . .)}.

With the associated topology, it forms a complete Hausdorff space.
Let us denote by πk : A � A/FkA the canonical projections. The canonical

map π : A → Â, x 7→ (π0(x), π1(x), π2(x), . . .), associated to them, is filtered
and thus continuous.

Definition 2.12 (Complete module) A complete module is a filtered module
(A,F) such that the canonial morphism

π : A
�
−→ Â = lim

k∈N
A/FkA

is an isomorphism.

The canonical map π is an epimorphism if and only if the associated topo-
logical space is complete, which explains the terminology chosen here. When
the canonical map is an isomorphism, it is an homeomorphism since π−1 is fil-
tered and thus continuous. We note that the kernel π is equal to the intersection
of all the sub-modules FkA. Therefore, it is a monomorphism if and only if⋂

k∈N
FkA = {0} ;

this condition is equivalent for the associated topology on A to be Hausdorff. In
that case, the topology on A is in fact metrisable: one may define the valuation
of an element x ∈ A by putting

ν(x) B

+∞ if x = 0

k if x ∈ FkA\Fk+1A ,

and the distance

d(x, y) =
1

ν(y − x) + 1
.

As a consequence, filtered maps are uniformly continuous and the canonical
map π : A ↪→ Â makes Â into the completion of A: the module Â is complete,
contains A as a dense subset, and is unique up to isometry for this property.

Example 2.13 The toy model here is the algebra of polynomials k[X] with
its X-adic filtration Fk k[X] B Xk k[X]. Its topology is Hausdorff but not com-
plete. Its completion is the algebra of formal power series k̂[X] � k[[X]].

In any complete module, convergent series have the following simple form.
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Lemma 2.14 Let (A,F) be a complete module. The series
∑

n∈N xn associated
to a sequence of elements {xn}n∈N is convergent if and only if the sequence xn

converges to 0.

Proof We classically consider the sequence Xn B
∑n

k=0 xk, for n ∈ N. If the
sequence {Xn} converges, then it is a Cauchy sequence and so xn = Xn − Xn−1

tends to 0. In the other way round, if the sequence {xn}n∈N tends to 0, this means

∀k ∈ N, ∃N ∈ N, ∀n ≥ N, xn ∈ FkA .

Since FkA is a submodule of A, we have

∀k ∈ N, ∃N ∈ N, ∀m ≥ n ≥ N, Xm − Xn = xm + · · · + xn+1 ∈ FkA ,

that is the sequence {Xn} is Cauchy is thus convergent. �

We can consider the following first definition of a complete algebra over an
operad. We will see later on at Theorem 2.24 that it actually coincides with the
conceptual one.

Definition 2.15 (Complete P-algebra) A complete algebra over a filtered
operad P is a complete module endowed with a filtered P-algebra structure.

Example 2.16 The above example of formal power series k[[X]] is a com-
plete algebra over the operad Ass (respectively, Com), that is a complete asso-
ciative (respectively, commutative associative) algebra.

We consider the full subcategory of filtered modules whose objects are the
complete modules, and we denote it by CompMod.

Proposition 2.17 The completion of a filtered module defines a functor which
is left adjoint to the forgetful functor:

̂ : FilMod CompMod : t .⊥

Proof This statement amounts basically to the following property: any fil-
tered map f : A→ B, with target a complete module, factors uniquely through
the canonical map

A B

Â ,

f

π
∃! f̄

which is nothing but the universal property of the limit Â. �
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In order to endow the category CompMod of complete modules with a mo-
noidal structure, one could first think at the underlying tensor product of fil-
tered modules. But this one fails to preserve complete modules, as the follow-
ing example shows

k[[X]] ⊗ k[[Y]] �
� , // ̂k[X] ⊗ k[Y] � k[[X,Y]] .

Definition 2.18 (Complete tensor product) The complete tensor product of
two complete modules (A,F) and (B,G) is defined by the completion of their
filtered tensor product:

A⊗̂B B Â ⊗ B .

We leave it as an exercise to the reader to check that in the case when two
filtered modules are not necessarily complete, the completion of their tensor
product is equal to Â ⊗ B � Â ⊗̂ B̂ .

Lemma 2.19 The category
(
CompMod, ⊗̂

)
of complete modules equipped

the complete tensor product is a bicomplete closed symmetric monoidal cate-
gory whose monoidal product preserves colimits. The same is true for complete
differential graded modules.

Proof Let
(
Ai,Fi

)
i∈D

be a diagram of complete modules. Since the comple-
tion functor is a left adjoint functor, it would preserve colimits if these latter
ones exist. Therefore we define colimits in the category of complete modules
by the formula

ĉolim
i∈D

Ai B

∧

colim
i∈D

Ai
.

It is straightforward to check that they satisfy the universal property of col-
imits from the property of the completion functor. For instance, coproducts of
complete modules are given by⊕̂

i∈I

Ai �
⊕̂
i∈I

Ai ,

and finite coproducts of complete modules are simply given by the finite di-
rect sums of their underlying filtered module structure, since this latter one
is already complete. In the other way round, since the forgetful functor from
complete modules to filtered modules is a right adjoint functor, it would pre-
serve limits if these latter ones exist. One can actually see that the formulas
in the category of filtered modules (Lemma 2.5) for products and kernels once
applied to complete modules render complete modules. Therefore the category
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of complete modules admits limits since it is a (pre)additive category. Like the
category of filtered modules and for the exact same reasons, the category of
complete modules is additive but fails to be abelian.

The various axioms of a strong monoidal category are straightforward to
check. The preservation of the colimits by the complete tensor product is auto-
matic from its definition, the above characterisation of colimits and Lemma 2.5:

(
ĉolim

i∈D
Ai

)
⊗̂B �


∧

colim
i∈D

Ai

 ⊗̂B �

∧(
colim

i∈D
Ai

)
⊗ B

�

∧

colim
i∈D

(
Ai ⊗ B

)
� ĉolim

i∈D

(
Ai⊗̂B

)
.

It remains to prove that this symmetric monoidal category is closed. To this
end, it is enough to prove that the internal filtered hom of complete modules
A, B is complete. One first notices that⋂

k∈N
Fk hom(A, B) = hom(A,∩k∈NGkB) = {0} .

Now let { f n : A→ B}n∈N be a Cauchy sequence of filtered maps. This means
that

∀k ∈ N,∃N ∈ N,∀m, n ≥ N, f m − f n ∈ Fk hom(A, B) .

Therefore, the sequence { f n(a)}n∈N in B is Cauchy for any a ∈ A and thus
converges since B is complete. We denote by f (a) its limit. Considering the
discrete topology on the ground field k, the scalar multiplication and the sum
of elements are continuous, so this assignment defines a linear map f : A→ B.
When a ∈ FlA, the Cauchy sequence { f n(a)}n∈N lives in GlB, which is closed
by Lemma 2.3. Hence, we have f (a) ∈ GlB and the whole map f is filtered,
that is f ∈ hom(A, B). Using again the argument that the Gl+kB are closed, one
can see, after a passage to the limit, that

∀k ∈ N,∃N ∈ N,∀n ≥ N, f n − f ∈ Fk hom(A, B) ,

since this means that ( f n − f ) (FlA) ⊂ Gl+kB.
The same proof works mutatis mutandis for complete differential graded

modules. �

So one can develop the operadic calculus in this setting. This produces au-
tomatically a notion of complete dg operads together with their categories
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of complete dg algebras. The next proposition shows that there is nothing to
change from the filtered case for the endomorphism operad.

Proposition 2.20 The complete endomorphism operad of a complete dg mod-
ule A is canonically isomorphic to the filtered endormorphism operad:{

hom
(
A⊗̂n, A

)}
n∈N

�
{
hom

(
A⊗n, A

)}
n∈N

= endA .

Proof The proof relies entirely on the universal property of the completion
functor as described in the proof of Proposition 2.17. Under the same notations,
one can check that the bijection

hom
(
Â, B

)
→ hom(A, B)

f̄ 7→ f̄ ◦ π

is a bijection of filtered modules, whenever the filtered module B is complete.
In the present case, this induces

hom
(
A⊗̂n, A

)
� hom

(
Â⊗n, A

)
� hom

(
A⊗n, A

)
,

for any n ∈ N. �

Proposition 2.21 The completion functor

̂ : (FilMod,⊗)→ (CompMod, ⊗̂)

is strong symmetric monoidal and the forgetful functor

t : (CompMod, ⊗̂)→ (FilMod,⊗)

is lax symmetric monoidal.

Proof The structure map for the monoidal structure of the completion functor
is the isomorphism Â ⊗̂ B̂

�
−→ Â ⊗ B. The structure map for the monoidal

structure of the forgetful functor is the canonical map A ⊗ B→ A⊗̂B. �

One can iterate the above functors D̂is : Mod → FilMod → CompMod.
Since the discrete topology is already complete, this composition of functors
does not change the underlying module; it just provides it with the trivial fil-
tration.

Corollary 2.22 The following pair of functors are adjoint

D̂is : Mod CompMod : t ,⊥

where D̂is(A) B (A,Ftr). The functor D̂is is a strict monoidal functor and the
functor t is a lax monoidal functor.
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Proof This adjunction is actually obtained as the composite of the two ad-
junctions of Proposition 2.8 and Proposition 2.17. The monoidal structures on
the two functors are obtained as composite of two monoidal structures from
Proposition 2.8 and Proposition 2.21. �

The main point for these six functors to be monoidal is that each of them
sends an operad in the source category to an operad in the target category and
similarly for their associated notion of algebras.

Proposition 2.23 Any dg operad P is a filtered (respectively complete) dg op-
erad P when equipped with the trivial filtration. Any P-algebra A is a filtered
(respectively complete) P-algebra when equipped with the trivial filtration.
The category of discrete (respectively filtered) P-algebra is a full subcategory
of the category of complete P-algebras.

Proof This is a direct consequence of the monoidal structure of the functor
Dis from Proposition 2.8 (respectively D̂is from Corollary 2.22), since this
latter one does not modify the underlying module. �

As a consequence, we will now work in the larger category of complete P-
algebras and extend the various operadic results to that level. The key property
that the completion functor is left adjoint to the forgetful functor allows us to
get the following simple descriptions for the notions of complete operads and
complete P-algebras.

Theorem 2.24

(i) The structure of a complete dg operad P is equivalent to the structure of a
filtered dg operad on a complete dg S-module P .

(ii) Let P be a complete dg operad. The data of a dg P-algebra structure in
the monoidal category of complete dg modules is equivalent to a complete
dg P-algebra structure, as defined above, that is a filtered dg P-algebra
structure on an underlying complete dg module.

(iii) Let P be a filtered dg operad. The data of a complete dg P-algebra struc-
ture, as defined above, is equivalent to the data of a complete dg P̂-algebra
structure.

Proof

(i) Since the forgetful functor t : CompMod → FilMod is lax symmetric
monoidal according to Proposition 2.21, it sends any complete operad struc-
ture on P to a filtered operad structure on the underlying complete dg S-
module P . In details, recall that a filtered operad structure amounts to a
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collection of filtered maps γn from

P ◦ P(n) B
⊕
k∈N

P(k) ⊗Sk

 ⊕
i1+···+ik=n

IndSn
Si1×···×Sik

(P(i1) ⊗ · · · ⊗ P(ik)
)

to P(n) that satisfy certain relations, see [88, Section 5.2.1]. Similarly, a
complete dg operad structure amounts to a collection of filtered maps γ̂n

from

P ◦̂P(n) B
⊕̂

k∈N
P(k)⊗̂Sk

 ⊕̂
i1+···+ik=n

IndSn
Si1×···×Sik

(P(i1)⊗̂ · · · ⊗̂P(ik)
)

to P(n) that satisfy the same type of relations. Since the completion func-
tor is left adjoint, it preserves colimits and thus coproducts, which implies
that P̂ ◦ P is isomorphic to P ◦̂P . By pulling back along the canonical
completion map

π : P ◦ P → P ◦̂P ,

any dg operad structure γ̂ in complete dg modules induces a filtered dg
operad structure γ = π γ̂. In the other way round, any filtered dg operad
structure γ factors through P̂ ◦ P � P ◦̂P , that is through an operad struc-
ture γ̂ in complete dg modules.

(ii) For the second point, the arguments are similar. The lax symmetric mono-
idal functor t : CompMod→ FilMod sends any P-algebra structure in the
monoidal category of complete dg modules to a P-algebra structure in the
monoidal category of filtered dg modules. This latter structure amounts to
a morphism of filtered dg operads ρ : P → endA, under point (1). Since
the filtered dg operad P is complete and since the endomorphism operad
associated to a complete dg module A is the same in the filtered and the
complete case, after Proposition 2.20, a complete dg P-algebra structure
on A amounts to a morphism of complete dg operads ρ̂ : P → endA, which
thus coincides with the above type of maps since the morphisms in the
category of complete modules are that of the category of filtered modules.

(iii) The arguments are again the same: by the universal property of the comple-
tion, any morphism of filtered dg operads ρ : P → endA is equivalent to a
morphism of complete dg operads ρ̂ : P̂ → endA, when A is complete.

�

This result shows that the terminology “complete algebra” chosen in Def-
inition 2.15 does not bring any ambiguity since the two possible notions are
actually equivalent. Notice that this theorem applies to discrete dg operads and
discrete dg P-algebras, when equipped with the trivial filtration.
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Example 2.25 The free complete P-algebra of a complete module V over a
complete operad P is given by

P ◦̂V =
⊕̂
n∈N

P(n)⊗̂Sn V ⊗̂n .

When the operad P and the module V are discrete ones endowed with the
trivial filtration, we recover the free P-algebra P ◦ V . But, when the filtration
arises from the weight grading for which V is concentrated in weight 1, so that
F0V = F1V = V and FnV = 0, for n ≥ 2, the free complete P-algebra on V is
equal to

P ◦̂V �
∏
n∈N

P(n) ⊗Sn V⊗n ,

since its underlying filtration is given by

Fk

⊕
n∈N

P(n) ⊗Sn V⊗n

 =
⊕
n≥k

P(n) ⊗Sn V⊗n .

In this way, we recover the notions of free complete associative algebra present
in [86, Section I.4] or free complete Lie algebras present in [86, Section II.1]
and [85]. This allows us to get automatically, that is operadically, the universal
enveloping algebra in the complete case.

Proposition 2.26 Let P be a dg operad. The forgetful functor embeds the
category of complete dg P-algebras as a full subcategory of filtered dg P-
algebras. The completion functors sends a filtered dg P-algebra to a complete
dg P-algebra. These two functors again form a pair of adjoint functors, where
the completion functor is left adjoint.

Proof This is a direct corollary of Proposition 2.21 and Theorem 2.24. �

One immediate upshot of the theory developed here is that one can now deal
with the question of convergence mentioned in the previous chapter. Namely,
to make the results of that chapter precise, one simply has to work in a com-
plete dg Lie algebra g = (A,F, d, [ , ]), and to define the gauge action only for
elements λ ∈ F1A0. The gauge group in this situation is the group

Γ = (F1A0,BCH, 0) .



3

Pre-Lie algebras and the gauge group

In this chapter, we recall the necessary definitions and results concerning pre-
Lie algebras and the symmetries of their Maurer–Cartan elements, and we gen-
eralise M. Lazard’s treatment of Lie theory to develop the integration theory
of complete pre-Lie algebras. The reason to care about pre-Lie algebras in
the context of deformation theory is two-fold. First, a great number of exam-
ples relevant for deformation theory, including in particular the deformation
complexes of maps from Koszul operads, fit into this formalism. Second, the
Baker–Campbell–Hausdorff formula integrating the degree zero component to
the corresponding gauge group simplifies significantly when we work with a
dg Lie algebra coming from a pre-Lie algebra; so using pre-Lie algebras comes
from some obvious benefits. The class of pre-Lie algebras to which our results
are applied are operadic convolution algebras, leading to tools that allow us
to work efficiently with the main notion of algebraic deformation theory: the
deformation gauge group.

This part of the book uses extensively the groundwork from our previous
paper [40]; in fact, results of that paper extend to complete pre-Lie algebras
without any changes thanks to the general formalism of complete algebras
presented in the previous chapter 2. To make the exposition self-contained,
we however include some of the key relevant results of [40]. An important
consequence for homotopical algebra is that the degree of generality in which
our results hold allows us to define a suitable notion of∞-morphism of homo-

This material will be published by Cambridge University Press & Assessment as ‘Maurer-Cartan
Methods in Deformation Theory: the twisting procedure’ by Vladimir Dotsenko, Sergey Shadrin
and Bruno Vallette. This version is free to view and download for personal use only. Not for re-
distribution, re-sale or use in derivative works. c©Cambridge University Press & Assessment
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topy algebras encoded by non-necessarily coaugmented cooperads, like curved
A∞-algebras or curved L∞-algebras.

3.1 Gauge symmetries in complete pre-Lie algebras

In [40], we developed the integration theory of pre-Lie algebras under a strong
weight grading assumption. Unfortunately, the deformation theory of many al-
gebraic structures, like the ones that we will study in Chapter 4, requires to use
curved Koszul dual cooperads which do not satisfy that assumption, and one
needs to work with complete algebras instead. In this section, we explain how
to extend the integration theory of weight graded left-unital dg pre-Lie alge-
bras to the complete setting. This section can also be seen as the generalisation
of the integration theory of complete Lie algebras of M. Lazard’s Ph.D. thesis
[86] to left-unital complete pre-Lie algebras.

Definition 3.1 (Complete left-unital differential graded pre-Lie algebra) A
complete dg pre-Lie algebra is a datum a = (A,F, d, ?) of a dg complete mod-
ule equipped with a filtration preserving the bilinear product whose associator
is right-symmetric

(a ? b) ? c − a ? (b ? c) = (−1)|b||c|
(
(a ? c) ? b − a ? (c ? b)

)
,

such that the differential d is a derivation

d(a ? b) = d(a) ? b + (−1)|a|a ? d(b).

Such an algebra is called left-unital if it is equipped with an element 1 ∈ F0A0

which is a closed element d(1) = 0 and a left unit

1 ? a = a .

Remark 3.2 There is an equivalent left-symmetric version of that defini-
tion which naturally arises in the study of homogeneous spaces, going back
to pioneering work of J.-L. Koszul [81] and E.B. Vinberg [136]. The natural
definition of a complete (right-symmetric) pre-Lie algebra arising in that do-
main would be slightly more general: one requires the map id +lλ : A → A to
be invertible for any λ, see [127]. Throughout this book, we only use algebras
that are complete in the sense of Chapter 2.

The following classical result crucial for this book holds for complete alge-
bras as well.
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Proposition 3.3 Let a = (A,F, d, ?) be a complete dg pre-Lie algebra. Then
g = (A,F, d, [ , ]) with

[a, b] B a ? b − (−1)|a||b|b ? a

is a complete dg Lie algebra.

Proof This follows from the fact that there is a morphism of operads from
Lie to PreLie, and it does not matter on which symmetric monoidal category
we act, vector spaces or complete k-modules. �

Using the complete dg Lie algebra structure on a complete dg pre-Lie al-
gebra, we can talk about Maurer–Cartan elements. The following definition
is simply a translation of Definition 1.41 to dg Lie algebras arising from dg
pre-Lie algebras.

Definition 3.4 (Maurer–Cartan equation) Let a = (A,F, d, ?) be a complete
dg pre-Lie algebra. The condition

dα + α ? α = 0 (3.1)

is called the Maurer–Cartan equation of a, and any solution α ∈ A−1 is called
a Maurer–Cartan element.

Complete left-unital dg pre-Lie algebras that are relevant for our purposes
arises via the convolution product construction. Let us recall how it works.

Definition 3.5 (Pre-Lie algebra associated to an operad) Let (P ,F, d, {◦i}, I)
be a complete dg operad. The complete dg pre-Lie algebra associated to P is∏

n∈N
P(n),G, d, ?, 1

 ,
where the pre-Lie product ? is given by the sum of the partial composition
maps ◦i and the left unit is id ∈ I.

Recall that in any closed symmetric monoidal category the mapping space
hom (C,P) from a cooperad C to an operad P forms a convolution operad,
see [88, Section 6.4.1]. When C is a filtered dg cooperad and when P is a
complete dg operad, the above construction associates a complete dg pre-Lie
algebra structure to the complete convolution dg operad hom (C,P), with the
pre-Lie product equal to

f ? g = C
∆(1) // C ◦̂(1) C

f ◦̂(1) g // P ◦̂(1) P
γ(1) // P ,

where the various infinitesimal notions [88, Section 6.1] are now considered in
complete setting.
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Proposition 3.6 The space of equivariant maps from a filtered dg cooperad
C to a complete dg operad P

homS
(C,P)

B
∏

n∈N
homSn

(C(n),P(n)
)

forms a complete left-unital dg pre-Lie algebra(
homS

(C,P)
, ∂, ?, 1

)
and thus a complete dg Lie algebra(

homS
(C,P)

, ∂, [ , ]
)
.

Proof As in the classical case, one can see that the space of equivariant maps
is stable under the pre-Lie product. �

Definition 3.7 (Complete convolution pre-Lie algebra) The complete dg pre-
Lie algebra homS

(C,P)
is called the complete convolution pre-Lie algebra.

The central object in the study of the deformation theory of algebraic struc-
tures [88, 40] is the complete convolution algebra associated to a filtered co-
operad C and the complete endomorphism operad of a complete module A:

a C,A B
(

homS
(C, endA

)
, ∂, ?, 1

)
.

The present version of this definition in the complete setting is the most gen-
eral that we are aware of; it will be used in Chapter 4 where we give a gauge
group interpretation to the twisting procedure of algebraic structures. However,
already the discrete case is of interest to deformation theory: if the cooperad C
is the Koszul dual P ¡ of a Koszul operad P , the set of P∞-algebra structures
on A is in one-to-one correspondence with the Maurer–Cartan set of the con-
volution algebra MC(aP¡,A), see [88, Chapter 10].

To discuss symmetries of Maurer–Cartan elements in complete pre-Lie al-
gebras, we shall recall the notions of a filtered group and a complete group [86,
Section I.2] defined in a way similar way to that of a filtered/complete algebra.

Definition 3.8 (Filtered/complete group) The datum of a filtered group is
a quadruple (G,F, ·, e) where (G, ·, e) is a group and F is a filtration of G by
subgroups

G = F1G ⊃ F2G ⊃ · · · ⊃ FkG ⊃ · · · ,

such that the commutator satisfies xyx−1y−1 ∈ Fi+ jG for x ∈ FiG and y ∈ F jG.
A filtered group is called complete when the underlying topology is Hausdorff
and complete.
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Since by Proposition 3.3, a complete pre-Lie algebra a = (A,F, d, ?) has
the associated dg Lie algebra g = (A,F, d, [ , ]), one may define the associated
gauge group in the following way alluded to in the end of the previous chapter.

Definition 3.9 (Gauge group) The gauge group associated to a complete left-
unital dg pre-Lie algebra a is defined by

Γ B
(
F1A0,BCH( , ), 0

)
.

The gauge group is well defined since the BCH product converges for ele-
ments in F1A0: it is a sum of iterated commutators

BCH(x, y) = x + y︸︷︷︸
∈F1A0

+
1
2

[x, y]︸ ︷︷ ︸
∈F2A0

+
1
12

(
[[x, y], y] + [[y, x], x]

)︸                           ︷︷                           ︸
∈F3A0

+ · · · ,

which is thus convergent by Lemma 2.14.

Proposition 3.10 The gauge group is a complete group, with respect to the
following filtration:

F1Γ B F1A0 ⊃ F2Γ B F2A0 ⊃ · · · ⊃ FkΓ B FkA0 ⊃ · · · .

Proof The form of the BCH product mentioned above shows that each FkΓ

is a subgroup of the gauge group. It is known (and very easy to check) that the
leading term in group commutator is the Lie algebra commutator, that is,

BCH(BCH(BCH(x, y),−x),−y) = [x, y] + · · · ,

where the higher terms are iteration of brackets of at least one x and one y each
time. Therefore, the commutators satisfy BCH(BCH(BCH(x, y),−x),−y) ∈
Fi+ jΓ for x ∈ FiΓ and y ∈ F jΓ. �

Of course, the results on the gauge group action remain valid in the complete
case.

Proposition 3.11 Let a = (A,F, d, ?, 1) be a complete left-unital dg pre-Lie
algebra. The gauge group Γ acts on the set of Maurer–Cartan elements by the
formula

λ.α =
id− exp(adλ)

adλ
(dλ) + exp(adλ)(α).

This left action is continuous, that is the map

Γ ×MC(a) → MC(a)
(λ, α) 7→ λ.α

is continuous in both variables.



58 Pre-Lie algebras and the gauge group

Proof The first part is essentially Proposition 1.53. To show the continuity,
we shall once again use the differential trick and work with the action

λ.(δ + α) B eadλ (δ + α)

on solutions to the square-zero equation. Let us fix a Maurer–Cartan element
α ∈ MC(a) and let us consider a sequence {λn}n∈N of elements of the gauge
group Γ which tends to an element λ, that is

∀k ∈ N, ∃N ∈ N, ∀n ≥ N, λn − λ ∈ FkA0 .

So, we have ∀k ∈ N, ∃N ∈ N, ∀n ≥ N,

eadλn (α) − eadλ (α) =

∞∑
m=1

1
m!

(
adm

λn
− adm

λ

)
(α)

=

∞∑
m=1

1
m!

 m∑
l=1

adl−1
λ ◦ adλn−λ ◦ adm−l

λn

 (α)︸                                      ︷︷                                      ︸
∈Fk+m−1A−1

∈ FkA−1 .

The continuity in the second variable is proved similarly. �

3.2 Circle product formula for the gauge action

The pre-Lie identity is weaker than the associativity identity but stronger than
the Jacobi identity. We shall now recall formulas of [40] which unravel the
combinatorics that enters formulas for the gauge group associated to a pre-Lie
algebra. As a toy model, let us first consider a more classical situation where
the complete dg Lie algebra g = (A, d, [ , ]) comes from a complete unital dg
associative algebra a = (A, d, ·, 1). For λ ∈ F1A0, the exponential series

eλ := 1 + λ +
λ?2

2!
+
λ?3

3!
+ · · ·

converges, and we have a group

G :=
({

eλ, λ ∈ F1A0

}
, ·, 1

)
.

The adjoint action adλ can be written as a difference lλ − rλ of the left and the
right multiplication by λ. In an associative algebra, these two endomorphisms
commute, so

exp(adλ)(δ + α) = exp(lλ) ◦ exp(−rλ)(δ + α) = eλ(δ + α)e−λ .

Of course, the group law on elements like that is still given by the BCH for-
mula. However, the exponential map is immediately seen to be a bijection onto
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the set 1 + F1A0, and the group structure on that set is much simpler, being just
the associative product (1 + x) · (1 + y) that we already have. As we shall see
now, in the case of complete pre-Lie algebras there is also an elegant way to
express the group law. All proofs of the statements below are exactly the same
as proofs of the quoted results we proved in [40]. In op. cit., the results were
proved for weight graded algebras; we shall state them for complete algebras
instead, and note that the general formalism developed in Chapter 2 ensures
that all proofs from the weight graded case are valid mutatis mutandis.

For any element λ ∈ F1A, we consider the following right iteration of the
pre-Lie product

λ?n B (· · · ((λ ? λ) ? λ) · · · ) ? λ︸                           ︷︷                           ︸
n times

∈ FnA .

Definition 3.12 (Pre-Lie exponential) The pre-Lie exponential of an element
λ ∈ F1A is defined by the following convergent series

eλ B 1 + λ +
λ?2

2!
+
λ?3

3!
+ · · · .

The choice of right-normed products here conceptually corresponds to the
fact that the pre-Lie identity can be rewritten in the form

(a ? b) ? c − (−1)|b||c|(a ? c) ? b = a ? (b ? c) − (−1)|b||c|a ? (c ? b)
)
,

or

[rc, rb] = r[b,c],

meaning that operators of right multiplication r−λ give a representation of the
corresponding Lie algebra. The exponential we wrote appears in many dif-
ferent situations, including the formula for solutions to the flow differential
equation for vector fields on a manifold with a flat and torsion free connection.
Of course, that is not a mere coincidence: the Lie bracket of vector fields in
this context arises as anti-symmetrisation of a pre-Lie product, see [1].

Proposition 3.13 The exponential map is an isomorphism onto the set of
group-like elements defined by

G B 1 + F1A0 = {1 + x, x ∈ F1A0} ,

with the basis of open sets at 1 defined by {1 + FkA0}k≥1. 1 + F1A0.

Proof This is essentially proved in [40, Lemma 1]. �
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The inverse map, which one should think of as a pre-Lie version of loga-
rithm, sends the element 1 + a ∈ 1 + F1A0 to a series Ω(a) called the “pre-Lie
Magnus expansion”, which begins by

a −
1
2

a ? a +
1
4

a ? (a ? a) +
1

12
(a ? a) ? a + · · · ,

see [1, 91] for more details.
To write a combinatorial formula for the gauge group law, we recall the

following definition.

Definition 3.14 (Symmetric braces) The symmetric braces

{a; b1, . . . , bn} : A ⊗ A⊗n → A, n ≥ 0,

are defined recursively by setting {a; } = a and

{a; b1, . . . , bn} := {{a; b1, . . . , bn−1}; bn}

−

n−1∑
i=1

(−1)|bn |(|bi+1 |+···+|bn−1 |){a; b1, . . . , bi−1, {bi; bn}, bi+1, . . . , bn−1}.

It is possible to show that these operations are (graded) symmetric with re-
spect to b1, . . . , bn. They satisfy certain relations which we are not going to use
explicitly; the interested reader is referred to [88, Section 13.11.4] for details.

Definition 3.15 (Circle product) Let a = (A,F, d, ?, 1) be a complete left
unital dg pre-Lie algebra, and let a ∈ A, b ∈ F1A0. The circle product a}(1+b)
is defined by the convergent series

a} (1 + b) :=
∑
n≥0

1
n!
{a; b, . . . , b︸  ︷︷  ︸

n

} .

We are now ready to state a key result allowing one to do effective compu-
tations with gauge symmetries in pre-Lie algebras.

Theorem 3.16 The datum

G := (1 + F1A0,}, 1)

is a complete group. The pre-Lie exponential map is a filtered isomorphism,
and therefore a homeomorphism, between the gauge group

Γ = (F1A0,BCH, 0)

and G .
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Proof The arguments of [40, Theorem 2] adapt to the complete case without
changes. Proposition 3.13 implies that G is a complete group, which is filtered
isomorphic, thus homeomorphic, to the gauge group. �

Using the circle product, it is also possible to write down an elegant formula
for the gauge action.

Theorem 3.17 Let a = (A,F, d, ?, 1) be a complete left unital dg pre-Lie
algebra. The gauge group G acts on the set of Maurer–Cartan elements by the
formula:

eλ · α B λ.α =
(
eλ ? α

)
} e−λ .

Proof This is a direct corollary of Theorem 3.16, Proposition 3.11 and [40,
Proposition 5]. �

3.3 Operadic deformation theory in the complete setting

We aim to apply the results of the previous section to the complete convolution
algebra associated to a filtered dg cooperad C and the complete endomorphism
operad of a complete dg module A:

a C,A B
(

homS
(C, endA

)
, ∂, ?, 1

)
.

Notice that, in this case, the internal differential element is given by

δ : C → I→ k∂A,

where the map C → I is the counit of the cooperad C. The interest in this ex-
ample of application lies in the following interpretation of the Maurer–Cartan
elements of this convolution algebra.

Proposition 3.18 Let C be a filtered dg cooperad and let A be a complete
dg module. The set of Maurer–Cartan elements of the complete convolution
algebra a C,A is in natural one-to-one correspondence with the complete ΩC-
algebra structures on A.

Proof Let us start with the case when the filtered dg cooperad C is coaug-
mented. In this case, the result holds true in the classical discrete setting [88,
Theorem 6.5.7] and we use the same arguments and computations here. By
Theorem 2.24, a complete ΩC-algebra structures on A is a morphism

ΩC → endA

of filtered dg operads. The underlying operad of the cobar construction of C is
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a free operad generated by the desuspension of C. Since C is filtered, this free
operad is equal to the filtered free operad on the same space of generators; this
can be seen for instance through the formula [88, Proposition 5.6.3]. Therefore
we get:

HomCompOp

(
Ω̂C, endA

)
� HomFilOp (ΩC, endA) � homS

(
C, endA

)
−1

,

where the compatibility with the differentials on the left-hand side corresponds
to the Maurer–Cartan equation on the right-hand side, by the same computation
as in the classical case.

When the cooperad C is not coaugmented, like in the examples of Section 4,
we consider the cobar construction ΩC B T (s−1C) with similar differential
induced by the internal differential of C and its partial decomposition maps. In
this case, Maurer–Cartan elements in the convolution algebra associated to a
complete graded module A correspond to complete ΩC-algebra structures. �

Remark 3.19 This proposition applies to the Koszul dual cooperad C B P ¡

of a Koszul operad P . In this case, Maurer–Cartan elements of the convolution
algebra aP¡, A are nothing but complete P∞-algebra structures on A. This way,
we can develop the deformation theory of complete A∞-algebras or complete
L∞-algebras, see the next section.

The gauge group obtained by integrating the underlying complete pre-Lie
algebra indeed acts of the set of Maurer–Cartan elements, but the remarkable
feature brought by the operadic nature of this construction is that we can in-
clude the usual gauge group in a bigger group. Namely, let us consider the
subset

U0 :=F1 hom
(C(0), endA(0)

)
0 × F1 hom

(C(1), endA(1)
)
0×∏

n≥2
homSn

(C(n), endA(n)
)
0

of the complete convolution algebra a C,A, and the set of group-like elements

1 + U0 :=F1 hom
(C(0), endA(0)

)
0 ×

(
id +F1 hom

(C(1), endA(1)
)
0

)
×∏

n≥2
homSn

(C(n), endA(n)
)
0.

Lemma 3.20

(i) The BCH series converges for any two elements x, y ∈ U0 .
(ii) The series defining the product } converges for any two elements x, y ∈

1 + U0 .
(iii) The pre-Lie exponential is an isomorphism between U0 and 1 + U0; this

isomorphism identifies the group law on U0 given by the BCH series with
the group law on 1 + U0 given by the product } .
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Proof The only difference from the “standard” proofs is that we do not have a
literal filtration ensuring convergence, and hence an extra argument is needed.
Let us note that the elements of U0 that do not belong to the “usual” gauge
group F1 homS

(C, endA
)
0 come from the part of the complete convolution al-

gebra supported on arity at least two, that is∏
n≥2

homSn

(C(n), endA(n)
)
0.

The special feature of the complete convolution algebra is that, if one assigns
to each element x ∈ homSn

(C(n), endA(n)
)
0 extra weight grading w(x) = n − 1,

the algebra is graded: w(x?y) = w(x)+w(y) for all homogeneous elements x, y.
We note that for elements supported on arity at least two, their weight grading
is positive, and therefore for such elements one has convergence of the BCH
series and the series for } since one has a finite sum in each weight graded
component. As a whole, the complete pre-Lie subalgebra U0 is an extension:
it has an ideal F1 homS

(C, endA
)
0, and the quotient by this ideal consists of

(some) elements of positive weight. As a consequence, one may combine the
filtration argument for F1 homS

(C, endA
)
0 with the weight grading argument

for elements of positive weight to conclude convergence of the two series we
consider. The last statement is established analogously. �

The result we proved lays the groundwork for the following definition.

Definition 3.21 (Deformation gauge group) The deformation gauge group
associated to a filtered dg cooperad C and a complete dg module A is defined
by

Γ̃ B
(
F1 hom

(C(0), endA(0)
)
0 × F1 hom

(C(1), endA(1)
)
0×∏

n≥2
homSn

(C(n), endA(n)
)
0,BCH( , ), 0

)
.

The group Γ̃ does not appear to have a complete group structure, yet it con-
tains two important complete groups (which have slightly incompatible filtra-
tions). The first of them is the “obvious” gauge group F1 homS

(C, endA
)
0 with

the hom-set filtration on it. The second one, also useful in some applications,
is the group on the set

Γ◦ :=F2 hom
(C(0), endA(0)

)
0 × F1 hom

(C(1), endA(1)
)
0×∏

n≥2
homSn

(C(n), endA(n)
)
0
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equipped with the filtration F• with

FkΓ
◦ :=Fk+1 hom

(C(0), endA(0)
)
0 × Fk hom

(C(1), endA(1)
)
0×∏

n≥2
Fk+1−n homSn

(C(n), endA(n)
)
0 ,

where we formally put FkB = B for all filtered modules B and all k ≤ 0 .

Even though the group Γ̃ is not complete, arguments identical to those of
Lemma 3.20 prove the following result.

Proposition 3.22 All the results of Sections 3.1 and 3.2 hold true for the
deformation gauge group Γ̃ and its avatar G̃.

We shall now give a definition of an∞-morphism of two ΩC-algebras. To do
that, we shall encode ΩC-algebra structures by Maurer–Cartan elements. With-
out loss of generality, we may consider two Maurer–Cartan elements α and β
of the complete convolution algebra a C,A corresponding to two ΩC-algebra
structures on the same complete module A. Indeed, the data of an ΩC-algebra
structure on a complete dg module (A,F) and of another ΩC-algebra struc-
ture β on a complete dg module (B,G) may be encoded by two Maurer–Cartan
elements α and β of the convolution algebra homS

(C, endA⊕B
)

taking values,
respectively, on endA and endB.

Definition 3.23 (∞-morphism) An ∞-morphism α  β between α and β is
a degree 0 element f : C → endA, such that f0 ∈ F1 hom

(C(0), endA(0)
)
0 and

satisfying the equation

f ? α = β} f . (3.2)

The composition of two infinity-morphisms f : α β and g : β γ is defined
by the circle product g} f .

The assumption f0 ∈ F1 hom
(C(0), endA(0)

)
0 is needed for the right-hand

side β} f to be well-defined. In this book, we only consider cooperads defined
by the partial definition ∆(1) : C → C ◦̂(1) C, which splits operations into two.
When the cooperad C has trivial arity 0 part, i.e. C(0) = 0, it admits a “full”
coassociative decomposition map

∆ : C → C ◦̂ C

which splits operations into two levels, see [88, Section 5.8.2]. In this case, the
associative product β} f has the following simple description:

β} f : C ∆
−→ C ◦̂ C

β ◦̂ f
−−−→ endA ◦̂ endA

γ
−→ endA .
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However, the full decomposition map for the cooperad C fails to be well-
defined in the general case, but thanks to the assumption

f0 ∈ F1 hom
(C(0), endA(0)

)
0,

the product } is well-defined, by a convergent series. In our setup, the co-
operads have elements of arity zero, and in order to define a suitable notion
of an ∞-morphism for the homotopy algebras like curved A∞-algebras and
curved L∞-algebras, the formalism of this section is unavoidable. In fact, the
theory of complete curved A∞-algebras over a complete local ring developed
by L. Positselski in [116] has its own notion of∞-morphism which we recover
via Definition 3.23.

Definition 3.24 (∞-isotopy) An ∞-isotopy between the Maurer–Cartan ele-
ments α and β is an∞-morphism f : C → endA satisfying

f1 ∈ 1 + F1 hom
(C(1), endA(1)

)
0 .

The following result is the generalisation of the main result of [40, Section 5]
to the complete case; the results of loc. cit. concern the case of a weight graded
dg cooperad C and a dg module A, both viewed as complete objects with re-
spectively the weight filtration and the trivial filtration.

Theorem 3.25 For a filtered dg cooperad C and for any complete dg mod-
ule A, the set of ∞-isotopies forms a subgroup of the group of invertible ∞-
morphisms of ΩC-algebra structures on A, which is isomorphic to the defor-
mation gauge group under the pre-Lie exponential map

Γ̃ � G̃ = (∞-iso,}, idA) .

The Deligne groupoid associated to the deformation gauge group is isomor-
phic to the groupoid whose objects are ΩC-algebras and whose morphisms
are∞-isotopies

Deligne
(
aC,A

)
B

(
MC(aC,A), Γ̃

)
� (ΩC-Alg,∞-iso) .

Proof This is a direct corollary of Proposition 3.18, Theorem 3.16 and The-
orem 3.17, via their generalisations given at Proposition 3.22. �
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The gauge origin of the twisting procedure

In this chapter, we provide a first application of the complete operadic defor-
mation theory developed in the previous section. Namely, we deal with the
easiest example of gauge action: that when the gauge element is just an ele-
ment of the underlying dg module, that is, concentrated in arity 0. In this way,
we get a conceptual interpretation of the twisting procedure of a complete A∞-
algebra (or a complete L∞-algebra) by a Maurer–Cartan element.

The procedure of twisting a complete A∞-algebra with a Maurer–Cartan el-
ement is a non-commutative analogue of the twisting procedure for complete
L∞-algebras. The former one plays a seminal role in the construction of the
Floer cohomology of Lagrangian submanifolds [50] and the latter one is used
in crucial ways in deformation theory, rational homotopy theory, higher alge-
bra, and quantum algebra; we shall discuss these applications in detail in the
last chapter 7.

We start with the simpler A∞-case, encoding it conceptually in the operadic
deformation theory language, and then move to the analogous case of L∞-
algebras. From the conceptual gauge action interpretation of the twisting pro-
cedure, we derive automatically “all” its known useful properties. We conclude
this chapter with a criterion on quadratic operads which allows one to deter-
mine if the associated category of homotopy algebras admits a meaningful
twisting procedure.

This material will be published by Cambridge University Press & Assessment as ‘Maurer-Cartan
Methods in Deformation Theory: the twisting procedure’ by Vladimir Dotsenko, Sergey Shadrin
and Bruno Vallette. This version is free to view and download for personal use only. Not for re-
distribution, re-sale or use in derivative works. c©Cambridge University Press & Assessment
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4.1 Curved A∞-algebras

In this section, we recall the classical definition of an A∞-algebra and its varia-
tions (with a possible shift and possibly nonzero curvature), and explain how to
use the Maurer–Cartan calculus in complete pre-Lie algebras to recover those
notions. We state the results in the discrete case; to get the same notions in the
filtered or complete setting, one just has to replace everywhere the endomor-
phism operad EndA by the complete endomorphism suboperad endA consisting
of filtered maps.

Let us start with one of the most simple ns operads: the ns operad uAs,
which encodes unital associative algebras. It is one-dimensional in each arity
uAs(n) = kυn, for n ≥ 0, and concentrated in degree 0; its operadic structure
is given by the formulas υk ◦i υl = υk+l−1 . Let us now consider the linear dual
ns cooperad uAs∗, where we denote the dual basis by νn B υ∗n . The infinites-
imal decomposition coproduct, which is the dual of the partial composition
products, is equal to

∆(1)(νn) =
∑

p+q+r=n
p,q,r≥0

νp+1+r ◦p+1 νq .

We now consider the endomorphism ns operad EndA B
{
Hom(A⊗n, A)

}
n≥0

associated to any graded module A. Let us begin with noting that the convolu-
tion ns operad Hom(uAs∗,EndA) is canonically isomorphic to the operad EndA

itself. Therefore the induced left unital pre-Lie algebra

a B

∏
n≥0

Hom(A⊗n, A), ?, 1


is given by

1 = idA and f ? g =

n∑
i=1

f ◦i g ,

for f ∈ Hom(A⊗n, A). The Maurer-Cartan elements of this algebra are elements
α of degree −1 satisfying the Maurer–Cartan equation

α ? α = 0 .

Let us unfold this definition for an element α = (m0,m1, . . . ,mn, . . .). To ensure
that we recover the “classical” notion of a shifted curved A∞-algebra from
[18], we shall denote θ B m0(1) ∈ A−1, d B m1, and

∂ f B d ◦1 f − (−1)| f |
n∑

i=1

f ◦i d ,
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for any degree-wise homogenous element f ∈ Hom(A⊗n, A). With all that
in mind, the datum of an element α is a sequence of degree −1 operations
mn : A⊗n → A, n ≥ 0, and the Maurer–Cartan equation for α amounts to the
conditions

arity 0 : dθ = 0 ,

arity 1 : d2 = −m2(θ,−) − m2(−, θ) ,

arity 2 : ∂m2 = −m3(θ,−,−) − m3(−, θ,−) − m3(−,−, θ) .

arity 3 : ∂m3 = −m2(m2(−,−),−) − m2(−,m2(−,−)) − m4(θ,−,−,−)

−m4(−, θ,−,−) − m4(−,−, θ,−) − m4(−,−,−, θ) ,

arity n : ∂mn = −
∑

p+q+r=n
2≤q≤n−1

mp+1+r ◦p+1 mq −

n+1∑
i=1

mn+1 ◦i θ .

Definition 4.1 (Shifted curved A∞-algebra) The data (A, θ, d,m2,m3, . . .) of
a graded module A equipped with a degree −1 element θ and degree −1 maps
d,m2,m3, . . . satisfying the equations above is called a shifted curved A∞-
algebra. The element θ is called the curvature.

When the curvature θ vanishes, the operator d squares to zero and thus gives
rise to a differential, which is a derivation with respect to the binary operation
m2. The higher operations mn, for n ≥ 3, are then homotopies for the relation

−
∑

p+q+r=n
2≤q≤n−1

mp+1+r ◦p+1 mq = 0.

This corresponds to replacing the operad uAs by the operad As, which en-
codes (non-necessarily unital) associative algebras; that operad is isomorphic
to Endk, the suboperad of Endk with trivial arity 0 component: Endk(0) = 0 .

Definition 4.2 (Shifted A∞-algebra) A chain complex (A, d,m2,m3, . . .) eq-
uipped with degree −1 maps m2,m3, . . . satisfying the equations above with
θ = 0 is called a shifted A∞-algebra.

Given a shifted curved A∞-algebra structure (A, θ′, d′,m′2,m
′
3, . . .), one can

choose to work on the desuspension s−1A of the underlying graded module.
The degree of the operations and the signs involved in their relations will thus
be modified. The curvature θ B s−1θ′ now has degree −2, the unary operator
d : s−1A→ s−1A still has degree −1, and the operations mn : (s−1A)⊗n → s−1A
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now have degree n − 2. They satisfy the following signed relations:

arity 0 : dθ = 0 ,

arity 1 : d2 = m2(θ,−) − m2(−, θ) ,

arity 2 : ∂m2 = −m3(θ,−,−) + m3(−, θ,−) − m3(−,−, θ) .

arity 3 : ∂m3 = m2(m2(−,−),−) − m2(−,m2(−,−)) + m4(θ,−,−,−)

−m4(−, θ,−,−) + m4(−,−, θ,−) − m4(−,−,−, θ) ,

arity n : ∂mn =
∑

p+q+r=n
2≤q≤n−1

(−1)pq+r+1mp+1+r ◦p+1 mq +

n+1∑
i=1

(−1)n−imn+1 ◦i θ .

This corresponds to replacing the operad uAs � Endk by the ns endomorphism
operad Endks associated to a degree 1 dimension 1 module ks.

Definition 4.3 (Curved A∞-algebra) The data of a graded module (A, θ, d,
m2,m3, . . .) equipped with a degree −2 element θ, a degree −1 map d : A→ A
and degree n − 2 maps mn : A⊗n → A satisfying the equations above is called
a curved A∞-algebra.

If in a curved A∞-algebra, the curvature vanishes, then the operator d be-
comes a differential and the higher operations can be interpreted as homotopies
for the signed relations, and we arrive at a classical notion of an A∞-algebra
[128]. This corresponds to replacing the operad As � Endk by the ns subop-
erad Endks ⊂ Endks .

Definition 4.4 (A∞-algebra) A chain complex (A, d,m2,m3, . . .) equipped
with maps mn : A⊗n → A degree n − 2, for n ≥ 2, satisfying the equations
above with θ = 0 is called an A∞-algebra.

To summarise, the Maurer–Cartan calculus allows us to encode all the four
existing notions of A∞-algebras using Maurer–Cartan elements of the convo-
lution algebras associated the following linear dual cooperads:

curved uncurved

shifted Endk Endk

classical Endks Endks

The convolution pre-Lie algebra Hom(As∗,EndA) �
∏

n≥1{Hom(A⊗n, A)} en-
coding shifted A∞-algebras is a pre-Lie subalgebra of the algebra

Hom(uAs∗,EndA) �
∏
n≥0

{Hom(A⊗n, A)}

encoding shifted curved A∞-algebras. But, as we will show in Section 4.2, it
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is crucial to encode the former notion in the latter bigger pre-Lie algebra, since
there, the gauge group of symmetries is big enough to host the twisting pro-
cedure. We also remark that all these definitions, whether curved or uncurved,
acquire a conceptual explanation via the Koszul duality theory [115, 66].

4.2 The twisting procedure as gauge group action

In this section, we pass to the complete setting and we apply the general theory
developed in Chapter 3 to the discrete (and therefore complete) ns cooperad
C = Endc

ks−1 B End∗ks. This will allow us to treat the deformation theory of
curved A∞-algebras. We chose this particular case, since the sign issue is a
complicated problem in operad theory; the reader interested in the shifted case
has just to remove “all” the signs. The cooperad C is spanned by one element

νn :
(
s−1

)n
7→ (−1)

n(n−1)
2 s−1

of degree n − 1, in each arity n ≥ 0. Its infinitesimal decomposition coproduct
is given by

∆(1) (νn) =
∑

p+q+r=n
p,q,r≥0

(−1)p(q+1)νp+1+r ◦p+1 νq .

Remark 4.5 With the sign convention νn :
(
s−1

)n
7→ s−1, we get the same

signs as the ones of [88, Chapter 9]. With the present convention, we actually
get the signs which are more common in the existing literature.

To any complete graded module A, we associate the complete graded left-
unital convolution pre-Lie algebra

a C,A B
(

homN
(C, endA

)
, ?, 1

)
,

whose underling complete graded module is isomorphic to the product∏
n∈N

s1−n hom
(
A⊗n, A

)
.

As a consequence of Section 4.1 and Proposition 3.18, its Maurer–Cartan el-
ements, that is degree −1 maps α : C → endA satisfying α ? α = 0, are in
one-to-one correspondence with complete curved A∞-algebra structures on A,
under the assignment mn B α(µn), for n ≥ 0.

The deformation gauge group associated to a is equal to

Γ̃ �
(
F1A−1 × F1 hom(A, A)0 ×

∏
n≥2

hom
(
A⊗n, A

)
n−1,BCH( , ), 0

)
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and is filtered isomorphic to

G̃ �
(
F1A−1 × (1 + F1 hom(A, A)0) ×

∏
n≥2

hom
(
A⊗n, A

)
n−1,}, 1

)
under the pre-Lie exponential and pre-Lie logarithm maps, by Section 3.3. In
the complete left-unital pre-Lie algebra a, this deformation gauge group acts
on Maurer–Cartan elements via the following formula of Theorem 3.17:

eλ · α =
(
eλ ? α

)
} e−λ ,

as long as λ0 and λ1 live in the first layer of the filtration, that is λ0 ∈ F1A−1

and λ1 ∈ F1 hom(A, A)0 .

Remark 4.6 The comprehensive deformation theory treatment in the mono-
graph [97] by M. Markl treats the case of free complete modules over a com-
plete local ring. A gauge group in this context corresponds to the group struc-
ture on 1+F1 hom(A, A)0, see Chapter 4 of loc. cit.. This is enough to describe
the moduli spaces of associative algebra structures up to isomorphism, in the
complete setting. The deformation gauge group we use describes faithfully the
moduli spaces of complete curved A∞-algebras up to their∞-isotopies.

Let us now study the first and easiest example of a gauge action on Maurer–
Cartan elements: we consider elements of the deformation gauge group Γ̃ sup-
ported on arity 0. Let a ∈ F1A−1, for brevity, we still denote by a the element
(a, 0, . . .) of Γ̃ and by 1+a = ea = (a, 1, 0, . . .) the element of G̃. By the general
theory developed above, the action ea · α on the complete curved A∞-algebra
structure encoded by the Maurer–Cartan element α gives us automatically a
new complete curved A∞-algebra structure. We note that our strategy exhibits
an important change of paradigm: first, we get a new complete curved A∞-
algebra structure by a conceptual argument (gauge group action) and then we
make it explicit. Usually, in the literature like in [50, Chapter 3], the explicit
form of the twisted operations is given first and then proved (by direct compu-
tations) to satisfy the relations of a complete curved A∞-algebra.

Proposition 4.7 The formula for the generating operations ma
n of the com-

plete curved A∞-algebra ea · α is

ma
n =

∑
r0,...,rn≥0

(−1)
∑n

k=0 krk mn+r0+···+rn

(
ar0 ,−, ar1 ,−, . . . ,−, arn−1 ,−, arn

)
,

for n ≥ 0, where the notation ar stands for a⊗r .

Proof In the present case, the inverse of the pre-Lie exponential ea is equal
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to e−a = 1 − a. Therefore, the formula of the gauge action given in Theo-
rem 3.17 is

e−a · α =
(
e−a ? α

)
} ea =

(
(1 − a) ? α

)
} (1 + a) = α} (1 + a) ,

since λ ? ρ = 0 for any ρ ∈ a and since ? is linear on the left-hand side. The
image of the element νn under the α} (1 + a) is equal to

(
α ◦ (1 + a)

)(
∆(νn)

)
.

One can easily see that the part of the image of the element νn under the de-
composition map ∆ of the cooperad C with only ν0 and ν1 on the right-hand
side is equal to∑

r0,...,rn≥0

(−1)
∑n

k=0 krkνn+r0+···+rn ◦
(
νr0

0 , ν1, ν
r1
0 , ν1, . . . , ν1, ν

rn−1
0 , ν1, ν

rn
0
)

Finally, the sign appearing in the formula for the ma
n is the same since the

element 1 + λ has degree 0. �

Explicitly, the first of these twisted operations are:

arity 0 : θa B ma
0 = θ + d(a) + m2(a, a) + m3(a, a, a) + · · · ,

arity 1 : da B ma
1 = d(−) + m2(a,−) − m2(−, a) + m3(a, a,−) − m3(a,−, a)

+m3(−, a, a, ) + · · · ,

arity 2 : ma
2 = m2(−,−) + m3(a,−,−) − m3(−, a,−) + m3(−,−, a) + · · · .

We immediately recover the following result going back to [50].

Theorem 4.8 Under the formula of Proposition 4.7, any element a ∈ F1A−1

of a complete curved A∞-algebra (A, θ, d,m2,m3, . . .) induces a (twisted) com-
plete curved A∞-algebra

(A, θa, da,ma
2,m

a
3, . . .)

This twisted complete curved A∞-algebra has a trivial curvature θa = 0, that
is produces an A∞-algebra, if and only if the element a satisfies the Maurer–
Cartan equation:

θ + da +
∑
n≥2

mn(a, . . . , a) = 0 . (4.1)

This conceptually explains why the twisting procedure on associative al-
gebras or complete A∞-algebras requires the twisting element to satisfy the
Maurer–Cartan equation. Without this condition, one would a priori get a com-
plete curved A∞-algebra. In other words, the (left-hand side of the) Maurer–
Cartan equation of an element a is the curvature of the complete curved A∞-
algebra twisted by the element a.
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Proposition 4.9 The following assignment defines a monomorphism of grou-
ps

(F1A−1,+, 0)� Γ̃ =
(
F1A−1 × F1 hom(A, A)0 ×

∏
n≥2

hom
(
A⊗n, A

)
n−1,

BCH(−,−), 0
)

a 7→ (a, 0, 0, . . .) .

Proof It is enough to check the compatibility with respect to the group prod-
ucts, that is

BCH(a, b) = a + b ,

which holds true since a and b are supported on arity 0: their brackets appearing
in the Baker–Campbell–Hausdorff formula vanish. �

Corollary 4.10 Twisting a complete curved A∞-algebra (A, θ, d,m2,m3, . . .)
first by an element a and then by an element b amounts to twisting it by a + b .

Proof This is a direct corollary of Proposition 4.9. �

The presence of the curvature element plays another peculiar role in the
deformation theory of curved A∞-algebras, in a sense trivialising their ho-
motopy properties, as we shall now see. This behaviour is sometimes called
the Kontsevich–Positselski vanishing phenomenon in the literature, similar re-
sults hold when computing the Hochschild (co)homology in the curved case,
see [26]. Note that this trivialisation always occurs over a field, but is typically
unavailable in many interesting cases like the curved A∞-algebras used when
working with matrix factorisations, as argued in [2].

Proposition 4.11 ([115, Section 7.3][2, Theorem 5.4]) Any curved A∞-alge-
bra (A, θ, d,m2,m3, . . .), for which there exists a linear map A → k sending θ
to 1, is gauge equivalent to its truncated curved A∞-algebra (A, θ, 0, 0, . . . , ) .

Proof For the sake of completeness, we provide here a proof in the language
of the pre-Lie deformation theory. Notice that the computations of the follow-
ing obstruction argument are very close to the arguments of [115, Section 7.3]
and [2, Theorem 5.4]. As above, we denote the Maurer–Cartan element en-
coding the curved A∞-algebra (A, θ, d,m2,m3, . . .) in the convolution pre-Lie
algebra a C,A by α, that is mn = α(νn), for n ≥ 0 . Let us denote by αn the
element

(0, . . . , 0, νn 7→ mn, 0, . . .)n≥0 ,

so that α =
∑∞

n=0 αn . Let us show that there exists an element λ ∈ Γ̃, such that
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λ0 = 0 and λ1 = 0, and which satisfies (1 + λ).α = α0. Since

(1 + λ).α = ((1 + λ) ? α)} (1 + λ)−1 = α0 ,

we have to demonstrate that

(1 + λ) ? α = α0 } (1 + λ) = α0 ,

that is (1 + λ2 + λ3 + · · · )? (α0 +α1 + · · · ) = α0 . This gives in arity 0: α0 = α0

and in arity n ≥ 1

αn + λ2 ? αn−1 + · · · + λn ? α1 + λn+1 ? α0 = 0 . (4.2)

Let us denote by δn the element αn + λ2 ? αn−1 + · · · + λn ? α1; our goal is to
prove that δn belongs to the image of the operator −?α0 . To do that, we equip
the convolution algebra a C,A with the map δ defined by

δ( f ) B f ? α0 .

Note that δ2( f ) = ( f ? α0) ? α0, and since α0 is a degree −1 element, the
pre-Lie identity implies that

( f ? α0) ? α0 − f ? (α0 ? α0) = 0,

which in turn implies ( f ? α0) ? α0 = 0. Thus, δ2( f ) = 0, and the convolution
algebra becomes a chain complex.

We shall first show by induction that the element δn ∈ C(n) is a cycle. For
that, we write

δn ? α0 = αn ? α0 +

n∑
k=2

(λk ? αn−k+1) ? α0

= αn ? α0 −

n∑
k=2

(λk ? α0) ? αn−k+1 +

n∑
k=2

λk ? (αn−k+1 ? α0)

which is equal to the following quantity using the induction hypothesis:

δn ? α0 = αn ? α0 +

n∑
k=2

αk−1 ? αn−k+1 +

n∑
k=3

k−1∑
l=2

(λl ? αk−l) ? αn−k+1

+

n∑
k=2

λk ? (αn−k+1 ? α0)

=

n∑
k=1

αk ? αn−k +

n∑
l=2

n+1∑
k=l+1

λl ? (αk−l ? αn−k+1) = 0 ,

by the Maurer–Cartan equation satisfied by α.
To complete to proof, it is now enough to show that our chain complex
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is acyclic. Let us denote by θ∗ : A → k the k-linear map which sends θ to 1.
With this map at hand, we construct the following contracting homotopy h. Let
ϕn ∈ Hom

(C(n),Hom(A⊗n, A)
)

be an element of the convolution algebra a C,A;
it is completely defined by its value φn(νn) =: fn. The image h(ϕn) under the
map h of the element ϕn is an element ψn+1 ∈ Hom

(C(n),Hom(A⊗n, A)
)

given
by

ψn+1(νn+1) = θ∗ ⊗ fn ∈ Hom(A, k) ⊗ Hom(A⊗n, A) � Hom(A⊗(n+1), A) .

It is then straightforward to check that hd + dh = ida C,A .
It follows that δn belongs to the image of the differential, thus there exists

λn+1 ∈ C(n + 1) such that −λn+1 ? α0 = δn, which is Equation (4.2). �

The proof we just presented is, in a sense, “dual” to the twisting procedure.
Indeed, according to Theorem 4.8, the action of the arity 0 elements of the
gauge group gives us the twisting procedure; this was used in [50] to get a
new structure with trivial curvature and thus an underlying chain complex. On
the other hand, Proposition 4.11 shows that one can act with the elements of
the gauge group supported in arity ≥ 2 in order to trivialise all the operations
except for the curvature. Interestingly enough, in this latter case the arity condi-
tion ensures convergence, so we do not need the completeness assumption, and
thus the Kontsevich–Positselski vanishing phenomenon always occurs over a
field.

4.3 Curved L∞-algebras

In the case of symmetric operads, we can start with the same kind of simple
operad, that is one-dimensional in each arity with trivial symmetric group ac-
tion. This operad uCom = Endk encodes the category of unital commutative
(associative) algebras. Its linear dual uCom∗ produces the following complete
left unital convolution pre-Lie algebra

a = homS(uCom∗,EndA) �

∏
n≥0

hom
(
A�n, A

)
, ?, 1

 ,
where A�n B A⊗n/Sn stands for the space of coinvariants with respect to the
symmetric group action; in order words, we are led to consider symmetric
maps from A⊗n to A. This way, we obtain the definition of a complete shifted
(possibly curved) L∞-algebra, notion which appeared first in [143]. In the
same way as for A∞-algebras, the truncation and suspension versions of the
endormorphism cooperad on a one-dimensional module give rise to possibly
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non-shifted and possibly non-curved L∞-algebra structures. As strange as it
may seem, the notion of shifted Lie algebra structure seems to appear “more
naturally” than its classical notion: the shifted Schouten–Nijenhuis bracket
on polyvector fields [125, 126, 110], the shifted Lie algebra [63, 134] cor-
responding to the Whitehead product on homotopy groups [140, 139], the
shifted Gerstenhaber’s Lie bracket on the Hochschild cochain complex [53],
the Nijenhuis–Richardson bracket arising in deformation theory of Lie alge-
bras [111, 112], the shifted L∞-algebra formed by the Koszul hierarchy [37],
the “antibracket” of the Batalin–Vilkovisky formalism [8] etc. However, if one
uses homological grading, most “natural” Lie brackets are of degree 1, while
the below definition suggests to study the bracket of degree −1. This choice
is motivated by aesthetic reasons and does not affect any sign in the arising
formulas; we invite the reader intended to apply the formalism of this book to
concrete problems to consult the introduction of Section 5.5 for another dis-
cussion of this matter.

Definition 4.12 (Complete shifted curved L∞-algebra) A complete shifted
curved L∞-algebra structure on a complete graded module (A,F) is a Maurer–
Cartan element α = (`0, `1, . . . , `n, . . .) in the complete left unital pre-Lie con-
volution algebra a �

(∏
n≥0 hom

(
A�n, A

)
, ?, 1

)
. Such a data amounts to a col-

lection of filtered maps ln : A�n → A, of degree −1, for n ≥ 0, satisfying the
following relations, under the usual convention θ B `0(1) and d B `1:

arity 0 : dθ = 0 ,

arity 1 : d2 = −`2(θ,−) ,

arity 2 : ∂`2 = −`3(θ,−,−) .

arity 3 : ∂`3 = −`2(`2(−,−),−) − `2(`2(−,−),−)(23) − `2(`2(−,−),−))(132)

−`4(θ,−,−,−) ,

arity n : ∂`n = −
∑

p+q=n+1
2≤p,q≤n−1

∑
σ∈Sh−1

p,q

(`p+1 ◦1 `q)σ − `n+1(θ,−, · · · ,−) ,

where Sh−1
p,q denotes the set of the inverses of (p, q)-shuffles.

Different versions of the ns operad of A∞-algebras admit symmetric ver-
sions where one considers the symmetric operad uAss whose components are
the regular representations of the symmetric groups, that is uAss(n) = υnk[Sn].
Then the associated complete convolution pre-Lie algebra is isomorphic to the
one in the ns case since homS(uAss∗,EndA) � hom(uAs∗,EndA). Let us denote
by υ′n and by ν′n respectively the basis elements of uCom(n) and uCom∗(n). The
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morphism of operads

uAss→ uCom , υσn 7→ υ′n

induces the following morphism of cooperads

ς : uCom∗ → uAss∗ , ν′n 7→
∑
σ∈Sn

νσn ,

which, by pulling back, induces the following morphism of pre-Lie algebras

ς∗ : homS(uAss∗,EndA)→ homS(uCom∗,EndA) , α 7→ α ◦ ς .

In the case of the endormophism operad on a suspended module, which gives
rise to the non-shifted versions, the morphism of operads is defined similarly,
but its linear dual produces the signs sgn(σ) .

Since a morphism of pre-Lie algebras preserves Maurer–Cartan elements,
we obtain a conceptual explanation of the following known result.

Proposition 4.13 ([83, 50]) The symmetrisation

`n B
∑
σ∈Sn

mσ
n

of a complete shifted (curved) A∞-algebra produces a complete shifted (curved)
L∞-algebra.

The antisymmetrisation

`n B
∑
σ∈Sn

sgn(σ) mσ
n

of a complete (curved) A∞-algebra produces a complete (curved) L∞-algebra.

4.4 Gauge action and twisting of curved L∞-algebras

The above notions of complete curved L∞-algebra, both shifted and not, play
seminal roles in deformation theory, rational homotopy theory, and higher al-
gebra. For instance, this leads to a suitable source category for the Deligne–
Hinich ∞-groupoid and the Getzler ∞-groupoid [56, 62, 31], rational models
for spaces of maps [16, 87, 12], and provides us with a suitable higher cate-
gorical enrichment to the categories of homotopy algebras [32, 33]. In each
case, the twisting procedure, together with its various properties, constitutes
the main toolbox. In this section, we show that these properties are actually
straightforward consequences of the above gauge group interpretation. This
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also allows us to get the most general version of all these results.

Let (A,F) be a complete graded module and let C be the coooperad B

uCom∗. The deformation gauge group associated to a is equal to

Γ̃ �
(
F1A0 × F1 hom(A, A)0 ×

∏
n≥2

hom
(
A�n, A

)
0,BCH( , ), 0

)
and is isomorphic to

G̃ �
(
F1A0 × (1 + F1 hom(A, A)0) ×

∏
n≥2

hom
(
A�n, A

)
0,}, 1

)
under the pre-Lie exponential and pre-Lie logarithm maps.

Proposition 4.14 The gauge action of an element a ∈ F1A0 on a complete
shifted curved L∞-algebra (A,F, θ = `0, d = `1, `2, `3, . . .) produces the fol-
lowing twisted shifted curved L∞-algebra structure on A:

`a
n =

∑
k≥0

1
k!`k+n

(
ak,−, . . . ,−

)
, for n ≥ 0 .

Proof The proof is easy and identical to the one of Proposition 4.7: the new
Maurer–Cartan element is equal to e−a · α = α} (1 + a). �

For instance, the formula for the twisted curvature and the twisted (pre)dif-
ferential are respectively

θa =
∑
k≥0

1
k!`k

(
ak) and da =

∑
k≥0

1
k!`k+1

(
ak,−

)
.

An element a ∈ F1A0 is called a Maurer–Cartan element in the complete
shifted curved L∞-algebra (A,F, θ, d, `2, `3, · · · ) when `a

0 = 0. The same re-
sults as in the above case of complete (shifted) curved A∞-algebras hold here
mutatis mutandis. Let us mention the following ones, which are heavily used
in loc. cit.

Corollary 4.15 ([31, 32, 56]) Let (A,F, θ, d, `2, `3, . . .) be a complete shifted
curved L∞-algebra and let a, b ∈ F1A0. The following formulas hold:

(i) dθa +
∑

k≥1
1
k!`k+1

(
ak, θa) = 0 ,

(ii) da ◦ da = −`a
2(θa,−) ,

(iii) θa+b = θa + da(b) +
∑

k≥2
1
k!`

a
k
(
bk) ,

Proof

(i) The left-hand side is nothing but da (θa), which vanishes because of the arity
zero relation of the twisted shifted curved L∞-algebra.
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(ii) This formula is the arity 1 relation of the twisted shifted curved L∞-algebra.
(iii) The right-hand side is nothing but (θa)b; so the formula is the arity 0 part of

Corollary 4.10, in the L∞-algebra case.

�

Let (A,F) and (B,G) be a two complete dg modules. Let α, β ∈ MC(aC,A⊕B)
be two Maurer–Cartan elements corresponding to two complete shifted curved
L∞-algebra structures on (A,F) and (B,G) respectively. Let f = ( f0, f1, · · · ) be
an ∞-morphism from (A, α) to (B, β), that is f ? α = β} f . Let a ∈ F1A0 and
let us denote by f a the element f } (1 + a), that is the sequence∑

k≥0

1
k! fk(ak),

∑
k≥0

1
k! fk+1

(
ak,−

)
, · · · ,

∑
k≥0

1
k! fk+n

(
ak,−, . . . ,−

)
, · · ·

) .
Notice that f (a) :=

∑
k≥0

1
k! fk(ak) ∈ F1B0. We consider the following two

twisted complete shifted curved L∞-algebras on A and B respectively:

αa B (1 − a) · α = α} (1 + a) and β f (a) B
(
1 − f (a)

)
· β = β}

(
1 + f (a)

)
.

The following proposition is usually formulated in the L∞-case [56, 31, 32];
our very short proof shows that is holds in the curved case as well.

Proposition 4.16

(i) The element (
1 − f (a)

)
} f } (1 + a) = f a − f (a)

is an∞-morphism from αa to β f (a).
(ii) The curvatures of the two twisted complete shifted curved L∞-algebra struc-

tures are related by the following formula:

β
f (a)
0 = f a

1
(
αa

0
)

=
∑
k≥0

1
k! fk+1

(
ak, αa

0
)
.

(iii) If the element a is a Maurer–Cartan element in the complete shifted curved
L∞-algebra α, then so is its “image” f (a) in the complete shifted curved
L∞-algebra β. In this case, f a − f (a) =

(
0, f a

1 , f a
2 , . . .

)
is a (non-curved)

∞-morphism between the two complete shifted L∞-algebras αa and β f (a)

respectively.

Proof

(i) The first assertion amounts to proving((
1 − f (a)

)
} f } (1 + a)

)
? αa = β f (a) }

(
1 − f (a)

)
} f } (1 + a) .
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The left-hand term is equal to((
1 − f (a)

)
} f } (1 + a)

)
? αa

= f (a) + ( f } (1 + a)) ?
(
α} (1 + a)

)
= f (a) + ( f ? α)} (1 + a) .

The right-hand term is equal to

β f (a) }
(
1 − f (a)

)
} f } (1 + a)

=
(
1 − f (a)

)
} β}

(
1 + f (a)

)
}

(
1 − f (a)

)
} f } (1 + a)

= f (a) + β} f } (1 + a) = f (a) + ( f ? α)} (1 + a) .

(ii) The second assertion is the part of the above relation for the ∞-morphism
in arity 0. This latter one is equal to f a − f (a) =

(
0, f a

1 , f a
2 , . . .

)
and so it has

no constant term. The part of arity 0 of the equation β f (a) }
(
f a − f (a)

)
=(

f a − f (a)
)
? αa is

β
f (a)
0 = f a

1
(
αa

0
)

=
∑
k≥0

1
k! fk+1

(
ak, αa

0
)
.

(iii) The last assertion is a direct corollary of the previous one: if αa
0 = 0, then

so is β f (a) = 0 .

�

Let us continue with ∞-morphisms between two complete shifted curved
L∞-algebras (A,F, α) and (B,G, β). Such a map is a collection ( f0, f1, f2, . . .),
where b := f0 ∈ G1B0. Let us denote it by b + f , where f B (0, f1, f2, . . .).

Lemma 4.17 Under this convention, with the constant term split apart, a
data b + f is an ∞-morphism from α to β if and only if the data f is an ∞-
morphism from α to the twisted structure βb:

b + f : α β ⇐⇒ f : α βb .

Proof The data b + f in an∞-morphism from α to β if and only if it satisfies

(b + f ) ? α = f ? α = β} (b + f ) .

The data f in an∞-morphism from α to βb if and only if it satisfies

f ? α = βb } f = β} (1 + b)} f = β} (b + f ) ,

which concludes the proof. �

V. Dolgushev and C. Rogers introduced in [31] a category whose objects are
complete shifted L∞-algebras and whose morphisms from (A,F, α) to (B,G, β)
amount to the data of a Maurer–Cartan element b ∈ G1B0 and an∞-morphism
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f : α βb without constant term. Let g : β γc be another such morphism;
they define the composite of morphisms by the formula:(

gb − g(b)
)
} f : α γc+g(b) .

This category is denoted by SLieMC
∞ in loc. cit.

Proposition 4.18 The category SLieMC
∞ is the sub-category of the category

of complete shifted curved L∞-algebras with ∞-morphisms whose objects are
complete shifted L∞-algebras and whose morphisms are ∞-morphisms such
that the constant term is a Maurer–Cartan element in the target algebra.

Proof Lemma 4.17 establishes the equivalence between the two notions of
morphisms. Under the above convention, the formula for the composition of
two∞-morphisms c + g and b + f is given by

(c + g)} (b + f ) =
(
c + g(b)

)
+

(
gb − g(b)

)
} f ,

which coincides with the Dolgushev–Rogers definition. �

Besides giving a conceptual explanation for the Dolgushev–Rogers cate-
gory, this result also allows us to prove easily the various properties of the
composite of morphisms, like the associativity for instance. Notice that this
category was used in a crucial way in [33] to provide an ∞-categorical en-
richment of the category of homotopy algebras which encodes faithfully their
higher homotopy theory.

4.5 Twistable types of algebras

The purpose of this section is to describe on the level of the encoding oper-
ads which categories of algebras admit a meaningful twisting procedure. To be
more precise, our aim is to characterise the (quadratic) operads P for which
any P∞-algebra can be twisted by any element satisfying a Maurer–Cartan type
equation.This explains conceptually the particular form of the Maurer–Cartan
equation.

Let U B (ku, 0, . . .) be the operad generated by an element u of degree 0
and arity 0; it encodes the data of a degree 0 elements in graded modules.
Let (E,R) be an operadic quadratic-linear data, that is R ⊂ E ⊕T (E)(2), and let
χ : E(2)→ k be an S2-equivariant linear map of degree 0, where k receives the
trivial S2-action. We consider the space of relations Rχ ⊂ T (E ⊕ku) generated
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by

µ ◦1 u − χ(µ) id and µ ◦2 u − χ(µ) id ,

with µ ∈ E(2), and all the other composites of elements of E(n) with at least
one u, for n , 2.

Definition 4.19 (Unital extension) The unital extension of P B P(E,R) by χ
is the following operad

uχP B P(E ⊕ ku,R ⊕ Rχ) =
P(E,R) ∨ U(

Rχ

) ,

where ∨ stands for the coproduct of operads.

The category of uχP-algebras is the category of P-algebras with a distin-
guished degree 0 element which acts as a unit (with coefficients) for the gen-
erating operations of degree 0 and arity 2 and which vanishes once composed
with any other generating operation. Notice that in the trivial case χ = 0, the
unital extension amounts to u0P � ku ⊕ P and that, in the general case, the
underlying graded S-module of uχP is a quotient of ku ⊕ P . The “maximal”
case is covered by the following definition.

Definition 4.20 (Extendable quadratic-linear operad) A quadratic-linear pre-
sentation of an operad P = P(E,R) is called extendable when there exists a
non-trivial map χ : E(2) → k such that the canonical map P ↪→ uχP is a
monomorphism.

This happens if and only if the underlying graded S-module of uχP is iso-
morphic to ku ⊕ P . In other words, an operad is extendable when it admits a
(non-trivial) “unitary extension” in the terminology of [47, Section 2.2]. As a
consequence, an extendable operad P carries a richer structure of a Λ-operad,
crucial notion in the recognition of iterated loop spaces [101], and its underly-
ing S-module carries an FI-module structure, where FI stands for the category
of finite sets and injections; this notion plays a seminal role in representation
theory [24]. Our definition may be viewed as a way to produce concrete unitary
extensions of operads in the quadratic case.

We shall now discuss extendability of some classical operads.

Proposition 4.21

(i) The quadratic operads Com, Gerst, HyperCom, PreLie, and the quadratic-
linear operad BV are extendable.

(ii) The quadratic ns operad As is extendable.
(iii) The quadratic operads Lie and Perm are not extendable.



4.5 Twistable types of algebras 83

(iv) The quadratic ns operads Dias and Dend are not extendable.

Proof

(i) In the case of commutative associative algebras, the classical definition of
the unit a · 1 = 1 · a = a, that is χ(·) = 1, works to create such an extension.

In the cases of operads of Gerstenhaber algebras, Batalin–Vilkovisky
algebras, and hypercommutative algebras, we note that those are homol-
ogy operads of topological operads (of little 2-disks, framed little 2-disks,
and Deligne–Mumford compactifications of genus zero curves with marked
points respectively) that admit units topologically (action of the unit corre-
sponds to forgetting one of the little disks, or one of the marked points),
hence the unitality remains on the algebraic level. The action of the unit
on the generators is forced by degree reasons: all generators except for the
binary generator of the commutative suboperad must be annihilated by the
unit.

Let us consider the operad of pre-Lie algebras. We shall now show that
the assignment χ(?) = 1, that is 1?a = a?1 = a, leads to a unital extension
of the maximal possible size. It suffices to show that the insertion of u into
any element of the operadic ideal generated by the pre-Lie identity and ap-
plying the defining relations of the unital extension that we are considering
produces an element of the same ideal. Let us note that insertion of u in any
slot of the pre-Lie identity gives zero:

(1 ? b) ? c − 1 ? (b ? c) − (1 ? c) ? b + 1 ? (c ? b) = 0 ,

(a ? 1) ? c − a ? (1 ? c) − (a ? c) ? 1 + a ? (c ? 1) = 0 ,

(a ? b) ? 1 − a ? (b ? 1) − (a ? 1) ? b + a ? (1 ? b) = 0 .

Every element of the operadic ideal generated by the pre-Lie identity is
a combination of elements which are obtained from the pre-Lie identity by
pre- and post-compositions. Consider one such element ν, and look at ν◦i u.
If the argument i of ν is one of the arguments of the pre-Lie identity, then
the above computation shows that ν ◦i u = 0. Otherwise, the element α ◦i u
is still obtained from the pre-Lie identity by pre- and post-compositions,
proving our claim.

(ii) The proof is the same as in the case of the operad Com.
(iii) In the case of Lie algebras, there is no nontrivial equivariant map χ from

the space of binary operations to the ground field regarded as the trivial
module.

In the case of permutative algebras, we can substitute x1 = u in the struc-
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tural identity

x1 · (x2 · x3) = x1 · (x3 · x2) ,

and note that it becomes

χ(·)x2 · x3 = χ(·)x3 · x2 ,

so if the canonical map is a monomorphism, we must have χ(·) = 0, and the
extension is trivial.

(iv) Recall the defining relations of the ns operad of dendriform algebras:

(x1 ≺ x2) ≺ x3 = x1 ≺ (x2 ≺ x3 + x2 � x3) ,

(x1 � x2) ≺ x3 = x1 � (x2 ≺ x3) ,

(x1 � x2 + x1 ≺ x2) � x3 = x1 � (x2 � x3) .

Suppose that we consider the unital extension corresponding to the linear
function χ. Substituting x1 = u in the first dendriform axiom and then set-
ting x3 = u in the third one, we get

χ(≺)x2 ≺ x3 = χ(≺)(x2 ≺ x3 + x2 � x3) ,

χ(�)(x1 � x2 + x1 ≺ x2) = χ(�)(x1 � x2) ,

so if the canonical map is a monomorphism, we must have χ(≺) = χ(�) = 0,
and the extension is trivial.

Recall the defining relations of the ns operad of diassociative algebras:

(x1 ` x2) ` x3 = x1 ` (x2 ` x3) ,

(x1 ` x2) ` x3 = (x1 a x2) ` x3 ,

(x1 ` x2) a x3 = x1 ` (x2 a x3) ,

x1 a (x2 ` x3) = x1 a (x2 a x3) ,

(x1 a x2) a x3 = x1 a (x2 a x3) .

Suppose that we consider the unital extension corresponding to the linear
function χ. Substituting x3 = u in the second axiom of diassociative alge-
bras and then setting x1 = u in the fourth one, we get

χ(`)x1 ` x2 = χ(`)x1 a x2 ,

χ(a)x2 ` x3 = χ(a)x2 a x3 ,

so if the canonical map is a monomorphism, we must have χ(`) = χ(a) = 0,
and the extension is trivial.

�
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Let us now work over a field k of characteristic 0 and suppose that the
component E(n) is finite dimensional for any n ≥ 1 and that E(0) = 0. Re-
call that the Koszul dual operad of a quadratic-linear opead P = P(E,R)
admits the following quadratic presentation P ! = P(

E∨, (qR)⊥
)
, with E∨ B

s−1Endks−1 ⊗H E∗, see [88, Section 7.2.3].

Lemma 4.22 Under the abovementioned assumptions, when the Koszul dual
operad P ! is extendable, the (complete) convolution pre-Lie algebra associ-
ated to

(
uχP !

)∗
is isomorphic to

homS
((

uχP !
)∗
, endA

)
� A × homS

(P ¡, endA
)
,

where the pre-Lie productF on the right-hand side is given by

(a, f )F(b, g) = ( f (id)(b), f ? g + f ∗ b) ,

with ? being the pre-Lie product on the convolution algebra

aP¡,A =
(
homS

(P ¡, endA
)
, ?

)
and f ∗ b denoting an element depending only on f and b.

Proof When the Koszul dual operad P ! is extendable, we use the underlying
isomorphism uχP ! � ku ⊕ P ! to get

homS
((

uχP !
)∗
, endA

)
� homS

(
u∗ ⊕ P ¡, endA

)
� A × homS

(P ¡, endA
)
.

The arity 0 part the pre-Lie product F comes from the unique way to obtain
the element u in the operad uχP ! as a partial composition of two elements, that
is u = id ◦1u. Similarly for its other part, given any element µ ∈ P !, there are
two ways to get it as a partial composition of two elements: either with two
elements coming from P ! or with one (bottom) coming from P ! and one (top)
which is u. Notice that in this latter case, we get a finite sum in each arity since
E(0) = 0 and E(n) is finite dimensional for any n ≥ 1. �

Theorem 4.23 Let α ∈ MC
(
aP¡,A

)
be a complete P∞-algebra structure on A

and let a ∈ F1A0. The Maurer–Cartan element a.α in the convolution algebra
homS

((
uχP !

)∗
, endA

)
is a P∞-algebra structure if and only if its arity 0 part

(a.α)(u∗) = 0 vanishes.

Proof This is a direct corollary of Lemma 4.22 which implies that Maurer–
Cartan elements in the convolution algebra aP¡,A = homS (P ¡, endA) are in
one-to-one correspondence with Maurer–Cartan elements in the extended con-
volution algebra homS

((
uχP !

)∗
, endA

)
whose arity 0 part vanishes. �

This result prompts the following definition.
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Definition 4.24 (Twistable homotopy algebras) Let P = P(E,R) be an arity-
wise finitely generated quadratic-linear Koszul operad. We say that the cate-
gory of homotopy P-algebras, that is algebras over an operad P∞ = ΩP ¡, is
twistable when the Koszul dual operad P ! is extendable. The corresponding
equation (a.α)(u∗) = 0 is then naturally dubbed the Maurer–Cartan equation.

In plain words, when a category of P∞-algebras is twistable, this means that
the “dual” category of P !-algebras admits a meaningful extension of unital P !-
algebras and thus the category of P∞-algebras admits a meaningful extension
of curved P∞-algebras. In this case, the twisting procedure works as in the
case of homotopy associative or homotopy Lie algebras: any P∞-algebra can
be twisted by an element to produce a curved P∞-algebra, which turns out to
be a P∞-algebra if and only if its twisted curvature vanishes, that is satisfises
the Maurer–Cartan equation.

Proposition 4.25

(i) The categories of homotopy Lie algebras, homotopy Gerstenhaber alge-
bras, homotopy gravity algebras, and homotopy permutative algebras are
twistable.

(ii) The category of homotopy associative algebras is twistable.

(iii) The categories of homotopy commutative algebras and homotopy pre-Lie
algebras are not twistable.

(iv) The categories of homotopy dendriform algebras and homotopy diassocia-
tive algebras are not twistable.

Proof This is a direct corollary of Proposition 4.21 and Theorem 4.23. �

One can check that the maps χ introduced in Proposition 4.21 for the unital
extensions of the ns operad As and for the operad Com produce the exact same
twisting formulas than the ones given in Section 4.2 for (curved) A∞-algebras
and in Section 4.4 for (curved) L∞-algebras. The other cases are new. Below
we make the case of (curved) homotopy permutative algebras explicit and we
leave the other cases to the interested reader.

We already recalled the definition of permutative algebras in Proposition 4.21
and its proof. The operad Perm is known to be Koszul. Its Koszul dual operad
is the operad PreLie encoding pre-Lie algebras [88, Section 13.4.3]. This latter
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operad is isomorphic to eh of rooted trees operad RT:

1

3 4

2 ,

where the lowest vertex is the root, see [22, Theorem 1.9]. The partial compo-
sition products τ◦iυ is given by the insertion of the tree υ at the ith vertex of the
tree τ. The sub-trees attached above the ith vertex of the tree τ are then grafted
in all possible onto the vertices of the tree υ; for example, the composition

1 3

2
◦2

1

2

is given by the formula

1 2 4

3
+

1 4

2

3

+

4

1 2

3

+

1

2 4

3

.

As explained in Proposition 3.18, the data of a shifted Perm∞-algebra on a
(complete) dg module A amounts to a Maurer–Cartan element in the convolu-
tion algebra aPreLie∗,A. Given a rooted tree τ and a sub-tree υ ⊂ τ (forgetting
the labels), we denote by (τ/υ, i, σ) respectively the rooted tree τ/υ obtained
by contracting υ in τ and by relabelling the vertices, the label i of the corre-
sponding new vertex, and the overall permutation σ ∈ S|τ| which produces the
labelling of the tree τ after the composite (τ/υ ◦i υ)σ = τ. Such a decomposi-
tion is not unique, we choose the one for which the associated planar tree

σ−1(1) σ−1(2) ···

σ−1(i)σ−1(i+1) ···

··· σ−1(|τ|)i ,
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where the bottom corolla has arity |τ/υ| and where the top corolla has arity |υ|,
and is a shuffle tree [88, Section 8.2.2].

For τ B

1 4

2

3

and υ B
1 3

2
,

we get τ/υ =

1

2
, i = 1, and σ = (34).

Lemma 4.26 A shifted homotopy permutative algebra is a graded module A
equipped with a collection of degree −1 operations

{
mτ : A⊗|τ| → A

}
τ∈RT

,

where |τ| stands for the number of vertices of a rooted tree. These generating
operations are required to satisfy the relations

∑
υ⊂τ

(
mτ/υ ◦i mυ

)σ
= 0 ,

for any tree τ ∈ RT.

Proof This is a direct corollary of the definition of the convolution algebra
aPreLie∗,A and the cooperad structure on PreLie∗ obtained by linear dualisation of
the operad structure on PreLie described above. The choice of decompositions
(τ/υ ◦i υ)σ = τ along shuffle trees does not alter the result: any choice of
decomposition would produce the same result in the end, by the properties of
the endomorphism operad EndA. In other words, the composite

(
mτ/υ ◦i mυ

)σ
does not depend of the choice of decomposition. �
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Here are the first relations, where we use the notation d B m 1 .

τ = 1 d2 = 0

τ =

2

1
∂m 2

1

B dm 2

1

(−,−) + m 2

1

(d(−),−) + m 2

1

(−, d(−)) = 0;

τ =

3

2

1

∂m 3

2

1

= −m 2

1

◦1 m 2

1

− m 2

1

◦2 m 2

1

;

τ =

2 3

1
∂m 2 3

1

= −m 2

1

◦1 m 2

1

−
(
m 2

1

◦1 m 2

1

)(23)
.

This shows that m 3

2

1

, respectively m 2 3

1

, is a homotopy for the first

relation (anti-associativity), respectively for the second relation (partial skew-
symmetry), defining a shifted permutative algebra.

We consider the unital extension of operad PreLie introduced in the proof of
Proposition 4.21 that we simply denote here by uPreLie. This operad encodes
pre-Lie algebras (A, ?) equipped with a degree 0 element 1 satisfying

1 ? x = x = x ? 1 ,

for any x ∈ A.

Lemma 4.27 In the operad uPreLie, the composite of the arity 0 element u at
a vertex of a rooted tree τ depends on the position of this latter one as follows:

At a leaf if the number of inputs of the vertex supporting the leaf is equal
to n, then the resulting rooted tree is obtained by removing the leaf,
relabelling the other vertices, and multiplying by 2 − n,

At the root or at an internal vertex when the vertex has just one input, then
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it is deleted and the remaining vertices relabelled accordingly, oth-
erwise when the vertex has at least two inputs, the upshot is equal
to 0.

Proof To demonstrate that, we shall use symmetric braces introduced in Def-
inition 3.14. Using the recursive formula for braces, one can show that

{1; x1, . . . , xn} = 0 for n ≥ 2 ,

and that

{x0; x1, . . . , xi−1, 1, xi+1, . . . , xn} = (2 − n){x0; x1, . . . , xi−1, xi+1, . . . , xn} .

Since it is known [113] that symmetric braces corresponds to the “naive” way
of building a rooted tree from corollas, the claim follows. �

For τ B

1

3 5 4

2

we have

1

3 5 4

·

= 0 ,

1

· 5 4

2

= −

1

4 3

2

, and

1

3 5 ·

2

=

3 4 1

2
.

The black vertex represents where the element u is plugged.

Given a rooted tree τ, we consider its unital expansions which are rooted
trees τ̃ with two types of vertices: the “white” ones which are bijectively la-
beled by {1, . . . , |τ|} and the “black” ones which receive no label. Every such
black and white rooted trees τ̃ are moreover required to give τ under the rule
given in Lemma 4.27. We denote by cτ̃ the coefficient of τ in the operad
uPreLie obtained by replacing each black vertex of τ̃ by the element u. For
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example, in the case

τ̃ B

4 5 · ·

1 3 · ·

·

2

,

we have cτ̃ = −2 and

τ =

4 5

1 3

2

.

Proposition 4.28 Let (A,F, {mτ}τ∈RT) be a complete shifted Perm∞-algebra
and let a ∈ F1A0. The twisted operations

ma
τ B

∑
τ̃

1
cτ̃

mτ̃(a, . . . , a,−, · · · ,−) ,

where the sum runs over unital expansions of the rooted tree τ and where the
elements a are inserted at the black vertices of τ̃, define a complete shifted
Perm∞-algebra if and only if the element a satisfies the following Maurer–
Cartan equation ∑

n≥1

m n

2

1

(a, . . . , a) = 0 .

Proof We apply here Theorem 4.23: let us denote by α the Maurer–Cartan
element in the convolution algebra aPreLie∗,A corresponding to the complete
shifted Perm∞-algebra structure, that is α(τ∗) B mτ .

First, the the Maurer–Cartan equation is equal to

(a.α)(u∗) =
∑
τ∈RT

mτ(a, . . . , a) = 0 .

But Lemma 4.27 shows that, the composite of elements u at all the vertices
of a rooted tree τ in the operad uPreLie is equal to u for ladders and vanishes
otherwise.

Then, the twisted operation ma
τ is equal to

(
α}(1+a)

)
(τ∗) in the convolution
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algebra auPreLie∗,A, which is thus equal to ma
τ B

∑
τ̃

1
cτ̃

mτ̃(a, . . . , a,−, · · · ,−)
again by Lemma 4.27. �

Remark 4.29 Under the notation mn B m n

2

1

, one can see that
(
A, {mn}n≥1

)

forms a shifted A∞-algebra. The twisting procedure for shifted Perm∞-algebras
produces the exact same twisting procedure seen in Section 4.2 for this under-
lying A∞-algebra, ie ma

n = ma
n

2

1

and the same Maurer–Cartan equation:

∑
n≥1

mn(a, . . . , a) = 0 .

This is not a surprise, since the forgetful functor from permutative algebras
to associative algebras is actually produced by pulling back along the epimor-
phism Ass� Perm of operads obtained by sending the usual generator of Ass
to the usual generator of Perm. Since this latter one comes from a morphism
of operadic quadratic data, it induces a monomorphism of cooperads between
the Koszul dual cooperads Ass¡ ↪→ Perm¡ and thus a monomorphism between
the Koszul resolution Ass∞ ↪→ Perm∞, which sends precisely µn to the rooted
tree

n

2

1

.

The twisting procedure for shifted Perm∞-algebras extends the twisting proce-
dure for shifted A∞-algebras since the morphism of cooperads Ass¡ ↪→ Perm¡

extends to the morphism of cooperads uAss∗ ↪→ uPreLie∗.
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The twisting procedure for operads

In this chapter, we lift the twisting procedure to the level of complete differen-
tial graded operads and we apply it in detail to the example of multiplicative
nonsymmetric operads. In the symmetric case, this is the seminal theory of T.
Willwacher [142] which was developed further by V. Dolgushev, C. Rogers,
and T. Willwacher [30, 29] but treated in a different way, first suggested by
J. Chuang and A. Lazarev in [23].

For pedagogical reasons, we give a detailed presentation in the case of ns
operads, and only touch the symmetric case briefly, since our approach works
mutatis mutandis for complete symmetric dg operads; we hope that this will
make the theory of operadic twisting more accessible. We use the categorical
notion of the coproduct of operads, insisting that all the properties of the op-
eradic twisting follow in a straightforward way from the universal property of
this algebraic notion.

5.1 Twisting of nonsymmetric operads

One can try to twist any dg pre-Lie algebra (A, d, ?) by Maurer–Cartan ele-
ments dµ + µ ? µ = 0 using the usual formulas (A, dµ, ?), where the twisted
differential is given by

dµ(ν) B dν + adµ(ν) B dν + µ ? ν − (−1)|ν|ν ? µ .

This material will be published by Cambridge University Press & Assessment as ‘Maurer-Cartan
Methods in Deformation Theory: the twisting procedure’ by Vladimir Dotsenko, Sergey Shadrin
and Bruno Vallette. This version is free to view and download for personal use only. Not for re-
distribution, re-sale or use in derivative works. c©Cambridge University Press & Assessment
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From Proposition 4.25, we know that the general twisting procedure does not
work for general pre-Lie algebras since the Koszul dual operad PreLie! � Perm
for permutative algebras does not admit an extension by a unit. Let us illustrate
that by exhibiting an explicit constraint for the pre-Lie identity of the twisted
algebra. Remarkably, that constraint arises from an algebraic notion used, for
example, in the classification of pre-Lie algebra structures on gln in [10].

Definition 5.1 (Left nucleus of a pre-Lie algebra) Let a = (A, ?) be a pre-Lie
algebra. The left nucleus of a is the set of elements x such that

x ? (a1 ? a2) = (x ? a1) ? a2 , for all a1, a2 ∈ A . (5.1)

Proposition 5.2 The twisted data (A, dµ, ?) forms a dg pre-Lie algebra if and
only if the Maurer–Cartan element µ belongs to the nucleus of a.

Proof Clearly, (A, dµ, ?) forms a dg pre-Lie algebra if and only if the twisted
operator dµ is a derivation which squares to zero. The latter property is always
true since it can be formulated using only the dg Lie algebra associated to our
dg pre-Lie algebra, and so follows from the properties of twisting of dg Lie
algebras. To examine the former property, one performs the following compu-
tation:

dµ(ν ? ω) − dµ(ν) ? ω − (−1)|ν|ν ? dµ(ω) = µ ? (ν ? ω) − (µ ? ν) ? ω ,

which concludes the proof. �

Recall that for any ns operad P , one defines a Lie bracket by anti-symme-
trizing the pre-Lie product

µ ? ν B
n∑

i=1

µ ◦i ν ,

where µ lives in P(n).

Definition 5.3 (Operadic Maurer–Cartan element) Let (P , d) be a dg ns op-
erad. An operadic Maurer–Cartan in P is a degree −1 and arity 1 element
µ ∈ P(1)−1 satisfying

dµ + µ ? µ = dµ + µ ◦1 µ = 0 .

The purpose of the arity 1 constraint in this definition is to ensure that op-
eradic Maurer–Cartan elements satisfy Equation (5.1). Therefore, one can twist
the pre-Lie algebra associated to an ns operad by such elements. This result ac-
tually lifts to the level of the dg ns operad itself.
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Example 5.4 For the endomorphism operad End(A,d) , the Maurer–Cartan
elements are the degree −1 maps m : A→ A satisfying the equation dm+md +

m2 = 0, i.e. perturbations of the differential.

Proposition 5.5 (Twisted operad) Let (P , d, {◦i}) be a dg ns operad and let µ
be one of its Maurer–Cartan elements. The degree −1 operator

dµ(ν) B dν + adµ(ν) B dν + µ ? ν − (−1)|ν|ν ? µ

is a square-zero derivation. Therefore, the data Pµ B (P , dµ, {◦i}) defines a dg
ns operad, called the ns operad twisted by the Maurer-Cartan element µ.

Proof The computations are similar to that of Proposition 5.2. The fact that
the twisted operator adµ is a derivation with respect to the partial composition
products ◦i is equivalent to the equations

µ ? (ν ◦i ω) = (µ ? ν) ◦i ω ,

which holds true since the Maurer–Cartan element µ is supported in arity 1. �

Example 5.6 The endomorphism operad End(A,d) of a chain complex (A, d)
twisted by a Maurer–Cartan element m is actually the endomorphism operad

Endm
(A,d) = End(A,d+m)

of the twisted chain complex (A, d + m).

Example 5.7 One can also twist the ns operad ncBV of non-commutative
Batalin–Vilkovisky algebras [41] by its square-zero element ∆, under coho-
mological degree convention.

The operadic twisting operation satifises the following usual functorial prop-
erty of the twisting procedure.

Proposition 5.8 Let ρ : P → Q be a morphism of dg ns operads. The image
ρ(µ) of a Maurer–Cartan µ of the dg ns operad P is a Maurer–Cartan element
in the dg ns operad Q. The morphism ρ of ns operads commutes with the
twisted differential, that is yields a morphism of dg ns operads

ρ̃ : Pµ → Qρ(µ) .

Proof This is proved by straightforward computations. �

This proposition applied to the endomorphism operad Q = EndA will play
a key role in the following sections.

Proposition 5.9 Let µ be a Maurer–Cartan element of a dg ns operad P .
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(i) An element α is a Maurer–Cartan element of the twisted dg ns operad Pµ if
and only if α − µ is a Maurer–Cartan element of the original dg ns operad
P .

(ii) The element −µ is a Maurer–Cartan element in the twisted dg ns operad Pµ

and twisting this latter one again by this Maurer–Cartan element produces
the original operad:

(Pµ)−µ = P .

Proof The first statement is proved by straightforward computations. The
second one is a special case for α = 0. �

All these results hold as well for complete dg ns operads; we will treat a
particular case in the next section.

5.2 Twisted A∞-operad

Proposition 5.10 The data of a complete A∞-algebra structure together with
a Maurer–Cartan element is encoded by the complete dg ns operad

MCA∞ B
(
T̂ (
α, µ2, µ3, . . .

)
, d

)
,

where α has arity 0 and degree −1 and µn has arity n and degree n − 2, for
n ≥ 2, where the filtration on the space M =

(
kα, 0, kµ2, kµ3, . . .

)
of generators

is given by

α ∈ F1M(0), F2M(0) = {0} and µn ∈ F0M(n), F1M(n) = {0} , for n ≥ 2 ,

and where the differential is defined by

dµn B
∑

p+q+r=n
p+1+r,q≥2

(−1)pq+r+1µp+1+r ◦p+1 µq ,

dα B −
∑
n≥2

µn(α, . . . , α) .

Proof The fact that the map d extends to a unique square-zero derivation is
direct corollary of Proposition 5.32 applied to the identity map As¡ → As¡.
So we get a well-defined complete dg ns operad. A complete MCA∞-algebra
structure on a complete dg module (A,F, d) amounts to a morphism of filtered
dg ns operads MCA∞ → endA according to Theorem 2.24. Such an assignment
α 7→ a and µn 7→ mn is equivalent to the datum of an element a ∈ F1A−1 and
a sequence of maps mn : A⊗n → A degree n − 2 satisfying the relations of a
Maurer–Cartan elements in an A∞-algebra by the form of the differential d.

�
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Remark 5.11 Under the convention of Section 4.2, we have µn = s−1νn .

Inside the dg ns operad MCA∞, we consider the following elements

µαn B
∑

r0,...,rn≥0

(−1)
∑n

k=0 krkµn+r0+···+rn

(
αr0 ,−, αr1 ,−, . . . ,−, αrn−1 ,−, αrn

)
,

for n ≥ 0, that is for example:

µα0 B
∑
n≥2

µn(α, . . . , α) and µα1 B
∑
n≥2

1≤i≤n

(−1)n−i µn
(
αi−1,−, αn−i) .

Lemma 5.12 The elements µαn satisfy the relations

dµαn =
∑

p+q+r=n
p+1+r,q≥1

(−1)pq+r+1µαp+1+r ◦p+1 µ
α
q for n ≥ 2 .

Proof In plain words, the relations we should check that the elements µαk , for
k ≥ 2 , satisfy the identities of operations of an A∞-algebra for the differential
d + µα1 . This is an immediate consequence of Theorem 4.8. That result is valid
for every complete algebra, in particular in any free algebra, proving that the
required formula for the twisted operations holds on the operad level. �

In particular, for n = 1 , we obtain the relation

dµα1 = −µα1 ◦1 µ
α
1 ,

so the element µα1 is a Maurer–Cartan element of the complete dg ns operad
MCA∞. So, the operadic twisting procedure produces the following new com-
plete dg ns operad.

Definition 5.13 (Twisted A∞-operad) The complete dg ns operad obtained
by twisting the complete operad MCA∞ by the Maurer–Cartan µα1 is called the
twisted A∞-operad and denoted by

TwA∞ B (MCA∞)µ
α
1 =

(
T̂ (α, µ2, µ3, . . .), dµ

α
1

)
.
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The twisted differential is actually equal to

dµ
α
1 (α) = d(α) + µα1 (α) = −

∑
n≥2

µn(α, . . . , α) +
∑
n≥2

nµn(α, . . . , α)

=
∑
n≥2

(n − 1)µn(α, . . . , α) ,

dµ
α
1 (µn) = d(µn) + µα1 ? µn − (−1)nµn ? µ

α
1

=
∑

p+q+r=n
p+1+r,q≥2

(−1)pq+r+1µp+1+r ◦p+1 µq +
∑
k≥2

1≤i≤k

(−1)(k−i)(n+1)µk
(
αi−1, µn, α

k−i)

−

n∑
j=1

∑
k≥2

1≤i≤k

(−1)n+k−i µn ◦ j µk
(
αi−1,−, αk−i) .

Note that there is a morphism of complete dg ns operads TwA∞ → A∞
which sends α to 0 and µn to µn. On the algebra level, this corresponds to
twisting an A∞-algebra with the trivial Maurer–Cartan element. It turns out
that there is a deeper morphism in the opposite direction.

Proposition 5.14 The assignment µn 7→ µαn defines a morphism of complete
dg ns operads

A∞ → TwA∞ .

Remark 5.15 By contrast, the morphism of complete ns operads from A∞
to MCA∞ which sends the generators µn to µαn does not commute with the
differentials. There is a conceptual reason for this: the twisted operations form
an A∞-algebra only with the twisted differential and not with the underlying
differential.

Proof The only point to check is the commutativity with the differentials on
the generators µn of the quasi-free dg ns operad A∞, that is:

dµ
α
1
(
µαn

)
= d

(
µαn

)
+ µα1 ? µ

α
n − (−1)nµαn ? µ

α
1

=
∑

p+q+r=n
p+1+r,q≥1

(−1)pq+r+1µαp+1+r ◦p+1 µ
α
q +

∑
p=r=0
q=n

µαp+1+r ◦p+1 µ
α
q

− (−1)n
∑

p+1+r=n
q=1

µαp+1+r ◦p+1 µ
α
q

=
∑

p+q+r=n
p+1+r,q≥2

(−1)pq+r+1µαp+1+r ◦p+1 µ
α
q ,

thanks to Lemma 5.12. �
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Alternatively, if one checks the identities of Lemma 5.12 on the operadic
level directly, it leads to an alternative proof of Proposition 4.7 as follows.
The data of a complete A∞-algebra structure together with a Maurer–Cartan
element a on a complete dg module (A,F, d) is equivalent to a morphism of
complete dg ns operads ρ : MCA∞ → End(A,d), where ρ(µn) = mn and ρ(α) = a
under the previous notations. By Proposition 5.8, the image of the Maurer–
Cartan element µα1 of MCA∞ under the morphism ρ gives a Maurer–Cartan
element on the complete endomorphism ns operad endA. As emphasised above,
the complete endomorphism operad twisted by this Maurer–Cartan element
is equal to the complete endomorphism operad of the twisted chain complex
(A, da). Therefore, the second point of Proposition 5.8 shows that

ρ̃ : TwA∞ → end(A,da)

is a morphism of complete dg ns operads. Pulling back that morphism along
the morphism of complete dg ns operads A∞ → TwA∞, one gets that the
twisted operations ma

n do form an A∞-algebra structure.

5.3 Twisting of multiplicative nonsymmetric operads

The following notion arose from the study of the Deligne conjecture on the
Hochschild cochain complex, see [102] as well as the discussion of twisting in
the context of the Deligne conjecture in Section 6.6.

Definition 5.16 (Multiplicative ns operad) A multiplicative ns operad is a
complete dg ns operad P equipped with a morphism of complete dg ns operads
A∞ → P . We still denote by µ2, µ3, etc. the images in P of the generating
operations of A∞.

Therefore any complete dg algebra over a multiplicative ns operad acquires
a natural complete A∞-algebra structure.

The categorical coproduct of two ns operads is denoted by P ∨Q (respec-
tively by P∨̂Q in the complete case). It is given by the free ns operad on the
underlying N-modules of P and Q modulo the relations that equate planar
trees with two vertices labelled both by elements of P or by elements of Q
to their operadic composition. Thus planar trees with vertices labelled alter-
natively by elements from P and Q are representatives for this coproduct. Its
operadic composition is given by the grafting of planar trees, followed possibly
by the composite of two adjacent vertices labelled by elements from the same
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ns operad.

By a slight abuse of notation, we simply denote by α the (trivial) complete
ns operad (kα, 0, . . .) spanned by the arity 0 element α. Thus P∨̂α denotes the
complete coproduct of a complete ns operad P with it. As a consequence of the
above description, the elements of this coproduct are series, indexed by n ∈ N,
of linear combinations of operations from P with n copies of α plugged at their
inputs.

Proposition 5.17 Let A∞ → P be a multiplicative ns operad. The data
of a complete P-algebra structure together with a Maurer–Cartan element is
encoded by the complete dg ns operad

MCP B
(P∨̂α, d) ,

where α is a degree −1 element of arity 0 placed in F1 and where ∨̂ stands for
the coproduct of complete ns operads, and where the differential d is charac-
terized by

dα B −
∑
n≥2

µn(α, . . . , α) ,

dν B dP (ν) , for ν ∈ P .

Proof The fact that the map d extends to a unique square-zero derivation is
direct corollary of Proposition 5.32 applied to the map As¡ → P induced by
the multiplicative ns operad structure. The rest of the proof is straightforward
from the definition of the coproduct of complete ns operads. �

Lemma 5.18 The element µα1 is a Maurer–Cartan element of the complete
dg ns operad MCP .

Proof The morphism of complete dg ns operads A∞ → P induces a mor-
phism of complete dg ns operads MCA∞ → MCP and we know, by Propo-
sition 5.8, that the image of an operadic Maurer–Cartan element is again an
operadic Maurer–Cartan element. �

Definition 5.19 (Twisted multiplicative ns operad) Let A∞ → P be a mul-
tiplicative ns operad. The complete dg ns operad obtained by twisting the op-
erad MCP by the Maurer–Cartan element µα1 is called the twisted complete ns
operad and denoted by

TwP B (MCP)µ
α
1 =

(
P∨̂α, dµα1

)
.
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The twisted differential is actually equal to

dµ
α
1 (α) = d(α) + µα1 (α) = −

∑
n≥2

µn(α, . . . , α) +
∑
n≥2

nµn(α, . . . , α)

=
∑
n≥2

(n − 1)µn(α, . . . , α) ,

dµ
α
1 (ν) = dP (ν) + µα1 ? ν − (−1)|ν|ν ? µα1

= dP (ν) +
∑
n≥2

1≤i≤n

(−1)(n−i)(|ν|+1)µn
(
αi−1, ν, αn−i)

−

k∑
j=1

∑
n≥2

1≤i≤n

(−1)|ν|+n−i ν ◦ j µn
(
αi−1,−, αn−i) ,

for ν ∈ P(k).

Proposition 5.20 Any complete dg P-algebra (A, d) with a given Maurer–
Cartan element “a” gives a complete TwP-algebra with underlying twisted
differential (A, da) . This assignment defines a functor MCP -alg → TwP -alg,
which is an isomorphism of categories.

Proof Let us reproduce here the argument given above in the A∞ case. The
data of a complete P-algebra structure on (A,F, d) with a Maurer–Cartan el-
ement a is equivalent to a morphism of complete dg ns operads MCP →

end(A,d). Since the element µα1 is a Maurer–Cartan element in the complete ns
operad P , we get a morphism between the twisted complete dg ns operads

TwP → End(A,d+ma
1) .

The other way round, one uses the exact same arguments but starting with the
Maurer–Cartan element −µα1 of the complete dg ns operad TwP , see Proposi-
tion 5.9. This shows that a complete algebra structure over the complete dg ns
operad TwP → End(A,d) induces a complete algebra structure over the com-
plete dg ns operad

MCP = (TwP)−µ
α
1 → End(A,d−ma

1) ,

by Proposition 5.9. These two functors MCP -alg→ TwP -alg and TwP -alg→
MCP -alg are inverse to each other. �

Proposition 5.21 The assignment µn 7→ µαn defines a morphism of complete
dg ns operads

A∞ → TwP .
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Proof The morphism MCA∞ → MCP of complete dg ns operads induces
a morphism between the twisted complete dg ns operads TwA∞ → TwP by
Proposition 5.8. It just remains to pull back by the map A∞ → TwA∞ of
Proposition 5.14. �

This proposition shows that the upshot of the operadic twisting procedure
gives again a multiplicative ns operad. From now on, we will call the category
of complete dg ns operads under A∞ the category of multiplicative ns operads.

Lemma 5.22 The twisting procedure defines an endofunctor on the category
of multiplicative ns operads.

Proof Proposition 5.21 shows that the result of the operadic twisting lives in
the category of multiplicative ns operads. Given a morphism

A∞

~~   
P f // Q

of multiplicative ns operads, we define a morphism of complete dg ns operads
Tw f : TwP → TwQ by α 7→ α and ν 7→ f (ν), for ν ∈ P . Then, the compati-
bility relations Tw idP = idTwP and Tw( f ◦ g) = Tw f ◦Twg are automatic. �

We recall an important result on homotopy invariance of the endofunc-
tor Tw.

Proposition 5.23 ([29, Theorem 5.1]) The endofunctor Tw preserves quasi-
isomorphisms.

The following result is an operadic version of the fact that α+β is a Maurer–
Cartan in an algebra if and only if β is a Maurer–Cartan element in the algebra
twisted by α. Then the algebra twisted first by α and then by β is equal to the
(dg Lie) algebra twisted by α + β, see Proposition 4.9.

Lemma 5.24 Let P be a multiplicative ns operad. The complete dg ns operad
Tw(TwP) is isomorphic to

Tw
(
TwP)

�
(P∨̂α ∨̂ β, d + adµα+β

1
, {◦i}

)
.

Proof The only point to check is the twisted differential. First, one shows that
the µα+β

1 is equal to µα1 + µ̃
β
1 , where we denote here the twisted operations by
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µ̃n B µαn :

µα1 + µ̃
β
1 =

∑
k≥2

1≤ j≤k

(−1)k− j µk
(
α j−1,−, αk− j) +

∑
n≥2

1≤i≤n

(−1)n−i µαn
(
βi−1,−, βn−i)

=
∑
k≥2

1≤ j≤k

(−1)k− j µk
(
α j−1,−, αk− j)

+
∑
n≥2

1≤i≤n

(−1)n−i
∑

r0,...,rn≥0

(−1)ri+···+rnµn+r0+···+rn

(
αr0 , β, αr1 , β, . . . , αri−1 ,−,

αri1 , β, . . . , αrn−1 , β, αrn
)

=
∑
k≥2

1≤ j≤k

(−1)k− j µk
(
α j−1,−, αk− j)

+
∑
n≥2

1≤i≤n

∑
r0,...,rn≥0

(−1)n−i+ri+···+rnµn+r0+···+rn

(
αr0 , β, αr1 , β, . . . , αri−1 ,−,

αri1 , β, . . . , αrn−1 , β, αrn
)

=
∑
k≥2

1≤ j≤k

(−1)k− j µk
(
(α + β) j−1,−, (α + β)k− j)

= µ
α+β
1 .

Then, one concludes the proof with

adµα1 + adµ̃ β1 = adµα1 +µ̃
β
1

= adµα+β
1

.

�

Corollary 5.25 Given any multiplicative ns operad P , the assignment

∆(P) : TwP � P∨̂α → Tw
(
TwP)

� P∨̂α∨̂β
α 7→ α + β

ν 7→ ν ,

for ν ∈ P , defines a morphism of multiplicative ns operads.

Proof Again, the only point to check is the compatibility with the differential.
Let us denote the above given morphism by f : TwP → Tw

(
TwP)

. For any
element ν ∈ P , we have

f
(
dP (ν) + adµα1 (ν)

)
= dP ( f (ν)) + adµα+β

1
( f (ν)) ,
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and

f ◦
(
d + adµα1

)
(α) = f

∑
n≥2

(n − 1)µn(α, . . . , α)


=

∑
n≥2

(n − 1)µn(α + β, . . . , α + β)

=

(
d + adµα+β

1

)
◦ (α + β) =

(
d + adµα+β

1

)
◦ f (α) .

We conclude with Lemma 5.24. �

Similarly to the case of the twisted A∞ operad, there is a morphism of mul-
tiplicative ns operads ε(P) : TwP → P defined by sending α to 0 and ν ∈ P
to ν.

Theorem 5.26 The two morphisms

∆(P) : TwP → Tw(TwP)

and

ε(P) : TwP → P

of multiplicative ns operads provide the endofunctor Tw with a comonad struc-
ture.

Proof Let A∞ → P be a multiplicative ns operad, we have to check the
counit relations(

ε(P) ◦ (idTwP )
)
(∆(P)) = idTwP =

(
(idTwP ) ◦ ε(P)

)
and the coassociativity relation

∆TwP (∆(P)) = Tw(∆P )(∆(P)) .

In each cases, the image of any element ν ∈ P is send to itself. The left counit
relation is given by

α 7→ α + β 7→ α

since the second morphism sends α to α and β to 0. The right counit relation
is proved similarly since the second morphism sends α to 0 and β to α. Both
sides for the coassociativity relation give

α 7→ α + β 7→ α + β + γ ,

which concludes the proof. �

Definition 5.27 (Tw-stable operad) A multiplicative ns operad is called Tw-
stable operad, pronounced “twist-stable”, if it admits a Tw-coalgebra structure.
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This definition means that, given a multiplicative ns operad A∞ → P , there
exists a morphism ∆P of multiplicative ns operads

A∞

}} ##
P

∆P
// TwP

satisfying

P ∆P //

idP

55TwP ε(P) // P , (5.2)

P ∆P //

∆P

��

TwP

Tw(∆P )

��
TwP ∆(P) // Tw(TwP) .

(5.3)

In terms of type of algebras, the map ∆P gives a concrete way to pro-
duce functorial complete P-algebra structures on any complete P-algebra en-
dowed with a Maurer–Cartan element coming from the internal A∞-algebra
structure but with twisted differential (hence the terminology “Tw-stable”: P-
algebra structures are stable under twisting). Indeed, as explained above, the
data of a complete P-algebra structure with a Maurer–Cartan element a is
faithfully encoded in a morphism of dg ns operads MCP → end(A,d), which
gives rise to a morphism of twisted complete dg ns operads TwP → End(A,da)

by Proposition 5.8. Pulling back with the morphism of complete dg ns operads
∆(P) : P → TwP produces the twisted P-algebra structure.

The fact that the structure map ∆P is a morphism of multiplicative ns oper-
ads says that one has to twist the A∞-operations in P as usual, that is according
to the formulas given in Proposition 4.7. Relation (5.2) expresses the fact that
the twisted operation associated to any ν ∈ P is the sum of two terms: the first
one being equal to ν itself and the second one begin the sum of perturbation
terms which all contain at least one Maurer–Cartan element. Relation (5.3)
amounts to say that the operations twisted twice under the same formulas, first
by a Maurer–Cartan element a and then by a second Maurer–Cartan element b,
are equal to the operations twisted once by the Maurer–Cartan element a + b,
thanks to Lemma 5.24 and Corollary 5.25. These are the constrains of Tw-
stable multiplicative ns operad.

Example 5.28 The ns operad A∞ is the prototypical example of a Tw-stable
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ns operad. Its Tw-coalgebra structure map A∞ → TwA∞ is given by Proposi-
tion 5.14.

Proposition 5.29 Let P be a multiplicative ns operad with zero differential.
If P is Tw-stable, then any element ν ∈ P satisfies

adµ2(α,−)−µ2(−,α)(ν) = 0

in TwP . When the multiplicative structure of P factors through the canonical
resolution A∞ � As→ P , the reverse statement holds true.

Proof If the operad P is Tw-stable, it admits a morphism of multiplicative ns
operads ∆P : P → TwP satisfying the commutative diagrams (5.2) and (5.3).
So the image of any element ν ∈ P(n) has the form

∆P (ν) = ν +
∑
k≥1

ωk ,

where ωk is a finite sum of elements of P(n + k) composed with k elements α.
The compatibility with respect to the differentials shows that

dµ
α
1
(
∆P (ν)

)
= adµ2(α,−)−µ2(−,α)(ν) +

∑
k≥2

ω̃k = 0 ,

where ω̃k is a finite sum of elements of P(n + k) composed with k elements α.
Therefore, adµ2(α,−)−µ2(−,α)(ν) vanishes since it involves only one element α.

In the other way round, the multiplicative structure of P factors through the
canonical resolution A∞ � As→ P if and only if the elements µ3, µ4, . . . van-
ish in P . In this case, the twisted differential is equal to dµ

α
1 = adµ2(α,−)−µ2(−,α).

The condition adµ2(α,−)−µ2(−,α)(ν) = 0, for all ν ∈ P , is equivalent to the fact
that the canonical morphism of ns operads P ↪→ TwP is a chain map. The
commutative diagrams (5.2) and (5.3) are then straightforward to check. �

In Chapter 6, we shall consider both examples of operads that are Tw-stable
and examples of operads that are not.

5.4 Action of the deformation complex

Let P be a complete dg ns operad. We consider the total space

hom
(
As¡,P)

B
∏
n≥1

hom
(
As¡(n),P(n)

)
�

∏
n≥1

s1−nP(n) ,
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where we identify any map ρ(n) : As¡(n) � Endks(n)∗ → P(n) with its im-
ages ρn B ρ (νn). Let us recall from Section 3.1 that this space forms a com-
plete left-unital dg pre-Lie algebra and thus a complete dg Lie algebra by anti-
symmetrization.

Any element ρ = (ρ1, ρ2, . . .) ∈ hom
(
As¡,P)

induces a derivation Dρ of the
complete ns operad P∨̂{α} by the following action on generators:

Dρ :

α 7→ −
∑

n≥1 ρn
(
αn) ,

ν 7→ 0, for ν ∈ P .

We denote by Der
(P∨̂α) the set of operadic derivations and, by a slight abuse

of notation, we still denote by dP the differential on P∨̂α induced by that of P .

Lemma 5.30 The assignment(
hom

(
As¡,P)

, ∂, [ , ]
)
→

(
Der

(P∨̂α), [dP ,−], [ , ]
)

ρ 7→ Dρ

is a morphism of dg Lie algebras.

Proof Notice first that the Lie bracket on the right-hand side is given by the
skew-symmetrization of the following binary product D ◦op D′ B −(−1)|D ||D

′ |

D′ ◦D (which individually does not produce a derivation). Since the Lie bracket
on the left-hand side is given by the skew-symmetrization of the pre-Lie prod-
uct ?, we prove that the assignment ρ 7→ Dρ preserves these two products.
Let us consider two elements ρ, ξ ∈ hom

(
As¡,P)

. It is enough to check the
relation Dρ?ξ = Dρ ◦

op Dξ on the generators of P∨̂α: this is trivial for ν ∈ P
and for α this is given by

Dρ?ξ(α) = −
∑
n≥1

(ρ ? ξ)n
(
αn) = −

∑
n≥1

p+q+r=n

(−1)p(q+1)+|ξ|(p+r)ρp+1+r ◦p+1 ξq
(
αn) =

= −(−1)|ρ||ξ| Dξ ◦Dρ(α) = Dρ ◦
op Dξ(α) .

We also check the commutativity of the differentials D∂(ρ) = [dP ,Dρ] on the
generators of P∨̂α: this is again trivial for ν ∈ P and for α this is given by

D∂(ρ)(α) = DdP◦ρ(α) = −
∑
n≥1

dP (ρn)(αn) = dP
(
Dρ(α)

)
− (−1)|ρ| Dρ(dP (α))

= [dP ,Dρ](α) .

�
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A morphism A∞ → P of complete dg ns operads is equivalent to a de-
gree −1 element µ B (0, µ2, µ3, . . .), notation which agrees with that of Sec-
tion 5.3, satisfying the Maurer–Cartan equation

∂µ + µ ? µ = 0 ,

in this dg pre-Lie algebra. Therefore one can twist the associated dg Lie algebra
with this Maurer–Cartan element, that is consider the twisted differential

∂µ B ∂ + adµ .

(One cannot twist the dg pre-Lie algebra, unless µ satisfies Equation (5.1),
which imposes unrealistic constraints on an algebra.)

Definition 5.31 (Deformation complex of morphisms of complete dg ns op-
erads [104, 105]) The deformation complex of the morphism A∞ → P of
complete dg ns operads is the complete twisted dg Lie algebra

Def
(A∞ → P)

B
(
hom

(
As¡,P)

, ∂µ, [ , ]
)
.

Proposition 5.32 The assignment(
hom

(
As¡,P)

, ∂µ, [ , ]
)
→

(
Der

(P∨̂α), [dP + Dµ,−], [ , ]
)

ρ 7→ Dρ

is a morphism of dg Lie algebras. In plain words, this defines a dg Lie action by
derivation of the deformation complex Def

(A∞ → P)
on the Maurer–Cartan

operad MCP .

Proof This is a direct corollary of the morphism of dg Lie algebras estab-
lished in Lemma 5.30: the Maurer–Cartan element µ on the left-hand side is
sent to the Maurer–Cartan Dµ on the right-hand side. This proves that dP + Dµ

is a square-zero derivation on the complete ns operad P∨̂α. In the end, we get
a morphism between the respectively twisted dg Lie algebras. �

This result provides us with an alternative proof of Proposition 5.17 defining
the complete dg ns operad

MCP B
(
P∨̂α, d B dP + Dµ

)
.

Remark 5.33 We remark that, due to the twisting, this does not define a pre-
Lie action, but just a Lie action. A conceptual reason for that is revealed in
Section 6.7.

In order to reach the same kind of results for the complete dg ns operad
TwP , whose differential contains one more term then that of MCP , we need
to consider the following extension of the deformation complex. Notice first
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that the dg Lie algebra action of Proposition 5.32 on the complete dg ns operad
P∨̂α reduces to a dg Lie algebra action on the dg Lie algebra consisting of the
arity 1 elements

(P∨̂α)(1). This gives rise to the following semi-direct product
of dg Lie algebras:(

hom
(As¡,P)

, ∂, [ , ]
)
n

((P∨̂α)(1), dP , [ , ]
)
.

Lemma 5.34 The semi-direct product dg Lie algebra above comes from the
skew-symmetrization of the semi-direct product of dg pre-Lie algebras(

hom
(
As¡,P)

, ∂, ?
)
n

((P∨̂α)(1), dP , ◦1
)

defined by the formula(
hom

(
As¡,P)

⊕
(P∨̂α) (1), ∂ + dP ,F

)
,

where

(ρ, ν)F(ξ, ω) B
(
ρ ? ξ, ν ◦1 ω − (−1)|ξ||ν| Dξ(ν)

)
.

Proof The proof of Lemma 5.30 shows that the assignement ρ 7→ Dρ defines
a right dg pre-Lie action of

(
hom

(
As¡,P)

, ∂, ?
)

on
((P∨̂α)(1), dP , ◦1

)
. It is

however not always true that dg pre-Lie actions give rise to semi-direct product
dg pre-Lie algebras under formulas like that ofF. It is the case here since the
action is by derivation, see [92] for another occurrence of this construction. If
we denote the associator of a binary product ? by Assoc?, we have

AssocF
(
(ρ, ν), (ξ, ω), (θ, λ)

)
=

(
Assoc?(ρ, ξ, θ),Assoc◦1 (ν, ω, λ)

−(−1)|ξ||ν| Dξ(ν) ◦1 λ − (−1)|θ|(|ν|+|ω|) Dθ(ν) ◦1 ω
)
,

which is right symmetric, see also [92]. The compatibility of the differentials
follows from Lemma 5.30.

Finally, the skew-symmetrization of this semi-direct product pre-Lie algebra
gives [

(ρ, ν), (ξ, ω)
]

=
([
ρ, ξ

]
, [ν, ω] + Dρ(ω) − (−1)|ξ||ν| Dξ(ν)

)
,

which is the formula for the Lie bracket of the semi-direct product Lie algebra.
�

Lemma 5.35 The assignment(
hom

(
As¡,P)

, ∂, [ , ]
)
→

(
hom

(
As¡,P)

, ∂, [ , ]
)
n

((P∨̂α)(1), dP , [ , ]
)

ρ 7→
(
ρ, ρα1

)
,

with ρα1 B
∑
n≥1

1≤i≤n

(−1)n−i ρn(αi−1,−, αn−i), defines a morphism of dg Lie algebras.
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Proof By Lemma 5.34, it is enough to prove that such an assignment defines
a morphism of dg pre-Lie algebras. To this extend, we first prove

(ρ ? ξ)α1 = ρα1 ◦1 ξ
α
1 − (−1)|ρ||ξ| Dξ

(
ρα1

)
, (5.4)

for any ρ, ξ ∈ hom (As¡,P). The left-hand side is equal to

(ρ ? ξ)α1 =
∑

p+q+r=n≥1
1≤i≤n

(−1)p(q−1)+|ξ|(p+r)+n−iρp+1+r ◦p+1 ξq

(
αi−1,−, αn−i

)
,

which splits into three components according to the value of i:
(i) when 1 ≤ i ≤ p,
(ii) when p + 1 ≤ i ≤ p + q, and
(iii) when p + q + 1 ≤ i ≤ n = p + q + r.

The first term on the right-hand side of (5.4) corresponds to the component (ii)
and the second term on the right-hand side of (5.4) corresponds to the sum of
the two components (i) and (iii). Explicitly, we first have

ρα1 ◦1 ξ
α
1 =

∑
p+q+r=n≥1

1≤ j≤q

(−1)r+q− jρp+1+r(αp,−, αr) ◦1 ξq

(
α j−1,−, αq− j

)
=

∑
p+q+r=n≥1

1≤ j≤q

(−1)p(q−1)+|ξ|(p+r)+r+q− jρp+1+r ◦p+1 ξq

(
αp+ j−1,−, αr+q− j

)
.

This gives (ii) with i = j + p, since then n− i = r + q− j. Regarding the second
term on the right-hand side of Equation (5.4), since

ρα1 =
∑
n≥2

1≤i≤n

(−1)n−i ρn(αi−1,−, αn−i)

and since Dξ vanishes on ρn, for n ≥ 1, we get two terms: the first one when
Dξ applies to the α’s on the left-hand side of the input slot and the second
one when Dξ applies to the α’s on the right-hand side of the input slot. The
former term gives component (iii) and the latter term gives component (i). The
last point of the proof amounts to check the various signs. Under the notation
ρα1 =

∑
p+1+r=n≥1

1≤ j≤r
(−1)r− jρp+1+r

(
αp+1+ j−1,−, αr− j

)
, the former term becomes

∑
p+1+r=n≥1

1≤ j≤r

(−1)r− j+|ξ|rρp+1+r

(
αp, ξq (αq) , α j−1,−, αr− j

)
=

∑
p+1+r=n≥1

1≤ j≤r

(−1)p(q−1)+|ξ|(p+r)+r− jρp+1+r ◦p+1 ξq

(
αp+q+ j−1,−, αr− j

)
,
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which is equal to (iii) with i = j + p + q. Under the notation

ρα1 =
∑

p+1+r=n≥1
1≤ j≤p

(−1)p+1+r− jρp+1+r

(
α j−1,−, αp+1+r− j

)
,

the latter term becomes∑
p+1+r=n≥1

1≤ j≤r

(−1)p+1+r− j+|ξ|(r−1)ρp+1+r

(
α j−1,−, αp, ξq (αq) , αr− j

)
=

∑
p+1+r=n≥1

1≤ j≤r

(−1)p(q−1)+|ξ|(p+r)+p+q+r− jρp+1+r ◦p+1 ξq

(
α j−1,−, αp+q+r− j

)
,

which is equal to (i) with i = j.
The commutativity of the differentials comes from the relation

(dP (ρ))α1 = dP
(
ρα1

)
,

which is straightforward. �

Lemma 5.36 The assignment(
hom

(
As¡,P)

, ∂, [ , ]
)
n

((P∨̂α)(1), dP , [ , ]
)
→

(
Der

(P∨̂α), [dP ,−], [ , ]
)

(ρ, ν) 7→ Dρ + adν

defines a morphism of dg Lie algebras.

Proof The compatibility with respect to the Lie brackets amounts to proving
that

D[ρ,ξ] + ad[ν,ω]+Dρ(ω)−(−1)|ξ||ν| Dξ(ν) = [Dρ,Dξ] + [adν, adω] + [Dρ, adω] + [adν,Dξ] .

The first two terms are equal by Lemma 5.30. The second two terms are equal
since the adjoint action is always a morphism of Lie algebras. The relation
[Dρ, adω] = adDρ(ω) is also a general property of semidirect products.

After Lemma 5.30, in order to prove the compatibility with respect to the
differentials, it remains to show that addP (ν) = [dP , adν], which come from the
fact that dP is an operadic derivation. �

Theorem 5.37 The assignment(
hom

(
As¡,P)

, ∂µ, [ , ]
)
→

(
Der

(P∨̂α), [dP + Dµ + adµα1 ,−], [ , ]
)

ρ 7→ Dρ + adρα1

is a morphism of dg Lie algebras. In plain words, this defines a dg Lie action by
derivation of the deformation complex Def

(A∞ → P)
on the twisted operad

TwP .
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Proof The arguments are the same as in the proof of Proposition 5.32, using
the composite of dg Lie algebra morphisms given respectively in Lemma 5.35
and in Lemma 5.36, and twisting in the end by the Maurer–Cartan element µ.

�

Remark 5.38 Theorem 5.37 gives another way, actually the original one
from [142, Appendix I], to define the twisted complete dg ns operad

TwP B
(
P∨̂α, dµα1 B dP + Dµ + adµα1

)
.

The relationship between the deformation complex and the twisted operad
is actually a bit more rich.

Proposition 5.39 Let A∞ → P be a multiplicative ns operad satisfying
P(0) = 0. Up to a degree shift, the deformation complex is isomorphic to
the chain complex equal to the arity 0 component of the twisted operad:(

(TwP) (0), dµ
α
1

)
�

(
s−1 hom

(
As¡,P)

, ∂µ
)
.

Proof On the level of the underlying spaces, these two chain complexes sat-
isfy

(TwP) (0) =
∏
n≥0

P(n) ⊗ α⊗n �
∏
n≥0

s−nP(n) � s−1 hom
(
As¡,P)⊕P(0) .

When P(0) = 0, one way to realise the isomorphism hom
(
As¡,P) �

→ s (TwP) (0)
is given by

ρ 7→ (−1)|ρ|s Dρ(α) = −
∑
n≥1

(−1)|ρ|ρn
(
α⊗n) .

It remains to show that it commutes with the respective differentials, that is to
prove the following relation:

D∂(ρ)(α) + D[µ,ρ](α) = dP
(
Dρ(α)

)
+ Dµ

(
Dρ(α)

)
+ adµα1

(
Dρ(α)

)
.

We have already seen in Lemma 5.30 that D∂(ρ)(α) = dP
(
Dρ(α)

)
and that

D[µ,ρ](α) = Dµ

(
Dρ(α)

)
− (−1)|ρ| Dρ

(
Dµ(α)

)
.

So it remains to show that adµα1
(
Dρ(α)

)
= −(−1)|ρ| Dρ

(
Dµ(α)

)
, which comes

from the fact that both are explicitly equal to

−
∑
p,r≥0
q≤1

(−1)|ρ|rµp+1+r

(
αp, ρq (αq) , αr

)
.

�
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5.5 Twisting of symmetric operads

Section 5.3 deals with the twisting procedure for ns operads where we used in
a crucial way the dg ns operad A∞. The entire same theory holds as well with
the dg ns operad SA∞ B Endks ⊗ A∞ encoding shifted A∞-algebras; in this
case, the signs are nearly all trivial. In order to get the twisting procedure for
(symmetric) operads, one would similarly start with the dg operad L∞ encod-
ing homotopy Lie algebras or the dg operad SL∞ B Endks ⊗ L∞ encoding
shifted homotopy Lie algebras. The various proofs are performed with similar
computations, and thus are left to the reader. In this way, one gets the theory de-
veloped by T. Willwacher but with a presentation different from [142, 30, 29].
The present approach was first proposed by J. Chuang and A. Lazarev in [23].

Let us now give a summary of key results in this case. We shall use the
operad SL∞ of shifted homotopy Lie algebras, since it has the “nicest” ho-
mological degrees of generators: all generators of degree −1. The proofs are
completely analogous to the corresponding proofs given in the previous three
sections and are omitted. For the reader who wishes to apply the formulas of
this section, we note, however, that shifted Lie brackets arising in applications
usually have homological degree 1, as they correspond to the circle action on
the level of homology. This means that our formulas have all the correct par-
ities of homological degrees (and therefore the correct signs), but the degrees
themselves have to be adjusted: the relevant operad for many applications is
the operad S−1L∞ whose generator λn is of degree 2n−3 for each n ≥ 2 . This
will be used in most of examples treated in Chapters 6 and 7.

Proposition 5.40 The complete dg operad encoding the data of a shifted
homotopy Lie algebra together with a Maurer–Cartan element is

MCSL∞ B
(
T̂ (
α, λ2, λ3, . . .

)
, d

)
,

where the generator α has arity 0 and degree 0 and where the generator λn has
arity n, degree −1, and trivial Sn-action, for n ≥ 2, where the filtration on the
space M =

(
kα, 0, kλ2, kλ3, . . .

)
of generators is given by

α ∈ F1M(0), F2M(0) = {0} and λn ∈ F0M(n), F1M(n) = {0} , for n ≥ 2 ,

and where the differential is defined by

dλn B −
∑

p+q=n+1
2≤p,q≤n

∑
σ∈Sh−1

p,q

(λp+1 ◦1 λq)σ ,

dα B −
∑
n≥2

1
n!
λn(α, . . . , α) .
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The operad MCSL∞ admits the following Maurer–Cartan element

λα1 B
∑
n≥2

1
(n−1)!λn

(
αn−1,−

)
.

Definition 5.41 (Twisted SL∞-operad) The twisted SL∞-operad is

TwSL∞ B (MCSL∞)λ
α
1 �

(
T̂ (
α, λ2, λ3, . . .

)
, dλ

α
1

)
,

with dλ
α
1 (α) =

∑
n≥2

n−1
n! λn (αn).

Proposition 5.42 The assignment λn 7→ λαn , where

λαn B
∑
r≥0

1
r!λn+r (αr,−, . . . ,−) .

defines a morphism of complete dg operads

SL∞ → TwSL∞ .

The following proposition, as well as the definition that follows, goes back
to the work of J. Chuang and A. Lazarev [23] who first noticed that the theory
of operadic twisting can be presented in this way.

Proposition 5.43 Let SL∞ → P be a morphism of complete dg operads.
The data of a complete P-algebra structure together with a Maurer–Cartan
element is encoded by the complete dg operad

MCP B
(P∨̂α, d) ,

where α is a degree 0 element of arity 0 placed in F1 and where ∨̂ stands for the
coproduct of complete operads, and where the differential d is characterized
by

dα B −
∑
n≥2

1
n!λn(α, . . . , α) ,

dν B dP (ν) , for ν ∈ P .

Definition 5.44 (Twisted operads under SL∞) Let SL∞ → P be a morphism
of complete dg operads. The complete dg operad obtained by twisting the op-
erad MCP by the Maurer–Cartan λα1 is called the twisted complete operad and
denoted by

TwP B (MCP)λ
α
1 =

(
P∨̂α, dλα1

)
.
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The differential of the operad TwP is actually equal to

dλ
α
1 (α) =

∑
n≥2

n−1
n! λn(α, . . . , α) ,

dλ
α
1 (ν) = dP (ν) +

∑
n≥2

1
(n−1)!λn

(
αn−1, ν

)
− (−1)|ν|

k∑
j=1

1
(n−1)!ν ◦ j λn(αn−1,−) ,

for ν ∈ P(k).

Proposition 5.45 The assignment λn 7→ λαn defines a morphism of complete
dg operads

SL∞ → TwP .

We consider the following morphisms of complete dg operads

∆(P) : TwP � P∨̂α → Tw
(
TwP)

� P∨̂α∨̂β
α 7→ α + β ,

ν 7→ ν , for ν ∈ P ,

and

ε(P) : TwP → P
α 7→ 0 ,
ν 7→ ν , for ν ∈ P .

Theorem 5.46 The two morphisms

∆(P) : TwP → Tw(TwP) and ε(P) : TwP → P

of operads under SL∞ provide the endofunctor Tw with a comonad structure.

Definition 5.47 (Tw-stable operad) A complete symmetric operad under SL∞
is called Tw-stable if it admits a Tw-coalgebra structure.

Example 5.48 Let us recall from [29] that the operads for Lie algebras and
Gerstenhaber algebras, as well as their shifted versions and their minimal mod-
els, are Tw-stable, see Proposition 6.5. One example of an operad that is not
Tw-stable is the operad of pre-Lie algebras.

Proposition 5.49 The endofunctor Tw preserves quasi-isomorphisms.

Let P be a complete dg operad. We consider the total space

homS
((S Lie

)¡
,P

)
B

∏
n≥1

homS (Com(n)∗,P(n)) �
∏
n≥1

P(n)Sn .
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Definition 5.50 (Deformation complex of morphisms of complete dg operads
[104, 105]) The deformation complex of the morphism SL∞ → P of com-
plete dg operads is the complete twisted dg Lie algebra

Def
(SL∞ → P)

B
(
homS (Com∗,P) , ∂λ, [ , ]

)
.

For any element ρ = (ρ1, ρ2, . . .) ∈ homS (Com∗,P), we define a derivation
Dρ of the complete operad P∨̂{α} by the following action on generators:

Dρ :

α 7→ −
∑

n≥1 ρn
(
αn) ,

ν 7→ 0, for ν ∈ P .

Theorem 5.51 The assignment(
homS (Com∗,P) , ∂λ, [ , ]

)
→

(
Der

(P∨̂α), [dP + Dλ + adλα1 ,−], [ , ]
)

ρ 7→ Dρ + adρα1

is a morphism of dg Lie algebras, that is it defines a dg Lie action by derivation
of the deformation complex Def

(SL∞ → P)
on the twisted operad TwP .

Proposition 5.52 Let SL∞ → P be a morphism of complete dg operads with
P(0) = 0. The deformation complex is isomorphic to the chain complex equal
to the arity 0 component of the twisted operad:(

(TwP) (0), dλ
α
1

)
�

(
homS (Com∗,P) , ∂λ

)
.

5.6 Generalisations

Let us mention briefly several possible generalisations and variations of the
theory presented in this chapter.

Perhaps the easiest generalisation of the formalism developed here concerns
replacing (ns) operads by coloured (ns) operads. For example, if one consid-
ers a ns coloured operad P into which the operad A∞ (with all inputs and the
output of the same colour) maps, the theory of operadic twisting effortlessly
adapts in this case, allowing one to recover some classical constructions. For
example, if one considers the cofibrant replacement of the coloured operad
encoding the pairs (A,M) where A is an associative algebra and M is a left
A-module, the arising twisted differentials have, for example, been studied by
T. Kadeishvili [68] in the context of∞-twisted tensor products.
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Another possible direction in which one can generalise the twisting proce-
dure is the case of a quadratic Koszul operad P = P(E,R) whose associated
category of P∞-algebras is twistable, according to Definition 4.24, that hap-
pens when the Koszul dual operad P ¡ is extendable. It turns out that this more
general situation is much more subtle. The various proofs given above, like
the one of Lemma 5.30, rely on the crucial fact that the ns cooperad As¡ is
one-dimensional in any arity and that its partial coproduct is the sum of all
the possible way to compose operations in an ns operad. In other words, this
amounts to the universal property satisfied by the ns operad As (respectively,
the operad Lie): it is the unit for the Manin’s black product of (finitely gen-
erated) binary quadratic ns operads (respectively, binary quadratic operads)
[57, 58, 135]. The analogous universal property satisfied by the dg ns operad
A∞ (respectively, the dg operad L∞) can be found in [141, 119]. This gives
a hint on how to extend the twisting procedure to other kinds of algebraic
structures like cyclic operads, modular operads or properads. Notice that the
latter case was treated by S. Merkulov in the very recent preprint [103] (which
appeared a few days before we completed the final version of this monograph).

There is also a way to “extend” the formalism of this chapter with the fol-
lowing “mise en abyme” of the operadic twisting theory. Given a Tw-stable
complete operad G with the Tw-comonad structure ∆G : G → TwG and a
complete operad f : G → P under G, the twisted complete operad TwP is
naturally an operad under G by

G
∆G // TwG Tw( f ) // TwP .

Therefore, the twisting construction induces a comonad in the category of op-
erads under the operad G.

Definition 5.53 (G-Tw-stable operad) Let G be a Tw-stable operad. A com-
plete symmetric operad under G is called G-Tw-stable if it admits a Tw-coal-
gebra structure.

The interpretation in terms of types of algebras is the same as above except
that one should twist the operation of P coming from G as they are twisted
in G.

Example 5.54 One obvious example is given by the Tw-stable operad G =

Gerst encoding Gerstenhaber algebras and the operad P = BV under it which
encodes Batalin–Vilkovisky algebras. One can also consider their Koszul res-
olution Gerst∞ → BV∞, where the latter one is given in [52].
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Operadic twisting and graph homology

In this chapter, we discuss instances of the operadic twisting leading to various
graph complexes, and we outline the corresponding homology computations
and their applications. The purpose here of this chapter is two-fold. First, it
illustrates important examples of the operadic twisting, including those which
motivated the very invention of this procedure by T. Willwacher [142]. Next,
we show that the homology of twisted operads behaves quite unpredictably,
and every new calculation has potential to surprise its author; we hope that this
will motivate further research of this exciting topic.

The examples given here involve both symmetric and nonsymmetric oper-
ads, starting with the latter. The ns operads we chose as illustration of the
operadic twisting procedure are those of noncommutative Gerstenhaber alge-
bras and noncommutative Batalin–Vilkovisky algebras. Both of those operads
were introduced recently in [41, Section 3]. The two principal examples in
the symmetric case are those of classical Gerstenhaber algebras and classical
Batalin–Vilkovisky algebras. Those results are not new, but we derive them
using a different method which is ad hoc and thus shorter. We shall see that the
classical operads and their ns analogues behave in a different way with respect
to the twisting procedure.

We then discuss the way operadic twisting fits into the computation of the
homology of Kontsevich’s graph complexes where the celebrated Grothen-
dieck–Teichmüller Lie algebra emerges [142], and into the research related

This material will be published by Cambridge University Press & Assessment as ‘Maurer-Cartan
Methods in Deformation Theory: the twisting procedure’ by Vladimir Dotsenko, Sergey Shadrin
and Bruno Vallette. This version is free to view and download for personal use only. Not for re-
distribution, re-sale or use in derivative works. c©Cambridge University Press & Assessment
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to the so called Deligne conjecture (now theorem by many people, see, for ex-
ample, [9, 11, 55, 80, 102, 130, 137]). The latter work has a natural version
involving the operadic twisting of the operad of pre-Lie algebras [36], which
we outline in the end of the chapter. In the view of existence of nonsymmet-
ric counterparts of the operads Gerst and BV, it is interesting to ask what is
a meaningful nonsymmetric counterpart of the operad pre-Lie, and how it fits
into the theory of operadic twisting.

6.1 Twisting the nonsymmetric operad ncGerst

Recall after [41, Section 3.1] that the nonsymmetric operad ncGerst can be
defined as follows. As a graded k-module the space ncGerst(n), for n ≥ 1, is
freely spanned by possibly disconnected linear graphs, called bamboos, where
the vertices are ordered from left to right, for instance,

1 2 3 4 5 6 ∈ ncGerst(6)

The arity 0 space ncGerst(n) = 0 is trivial. Each edge carries homological de-
gree 1 and the total homological degree is thus equal to the number of edges.
(These elements corresponds to right-combs of binary generators with the pre-
sentation given in [41, Section 3.1].) It is convenient to think that the edges
are ordered and reordering generates the sign; for a given bamboo, we assume,
by default, the ordering of the edges from left to right. The operadic compo-
sition ◦i of two bamboos, Γ1 ∈ ncGerst(n) and Γ2 ∈ ncGerst(k) amounts to
placing the bamboo Γ2 at the place of the vertex i of the bamboo Γ1, globally
relabelling the vertices from left to right by 1, . . . , n + k − 1. The edge (i − 1, i)
(resp. (i + k − 1, i + k)) belongs to the resulting graph if and only if the edge
(i − 1, i) (resp., (i, i + 1)) belongs to the graph Γ1. A Koszul sign is generated
by reordering the edges; it is given by the parity of the product between the
number of edges of Γ1 on the right of vertex i and the number of edges of Γ2.
For instance,

1 2 3 4 5 6 ◦5 1 2 3

= (−1) · 1 2 3 4 5 6 7 8 .

A natural ns multiplicative structure A∞ � As → ncGerst is given by the
assignment

µ2 7→ 1 2 ,
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or, alternatively, a natural shifted ns multiplicative structure

S−1A∞ � S−1 As→ ncGerst

is given by the assignment

µ2 7→ 1 2 .

So, one can twist the ns operad ncGerst in the way described above or by us-
ing a shifted version of the twisting procedure, where we work with the dg
ns operad S−1A∞ of shifted A∞-algebras. The subsequent computations are
equivalent for these two structures, but the shifted one is slightly more conve-
nient for the presentation. So, we perform all computations for the shifted one,
and we denote by Tw ncGerst the ns operad twisted with respect to the shifted
ns multiplicative structure.

The elements of the underlying k-module of Tw ncGerst(n)−d are series in-
dexed by k ≥ 0 of finite sums of the bamboos with n white vertices (labelled
by 1, . . . , n from left to right), k black vertices, and d edges. Each black ver-
tex carries degree −2 (the degree of the Maurer–Cartan elements for S−1A∞-
algebras) and each edge still carries degree 1. The twisted differential dµ

α
1 is

equal to the sum of the following five types of summands:

(i) we attach a black vertex from the left to the leftmost vertex of the bamboo:
,

(ii) we attach a black vertex from the right to the rightmost vertex of the bam-
boo: ,

(iii) we replace a white vertex by a black vertex connected by an edge to the
white vertex on the left: i ,

(iv) we replace a white vertex by a black vertex connected by an edge to the
white vertex on the right: i ,

(v) we replace a black vertex by two black vertices connected by an edge:
.

The Koszul type sign is given by counting how many edges from left to right
that the new edge has to jump over, with an extra −1 sign for the terms (3), (4),
and (5).

For instance,

dµ
α
1

(
1 2

)
= 1 2 ,

and the terms

1 2 , 1 2 and 1 2
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appear in the expression for the differential twice, but with the opposite signs.

Proposition 6.1 The ns operad ncGerst is not Tw-stable.

Proof We apply Proposition 5.29 with the following computation:

adµ2(α,−)+µ2(−,α)

(
1 2

)
= (−1) · 1 2

+ (−1) · 1 2

, 0 .

�

The ns operad S−1 As of shifted associative algebras is isomorphic to the ns
suboperad of ncGerst generated by the element b B 1 2 . We consider
the complete ns operad

S−1 As+ B
S−1 As ∨̂ γ(

b(γ,−), b(−, γ)
) ,

where γ is an arity 0 degree −4 element placed in F1.

Theorem 6.2 The map of complete dg ns operads

S−1 As ∨̂ γ → Tw ncGerst

defined by

b 7→ 1 2 , γ 7→

induces the isomorphism of complete ns operads

H• (Tw ncGerst) � S−1 As+ .

Proof Since the elements of Tw ncGerst are series indexed by k ≥ 0 of finite
sums of the bamboos with k black vertices and since the differential dµ

α
1 in-

creases the number of black vertices by one, it is enough to consider the case
of finite series, i.e. sums.

Note that the differential preserves the number of the connected compo-
nents K ≥ 1 and the number of the white vertices N1, . . . ,NK ≥ 0 on these
components. The subgraph that consists of all black vertices and edges con-
necting them has K+

∑K
i=1 Ni disjoint connected components (some of them can

be empty in a particular graph). The chain complex of all graphs with fixed K
and fixed N1, . . . ,NK is isomorphic to the tensor product of the K +

∑K
i=1 Ni

chain complexes disjoint black components described below.
Consider a connected black component of length n, for n ≥ 0. Under the

action of the differential, it is replaced with a connected black component of
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length n+1, with a coefficient cn that depends on its position within the ambient
graph. Here is a full list of the possible cases:

(i) The black component is connected to white vertices both on the left and on
the right: cn = 0 for even n and cn = ±1 for odd n.

(ii) The black component is connected to a white vertex only on the left and it
is not the rightmost component of the ambient bamboo: cn = ±1, for even
n, and cn = 0, for odd n. The same for the interchanged left and right.

(iii) The black component is connected to a white vertex only on the left and it
is the rightmost component of the ambient bamboo: cn = 0, for even n, and
cn = ±1, for odd n. The same for the interchanged left and right.

(iv) The black component is not connected to white vertices and is neither the
leftmost nor the rightmost component of the ambient bamboo: cn = 0, for
even n, and cn = ±1 for odd n. Note that in this case n ≥ 1.

(v) The black component is not connected to white vertices and it is the right-
most but not the leftmost component of the ambient bamboo: cn = ±1, for
even n, and cn = 0 for odd n. The same for the interchanged left and right.
Note that in this case n ≥ 1.

(vi) The black component is not connected to white vertices and it is simulta-
neously the rightmost and the leftmost component of the ambient bamboo,
that is this black component is the whole ambient bamboo graph satisfying
K = 1, N1 = 0: cn = 0, for even n, and cn = ±1, for odd n. Note that in this
case n ≥ 1.

In the cases (2), (4), and (6), the corresponding chain complex is acyclic, thus
the homology is equal to zero. In the cases (1) and (3), the homology is one-
dimensional represented by a black component of length 0. In the case (5), the
homology is one-dimensional represented by a black component of length 1.

Thus, for the ambient graph, we either have the one-dimensional homology
group for K = 1, N1 ≥ 1, represented by the connected bamboos with only
white vertices or we have the one-dimensional homology group for K = 2,
N1 = N2 = 0, represented by two disjoint black vertices. These graphs generate
the complete ns operad S−1 As ∨̂ γ, and it is clear that the substitution of the
latter graph into a connected bamboo of white vertices of length at least two
gives a boundary of the differential, cf. the acyclic case (2) above. �

Theorem 6.2 shows that the homology of the deformation complex

Def
(S−1A∞ → ncGerst

)
is the one-dimensional Lie algebra concentrated in degree −2 with the trivial
Lie bracket, since it is isomorphic to the double suspension of the homology
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of the arity 0 component of Tw ncGerst by Proposition 5.39 (we have to apply
the double suspension here since the degree of the Maurer–Cartan elements of
S−1A∞ is −2). As usual in deformation theory, see Theorem 1.63, this result
can be interpreted as a strong rigidity statement about the class of ns operad
morphisms S−1A∞ → ncGerst: there is no non-trivial infinitesimal deforma-
tion of the map considered here. The above computations show that the action
of the homology of the deformation Lie algebra Def

(S−1A∞ → ncGerst
)

on
H• (Tw ncGerst) is trivial.

6.2 Twisting the nonsymmetric operad ncBV

The nonsymmetric operad ncBV from [41, Section 3.1] can be defined as fol-
lows. As a graded k-module the space ncBV(n), for n ≥ 1, is freely spanned by
possibly disconnected linear graphs (bamboos) with at most one tadpole edge
at each vertex, where the vertices are ordered from left to right. For instance,
we have

ncBV(1) =

〈
1 , 1

〉
,

and

1 2 3 4 5 6 ∈ ncBV(6) .

Each edge, including the tadpoles, has homological degree equal to 1 and the
total homological degree is equal to the number of edges. (To match with the
presentation given in [41, Section 3.2], these elements are in one-to-one cor-
respondence with right-combs of binary generators labelled, at the very top of
them, with nothing or one copy of the generator ∆ at each leaf.) It is conve-
nient to think that the edges are ordered and reordering generates the sign, like
in the above ncGerst case. For a given bamboo with tadpoles, by default, we or-
der first the edges from left to right first and then the tadpoles from left to right.

The operadic composition ◦i of two bamboos with tadpoles, Γ1 ∈ ncBV(n)
and Γ2 ∈ ncBV(k), amounts to placing the graph Γ2 at the place of the vertex
i of the graph Γ1, globally relabelling the vertices from left to right by the
integers 1, . . . , n + k − 1. The edge (i − 1, i) (resp. (i + k − 1, i + k)) belongs to
the resulting graph if and only if the edge (i − 1, i) (resp., (i, i + 1)) belongs to
the graph Γ1. If there is a tadpole at the vertex i of Γ1, then it becomes either
a new tadpole at one of the vertices i, i + 1, . . . , i + k − 1 of Γ1 ◦i Γ2, when
no tadpole was yet present, or a new edge connecting two consecutive vertices
from this set. A Koszul sign is generated by reordering the edges and tadpoles.
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For instance,

1 2 ◦2 1 2 3 = (−1) · 1 2 3 4

+ (−1) · 1 2 3 4 .

As is the previous example, we consider a shifted ns multiplicative structure
S−1A∞ � S−1 As→ ncBV given by the assignment

µ2 7→ 1 2 .

The elements of the underlying k-module of Tw ncBV(n)−d are series indexed
by k ≥ 0 of finite sums of the bamboos with tadpoles, with n white vertices (la-
belled by 1, . . . , n from left to right), k black vertices, and a total of d edges and
tadpoles. Each black vertex carries degree −2 and each edge carries degree 1.
The components of the twisted differential dµ

α
1 are the same as in the previous

case of the dg ns operad Tw ncGerst. The only new case comes with vertices
(white or black) having tadpoles: they are again replaced by two vertices con-
nected by an edge (black-white plus white-black, or black-black) where the
tadpole distributes over the two vertices. The signs remain the same as in the
Tw ncGerst case: the Koszul type sign is given by counting how many edges
from left to right that the new edge has to jump over. With the order consid-
ered on edges and tadpoles, this means that tadpoles will never be taken into
account when computing this sign. There is an extra −1 sign for the terms
which replace a vertex by two vertices. For instance,

dµ
α
1

(
1

)
= (−1) · 1 + (−1) · 1 , (6.1)

and the graphs

1 and 1

appear in the expression for the differential twice, with the opposite signs.

Proposition 6.3 The ns operad ncBV is not Tw-stable.

Proof The same argument and computation as in the case of the ns operad
ncGerst hold here and prove the result, see Proposition 6.1 and Proposition
5.29. �
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In order to describe the homology ns operad H•(Tw ncBV), we consider
the following extension of the complete ns operad introduced in the previous
ncGerst case:

S−1 As++ B
S−1 As ∨̂ γ ∨̂ ζ(

b(γ,−), b(−, γ), b(ζ,−) + b(−, ζ)
) ,

where ζ is an arity 0 degree −1 element placed in F1.

Theorem 6.4 The map of complete dg ns operads

S−1 As ∨̂ γ ∨̂ ζ → Tw ncBV

defined by

b 7→ 1 2 , γ 7→ , ζ 7→

induces the isomorphism of complete ns operads

H• (Tw ncBV) � S−1 As++ .

Proof As in the previous case, since the elements of Tw ncBV are series in-
dexed by k ≥ 0 of finite sums of the bamboos with tadpoles with k black
vertices and since the differential dµ

α
1 increases the number of black vertices by

one, it is enough to consider the case of finite series, i.e. sums.
At fixed arity n ≥ 0, we consider the increasing filtration F pTw ncBV(n)

spanned by bamboos containing at least −p black vertices with tadpoles. Note
that this filtration is exhaustive and bounded below since a black vertex with
a tadpole carries degree −1, and the twisted differential dµ

α
1 preserves this

filtration. So the associated spectral sequence converges to the homology of
Tw ncBV(n). The differential d0 of the first page involves the components of
dµ

α
1 which do not increase the number of black vertices with tadpoles, that is

the ones which increase only the number of black vertices without tadpoles. In
order to compute its homology groups, we apply the same arguments as in the
proof of Theorem 6.2: here the black and white vertices with tadpoles play the
same role as the white vertices without tadpoles. Therefore, the second page
E1 is spanned by the homology class γ represented by and by the con-
nected bamboos of white vertices with or without tadpoles and black vertices
with tadpoles. The differential d1 creates a black vertex with tadpole and an
edge on the left and on the right of any white vertex with tadpole, that is

d1

( )
= (−1) · + (−1) ·

and

d1
( )

= d1

( )
= d1

( )
= 0 .
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We consider a filtration on the chain complex (E1, d1) where FpE1 is spanned
by the above mentioned bamboos with at least −p sub-bamboos of the form

.

This filtration is again exhaustive and bounded below, so its associated spectral
sequence converges to the homology E2 = H•(E1, d1). The differential d0 of
the first page E0 is the second component of d1 mentioned above, that is the
one which produces a black vertex with a tadpole on the right-hand side of
a white vertex with tadpole. The subcomplexes of E0 consisting of bamboos
containing k sub-bamboos of the form

or

are acyclic, for k ≥ 1, since they are isomorphic to the tensor product of k
acyclic chain complexes. The homology groups E1 is thus spanned by the fol-
lowing bamboos:

and 1 2 n ,

with j ≥ 0 black vertices with tadpoles and n ≥ 0 white vertices without
tadpoles. On such bamboos, the differential d1 vanishes, since it is induced by
the first component of d1 as presented above, the one which produces a black
vertex with a tadpole on the left-hand side from a white vertex with tadpole.
So the second spectral sequence collapses at E1 and the first spectral sequence
collapses at E2 with basis given by these latter bamboos.

The three elements

b←→ 1 2 , γ ←→ , and ζ ←→

are clearly generators of the homology ns operad H•(Tw ncBV). Formula 6.1
gives the relation between b and ζ introduced in the definition of S−1 As++.
So the above assignement induces a morphism S−1 As++ → H• (Tw ncBV)
of complete ns operads, which turns out to be an isomorphism since the di-
mensions of the underlying graded N-modules of S−1 As++ coincide with the
number of bamboos spanning H•(Tw ncBV). �

Theorem 6.4 with Proposition 5.39 show that the homology of

Def
(S−1A∞ → ncBV

)
is isomorphic to kγ̄ ⊕ k[~]ζ, where the degrees are given by |γ̄| = −2, |ζ | = 1,
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|~| = 0, with the trivial Lie bracket. Theorem 1.63 implies that the morphism
of dg ns operads S−1A∞ → ncBV considered here admits gauge indepen-
dent infinitesimal deformations parametrized by N. The previous computa-
tions show that the action of the homology of the deformation Lie algebra
Def

(S−1A∞ → ncBV
)

on H• (Tw ncBV) is trivial.

6.3 Twisting the operad Gerst

The structure operations of a Gerstenhaber algebra are a commutative prod-
uct and a degree 1 Lie bracket satisfying together the Leibniz relation, see
[88, Section 13.3.10] for more details. The associated operad Gerst is thus
generated by an arity 2 degree 0 element µ with trivial S2 action and by an ar-
ity 2 degree 1 element λ also with trivial S2 action. This latter one induces
a multiplicative structure S−1L∞ � S−1 Lie → Gerst. So, one can twist
the operad Gerst. The various properties of the corresponding twisted op-
erad Tw Gerst B

(
Gerst ∨̂α, dλ

α
1

)
follow from the general statements developed

in [29, Section 5] for operads under distributive law. We shall present shorter
proofs of these properties.

Proposition 6.5 ([29, Corollary 5.12]) The canonical morphism of operads
Gerst ↪→ Tw Gerst defines a Tw-coalgebra structure.

Proof This a direct corollary of the symmetric operad analog of Proposi-
tion 5.29. The Jacobi relation implies dλ

α
1 (λ) = adλ(α,−)(λ) = 0 and the Leibniz

relation implies dλ
α
1 (µ) = adλ(α,−)(µ) = 0 . �

Remark 6.6 Such a result says, in an operadic way, that the commutative
product and the degree 1 Lie bracket of any dg Gerstenhaber algebra form
again a dg Gerstenhaber algebra structure with the twisted differential pro-
duced by any Maurer–Cartan element.

Theorem 6.7 ([29, Corollary 5.12 and Corollary 5.13]) The canonical mor-
phisms of complete dg operads

Tw Gerst
∼
−→ Gerst and Tw Gerst∞

∼
−→ Gerst∞

are quasi-isomorphisms.

Proof Let us begin with the first statement about the operad Gerst. The ar-
guments given in the above proof of Proposition 6.5 show that the only non-
trivial part of the twisted differential dλ

α
1 is on α, where it is equal to dλ

α
1 (α) =

1
2λ(α, α) .
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First, we consider arity 0 part of Tw Gerst. We recall that the operad Gerst
is obtained from the operads Com and S−1 Lie by a distributive law. The
Jacobi relation ensures that Ŝ−1 Lie(α) � kα ⊕ kλ(α, α). Since this latter
term has degree −3, it can appear only once in Ĝerst(α); therefore we get
Tw Gerst(0) � Ĉom(α) ⊕ Ĉom

(
α
)
λ(α, α). We denote by µk any composite of k

times µ in the operad Gerst. Since dλ
α
1

(
µk−1

(
αk

))
= k

2µ
k−1

(
αk−1, λ(α, α)

)
and

since dλ
α
1
(
λ(α, α)

)
= 0, this chain complex is acyclic.

In higher arity, we use the notation λk B (· · · (λ◦1λ) · · · )◦1λ for the compos-
ite of k operations λ at the first input. Recall that a basis of the operad S−1 Lie
is given by the elements

(
λn−1

)σ
, for n ≥ 1, where σ runs over the permuations

of Sn which fix 1. For any finite set J, we denote by

λ(σ,k̄) B λ|k̄|+|J|−1
(
−, αk1 ,−, αk2 ,−, · · · ,−, αk|J|

)σ
,

whereσ is a permutation of J fixing its least element and where k̄ =
(
k1, . . . , k|J|

)
is a |J|-tuple of non-negative integers; such elements form a k-linear basis of
the operad S−1 Lie∨α . As a consequence, the k-module Tw Gerst(n)d is gen-
erated by the linearly independent elements of the form

µm+p+q−1
(
αm, λ(α, α)p, λ

(
σ1,k1

)
, . . . , λ

(
σq,kq

))
,

where m ≥ 0, p = 0 or p = 1, where the permutationsσ1, . . . , σq are associated
to a partition tq

i=1Ji = {1, . . . , n} , and where the total number of λ’s minus
twice the total number of α’s is equal to d. Since 1

2λ(−, λ(α, α)) = −λ(λ(−, α),
α), the differential dλ

α
1 preserves such basis elements.

So the chain complex Tw Gerst(n) splits into the direct sum of chain com-
plexes indexed by the decompositions tq

i=1Ji = {1, . . . , n} and the permutations
σ1, . . . , σq. The form of the differential dλ

α
1 implies that each of these direct

summand is isomorphic to the tensor product of 1 + q chain complexes, where
the first one is isomorphic to k ⊕ Tw Gerst(0) and where the q other ones are
spanned by the elements λ

(
σi,ki

)
, for any possible |Ji|-tuples ki. The above re-

sult about the arity zero case implies that the homology of the first factor is
one-dimensional. It is straightforward to see that

dλ
α
1

(
λk

(
−, αk

))
= −λk+1

(
−, αk+1

)
for odd k, and dλ

α
1

(
λk

(
−, αk

))
= 0 for even k. Thus each of the other q tensor

factors spanned by the elements λ
(
σi,ki

)
has one-dimensional homology repre-

sented by λ(σi,0̄) In the end, the only non-trivial class for each of these direct
summand is represented by the basis element

µq
(
λ(σ1,0̄), . . . , λ(σq,0̄)

)
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that has no α’s at all. These representatives form a natural basis for the operad
Gerst, which concludes the proof.

The second statement about the operadic resolution Gerst∞
∼
−→ Gerst follows

directly from the result about the operad Gerst and Proposition 5.49. �

Theorem 6.7 and Proposition 5.39 show that the homology of the defor-
mation complex Def

(S−1L∞ → Gerst
)

is trivial in this case. This result can
be interpreted as a strong rigidity statement after Theorem 1.63: there is no
non-trivial infinitesimal of the morphism of dg operads S−1L∞ → Gerst con-
sidered here. The action of the deformation Lie algebra on the operad Tw Gerst
is homologically trivial.

6.4 Twisting the operad BV

Recall that a Batalin–Vilkovisky (BV) algebra is a Gerstenhaber algebra en-
dowed with a compatible degree 1 square-zero linear operator, see [88, Sec-
tion 13.7] for more details. The associated operad, denoted BV, is thus gen-
erated by the same kind of elements µ and λ as above plus an arity 1 and
degree 1 element ∆. By the same argument, it acquires a multiplicative struc-
ture S−1L∞ � S−1 Lie→ BV. We consider the corresponding twisted operad
Tw BV.

Proposition 6.8 The operad BV is not Tw-stable.

Proof This a direct corollary of the symmetric operad analog of the first state-
ment of Proposition 5.29. In the operad Tw BV, the differential is given by

dλ
α
1 (∆) = adλ(α,−)(∆) = −λ(∆(α),−) , 0 ,

which concludes the proof. �

We consider the complete operad

Gerst+ B
Gerst ∨̂ η(
λ(η,−)

) ,
where η is an arity 0 degree −1 element placed in F1. For degree reasons
µ(η, η) = λ(η, η) = 0, so Gerst+(0) � kη is one-dimensional and

Gerst+(1) � k id⊕ kµ(η,−)

is two-dimensional.
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Theorem 6.9 The map of complete dg operads

Gerst ∨̂ η→ Tw BV

defined by

µ 7→ µ , λ 7→ λ , η 7→ ∆(α)

induces the isomorphism of complete operads

H• (Tw BV) � Gerst+ .

Proof We use the same notations and arguments as in the proof of Theo-
rem 6.7. For instance, the distributive law method gives an isomorphism of
S-modules

BV � Com ◦S−1 Lie ◦k[∆].

The differential in the twisted operad Tw BV is given by

dλ
α
1 (λ) = dλ

α
1 (µ) = dλ

α
1 (∆(α)) = 0

and by dλ
α
1 (∆) = −λ(∆(α),−) .

We first consider the part of arity zero of the operad Tw BV. Let us denote
by ∆ Lie the sub-operad generated by ∆ and λ in the operad BV; its underlying
graded S-module is isomorphic to ∆ Lie � S−1 Lie ◦k[∆]. The complete sub-
operad ∆ Lie ∨̂α of Tw BV is stable under the differential dλ

α
1 . We denote by

M B
(
∆ Lie ∨̂α(0), 0, . . .

)
the dg S-module concentrated in arity 0; it satifies

the following isomorphism of dg S-modules(
Tw BV(0), 0, . . .

)
� Com ◦M .

The operadic Künneth formula [88, Proposition 6.2.3] implies that the homol-
ogy of Tw BV(0) is isomorphic to

(
Com ◦H(M)

)
(0). Then, we consider the

isomorphism of dg modules(
∆ Lie ∨̂α

)
(0) �

(S−1 Lie ∨̂α ◦ k[∆(α)]
)
(0) .

The arguments and computations given in the proof of Theorem 6.7 show that
H•

(
S−1 Lie ∨̂α, dλ

α
1

)
� S−1 Lie. Applying again the operadic Künneth for-

mula, we get H•
((S−1 Lie ∨̂α ◦ k[∆(α)]

)
(0)

)
�

(S−1 Lie ◦k[∆(α)]
)
(0). So the

homology of Tw BV(0) is isomorphic to
(
Com ◦

(S−1 Lie ◦k[∆(α)]
))

(0). By
degree reasons, since |∆(α)| = −1, we get in the end H•(Tw BV(0)) � k∆(α) .

To treat the case of arity n ≥ 1, we consider, for any finite set J, the elements
of the form

λ(σ,k̄,∗̄) B λ|k̄|+|J|+d−1
(
∗1, αk1

, ∗2, αk2
, · · · , ∗|J|+d, αk|J|+d )σ

,
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where σ and k̄ are as in the proof of Theorem 6.7 and where ∗̄ =
(
∗1, . . . , ∗|J|+d

)
is a |J|+d-tuple with ∗1 equals to ∆ or − and with ∗i equals to ∆, −, or ∆(α), such
that the number of ∆(α)’s is equal to d. The k-module Tw BV(n) is generated
as above by the elements of the form

µm+r−1
(
ρ, λ

(
σ1,l1,∗1

)
, . . . , λ

(
σr ,lr ,∗r

))
,

where ρ is an element of the symmetric m-tensor power of
(
∆ Lie ∨̂α

)
(0) and

the permutations σ1, . . . , σr are associated to a partition

{1, . . . , n} =

r⊔
i=1

Ji.

Let us compute the homology of the chain complex Λ(J) generated by the
elements of the form λ(σ,k̄,∗̄) for a fixed finite set J. We consider the increasing
filtration FpΛ(J) consisting of the elements λ(σ,k̄,∗̄) containing at least −p el-
ements ∆(α). The differential dλ

α
1 preserves this filtration. It is exhaustive and

bounded below, so its associated spectral sequence converges to the homology
of Λ(J). The differential of the first page of the associated spectral sequence is
equal to the sole term d0(α) = 1

2λ(α, α).
The same argument as in the proof of Theorem 6.7 shows that the second

page E1 is generated by the elements of the form λ(σ,0̄,∗̄). The differential of this
second page is given by the sole term d1(∆) = −λ(∆(α),−), thus d1(λ(ν,∆)

)
=

−λ(λ(ν,∆(α)),−)−λ(λ(ν,−),∆(α))−λ
(
d1(ν),∆

)
, for ν involving at least one λ,

and d1(λ(∆, ∗)
)

= λ(λ(−,∆(α), ∗) + λ
(
∆, d1(∗)

)
. We consider the filtration of

E1 defined by counting the numbers of ∆’s at the first input: for p ≤ 0, F pE1

is generated by the elements of the form λ(σ,0̄,∗̄) with ∗1 = −, and F pE1 = E1,
for p ≥ 1. This filtration is exhaustive and bounded below, so it converges to
the homology of E1. The differential d0 of the first page E0 of the associated
spectral sequence is given by d1, except when ∆ labels the first input: in this
case d0 vanishes on it. Therefore, the chain complex (E0, d0) is isomorphic to
two copies, labeled respectively by the input ∆ or − of the first leaf, of the
same chain complex. We consider the coaugmented coalgebra C B k1 ⊕ kx ⊕
ky ⊕ kz, with |x| = 0, |y| = 1, |z| = −1, where x and z are primitive elements,
and where the (reduced) coproduct of y is equal to x ⊗ z − z ⊗ x. Under the
correspondence x ↔ −, y ↔ ∆, and z ↔ ∆(α), the chain complex (E0, d0)
is isomorphic to the cobar construction of C (with a bit unusual homological
degree convention, cf. [88, Section 2.2.5]). Since the Koszul dual algebra of C
is the Koszul algebra C¡ � T (X,Z)/(X⊗Z−Z⊗X), with |X| = 1 and |Z| = 0, the
second page E1 is isomorphic to (kx ⊕ ky) ⊗C¡, which admits for basis xZkXl

and yZkXl, for k, l ≥ 0. The differential d1 is given by d1
(
xZkXl

)
= 0 and
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d1
(
yZkXl

)
= (−1)l+1xZk+1Xl. So this spectral sequence collapses at E2, where

is it spanned by the elements xXl, for l ≥ 0. In other words, the first spectral
sequence collapses at E2 � H• (Λ(J)), which is spanned by the elements of the
form λ(σ,0̄,∗̄) with ∗̄ = (−, . . . ,−).

Combining this computation with the earlier computation of the homol-
ogy of

(
∆ Lie ∨̂α

)
(0), we see that the only non-trivial homology classes of(

Tw BV(n), dλ
α
1
)

are represented by the basis elements

µr+p−1
(
∆(α)p, λ(σ1,0̄), . . . , λ(σr ,0̄)

)
,

where p = 0, 1 and where the permutations σ1, . . . , σr are associated to a
partition tr

i=1Ji = {1, . . . , n}. These elements corresponds to a basis of the
operad Gerst+ under the correspondence η↔ ∆(α), which concludes the proof.

�

Theorem 6.9 and Proposition 5.39 show that the homology of the deforma-
tion complex Def

(S−1L∞ → BV
)

is a one-dimensional Lie algebra concen-
trated in degree 1 and with the abelian Lie bracket. This result provides us with
the following rigidity statement after Theorem 1.63: there exists no non-trivial
infinitesimal deformations of the morphism of dg operads S−1 Lie∞ → BV
considered here. The computations performed in the above proof show that the
action of the homology of the deformation Lie algebra Def

(S−1L∞ → BV
)

on the homology H• (Tw BV) � Gerst+ is equal to the degree 1 differential of
Gerst+ which assigns µ 7→ λ .

6.5 Grothendieck–Teichmüller Lie algebra

The concept of operadic twisting was introduced by T. Willwacher in [142] and
the goal of this section is to recall the main concepts and results of op. cit. in
order to highlight its original motivation. Note that since we use the homolog-
ical grading convention, some of the gradings in our presentation differ from
op. cit.

A convenient formalism to work with a graph Γ is to consider its set of half-
edges H and its set of vertices V , with an involution e : H→ H that acts without
fixed points, and a map v : H → V that indicates for each half-edge the vertex
to which it is attached. The set of edges is the orbit set H/e, and we choose
an orientation ω on RH/e, with the convention that for the opposite orientation
ωop, we have (H,V, e, v, ωop) = −(H,V, e, v, ω) .

Definition 6.10 (The graph operad Gra) The graph operad Gra is defined as



6.5 Grothendieck–Teichmüller Lie algebra 133

follows. As a graded k-module, the space Gra(n), for n ≥ 1, is freely spanned
by possibly disconnected graphs with n vertices labelled from 1 to n, with
edges of degree 1. The symmetric group Sn acts by permutations of the labels
on the vertices.

The operadic composition

◦i : Gra(n) ⊗ Gra(m)→ Gra(n + m − 1) ,

for n,m ≥ 1 and 1 ≤ i ≤ n, applied to two graphs, Γ1 = (H1,V1, e1, v1, ω1) ∈
Gra(n) and Γ2 = (H2,V2, e2, v2, ω2) ∈ Gra(m), is equal to the sum over all
possible maps f : e−1

1 (i) → V2 of all graphs obtained by replacing the i-th
vertex of Γ1 by Γ2 and attaching the half-edges previously attached to the i-
th vertex of Γ1 to the vertices of Γ2 according to the map f . Thus, the partial
composite Γ1◦i Γ2 is the sum of graphs Γ = (H,V, e, v, ω), where H B H1tH2,
V B V1 \{i}tV2, e|H1 = e1, e|H2 = e2, v|H1\e−1

1 (i) = v1, v|e−1
1 (i) = f , v|H2 = v2, and

the orientation ω is the standard one for the direct sum R(H1tH2)/e = RH1/e1 ⊕

RH2/e2 .

1

2
◦1

2 3

1
=

2 3

4

1 +

2

4

3

1
+

3

4

2

1

Remark 6.11 Note that this definition implies that any graph with multiple
edges connecting the same vertices vanishes.

M. Kontsevich considered the graph operad Gra in [77] as an operad of
natural operations acting on the sheaf of polyvector fields. We consider a
graded commutative associative algebra A = k[x1, . . . , xn, θ1, . . . , θn], where
deg xi = 0, deg θi = −1, for i = 1, . . . , n, and we think of θi’s as partial deriva-
tives with respect to the variables xi, that is, [θi, x j] = δ

j
i , for i, j = 1, . . . , n . In

order to define the action A⊗n → A of a graph Γ ∈ Gra(n), we associate to each
edge the operator A ⊗ A→ k given by

n∑
i=1

(
∂

∂xi ⊗
∂

∂θi
+

∂

∂θi
⊗

∂

∂xi

)
.

Then we associate the i-th factor in A⊗n to the vertex labelled by i in Γ and apply
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the operators on the edges to the corresponding factors in A⊗n. Finally, we take
the product over all factors in A⊗n of the resulting expressions according to the
algebra structure of A. For instance, the graph

1 2

gives the algebra structure map A ⊗ A→ A, and the graph

1 2

acts as the Schouten bracket.

The graph operad Gra includes the operad Gerst of Gerstenhaber algebras,
see Section 6.3. The inclusion map is given on the arity 2 generators µ and λ
of degrees 0 and 1, respectively, by

µ 7→ 1 2 and λ 7→ 1 2 .

The map S−1L∞ � S−1 Lie→ Gerst discussed in Section 6.3, induces a mul-
tiplicative structure on the graph operad Gra, which allows one to twist it. The
theory of operadic twisting ensures that there is a natural action of the defor-
mation dg Lie algebra Def

(S−1L∞ → Gra
)

on the twisted operad Tw Gra by
derivation, see Theorem 5.37. Let us now discuss the structure of Def

(S−1L∞
→ Gra

)
and Tw Gra as well as the main statements about them in more detail.

Unfolding the definitions given in Section 5.6, we see that the elements of
Tw Gra(n) are series indexed by k ≥ 0 of linear combinations of graphs with
n white vertices labelled by 1, . . . , n and k unlabelled black vertices of degree
−2, with edges of degree 1. We identify the Maurer–Cartan element

α =

with the graph with no edges and one black vertex. In general, we think of
graphs with n white vertices labelled by 1, . . . , n and k unlabelled black vertices
as coming from an element of Gra(n + k) with the last k inputs filled in with
α’s.

1

3 · 2

·

The operadic composition for these series of graphs is defined in exactly the
same way as in the case of the graph operad Gra, see Definition 6.10 above.
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Remark 6.12 Note that now these graphs might have automorphisms per-
muting the black vertices. Any graph with an automorphism that induces an
odd permutation of edges vanishes.

The twisted differential dλ
α
1 can be computed on each graph Γ as the sum of

the following three types of terms.

(i) Replace a black vertex with the graph , connect all half-edged pre-
viously attached to the original black vertex to the two new ones in all pos-
sible ways (at that point we temporarily distinguish the two black vertices
of the inserted graph), and multiply the resulting sum of graphs by − 1

2 . We
consider the sum over all black vertices of Γ.

(ii) Replace the white vertex labelled by i with the graph i , connect all
half-edged previously attached to the white vertex to the two new vertices
in all possible ways, and multiply the resulting sum of graphs by −1. We
take the sum over all white vertices of Γ.

(iii) Add one extra black vertex to Γ with an edge that connects it to an existing
vertex of Γ. We consider the sum over all white and black vertices of Γ.

In all these cases, the orientation of the space of edges of the new graphs ob-
tained from Γ descends from Γ, with the new edge added at the first place.
Notice that many terms cancel due to the sign issue. For trees with at least two
vertices (either white or black), it will remain in the image under the twisted
differential only the trees from

(i) with at least three half-edges attached to each of the two black vertices,
(ii) with at least two half-edges attached to the black vertex,

since the other terms of (i) and (ii) get cancelled by themselves and by the
terms of (iii).

Let us now consider the deformation complex Def
(S−1L∞ → Gra

)
. It is a

dg Lie algebra identified with s2Tw Gra(0), that is with graphs that have only
black vertices. In particular, the differential is the special case of the one de-
scribed above applied to graphs with no white vertices. It has a natural dg Lie
subalgebra gc ⊂ Def

(S−1L∞ → Gra
)

that consists of finite linear combina-
tions of connected graphs all of whose vertices are at lease trivalent. The latter
dg Lie algebra coincides with Kontsevich’s graph complex [74, 76, 77].

Theorem 6.13 ([142]) The 0th homology group of the dg Lie algebra gc is
isomorphic to the Grothendieck–Teichmüller Lie algebra grt1.

Let us now go back to the dg operad Tw Gra. It has a natural dg suboperad



136 Operadic twisting and graph homology

Tw Grac where we retain only those graphs whose all connected components
contain at lease one white vertex. The natural map Gerst→ Gra descends to a
natural map Gerst→ Tw Grac .

Theorem 6.14 ([78], [84], see also an exposition in [142]) The natural map
Gerst→ Tw Grac is a quasi-isomorphism of dg operads.

The theory of operadic twisting ensures that there is a natural action of the
deformation dg Lie algebra Def

(S−1L∞ → Gra
)

on the twisted operad Tw Gra
by derivation (Theorem 5.37). This action naturally descends to an action of
the dg Lie algebra gc on Tw Grac . Since this latter one is quasi-isomorphic to
the operad Gerst, one gets a natural map of the Grothendieck–Teichmüller Lie
algebra grt1 to H0

(
Der(Gerst∞)

)
.

Actually T. Willwacher proved that the Grothendieck–Teichmüller Lie alge-
bra encaptures all the homotopy derivations.

Theorem 6.15 ([142]) There is an isormophism of Lie algebras:

grt B grt1 o k � H0 (Der (Gerst∞)) ,

where k is considered as an abelian Lie algebra that acts on the elements of
grt1 of degree k by multiplication by k.

This gives, among other things, a proof of the fact that the group of ho-
motopy automorphisms of the rational completion of the little disks operad is
isomorphic to the pro-unipotent Grothendieck–Teichmüller group, see also the
unstable approach of B. Fresse [48] using the rational homotopy theory for
operads.

6.6 Deligne conjecture

The celebrated Deligne conjecture states that there should exist a dg operad,
quasi-isomorphic to the singular chain operad of the little disks, that acts on
the Hochschild cochain complex of an A∞-algebra, lifting the Gerstenhaber
algebra structure on cohomology, see [9, 11, 55, 80, 102, 130, 137]. In this
section, we follow the exposition given in [29] and we present a solution to
this conjecture based on two operads, the brace trees operad and the braces
operad, constructed via the operadic twisting procedure. The definitions are
similar to the ones given in the previous section dealing with the graph operad:
we consider first an operad spanned by a certain kind of graphs (planar rooted
trees) with the composition map given by the insertion at a vertex and a sum
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over all the possible ways to graft the incoming sub-graphs, then we twist it,
and finally we consider a sub-operad of this latter one.

Let E = E(Γ) be the set of edges of a planar rooted tree Γ. We will actually
work with the set linear spans of pairs (Γ, ω), where ω is an orientation of RE ,
under the identification that the opposite choice of orientation produces the
opposite pair: (Γ, ω) = −(Γ, ωop). For the i-th vertex of Γ, we denote by Li(Γ)
the ordered set, from left to right with respect to the planar structure, of all
incoming edges attached above the i-th vertex.

Definition 6.16 (The brace trees operad BT) The brace trees operad BT is
defined as follows. As a graded k-module, the space BT(n), for n ≥ 1, has a
basis of planar rooted trees with n vertices labelled from 1 to n, where one is
designated as the root, with n − 1 edges of degree 1, and one particular vertex
for the root. The symmetric group Sn acts by permutations of the labels on the
vertices.

1

3 5 2

4

The operadic composition

◦i : BT(n) ⊗ BT(m)→ BT(n + m − 1) ,

for m, n ≥ 1, and1 ≤ i ≤ n, applied to two planar rooted trees Γ1 and Γ2 is
equal to the sum over all possible planar rooted trees obtained by the following
procedure.

(i) Replace the vertex i in Γ1 with the planar rooted tree Γ2.

(ii) When the vertex i of Γ1 is not its root vertex, then attach its output edge to
the root vertex of Γ2.

(iii) Attach all edges in Li(Γ1) to the vertices of Γ2 preserving their order im-
posed by the planar structure of Γ1.

(iv) Relabel accordingly the new overall set of vertices.

(v) Consider the orientation on the resulting planar rooted tree induced by the
standard one for the direct sum RE(Γ1) ⊕ RE(Γ2).
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Here is an example of a composition in the brace trees operad BT:

1 3

2
◦2

2

1
=

1 4 3

2
−

1 3 4

2

+

3 1 4

2
+

1 4

3

2

−

4

1 3

2

−

1

3 4

2

.

The signs here assume a natural order on edges of the rooted planar trees listed
from left to right and from bottom to top.

Remark 6.17 The brace trees operad is a planar and shifted version of the
rooted trees operad RT introduced in Section 4.5. That latter operad plays a
similar part in Section 6.7 below.

One can check that there is a map of operads S−1L∞ � S−1 Lie→ BT that
sends the binary generator of S−1L∞ to

2

1
+

1

2
.

Thus the operad BT is an operad under S−1L∞, and we can twist it. Unfolding
the definitions given in Section 5.6, one can see that the elements of Tw BT(n)
are series, indexed by k ≥ 0, of linear combinations of planar rooted trees with
n white vertices labelled by 1, . . . , n and k unlabelled black vertices of degree
−2, with edges of degree 1. We identify the Maurer–Cartan element α with the
planar rooted tree with no edges and one black vertex:

α = .

In general, we think of a planar rooted tree with n white vertices labelled by
1, . . . , n and k unlabelled black vertices as an element of BT(n+k) with the last
k inputs filled in with α’s. The operadic composition for these series of planar
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rooted trees is defined in exactly the same way as in the case of the operad BT,
see Definition 6.16 above.

The twisted differential dλ
α
1 can be computed on each planar rooted tree Γ as

the sum of four types of terms.

(i) Replace a black vertex v by the planar rooted tree

with two black vertices and connect all edges from Lv(Γ) to these two new
black vertices in all possible ways preserving their order imposed by the
planar structure. When the black vertex ν is not the root vertex, then attach
its output edge to the root vertex of the above two-vertices tree. Multiply the
resulting sum of graphs by −1. We consider the sum over all black vertices v
of Γ.

(ii) Replace the white vertex labelled by i with the sum of the two planar rooted
trees

i
+

i
,

and connect all edges from Li(Γ) to these two new vertices in all possi-
ble ways preserving their order imposed by the planar structure. When the
white vertex i is not the root vertex, then attach its output edge to the root
vertex of the above two-vertices trees. Multiply the resulting sum of planar
rooted trees by −1. We consider the sum over all white vertices of Γ.

(iii) Add one extra black vertex to Γ with an edge that connects it to an existing
vertex of Γ. We consider the sum over all white and black vertices of Γ and
over all different ways to connect a new edge to these vertices with respect
to the planar structure.

(iv) Attach a new root black vertex

below the root.

In all these cases, the orientation of the space of edges of the new planar
rooted trees obtained from Γ descends from Γ, with the new edge added at
the first place. Notice that many terms cancel due to the sign issue. For pla-
nar rooted trees with at least two vertices (either white or black), only some
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planar rooted trees from (i) and (ii) will remain in the image of the twisted
differential since all the terms coming from (iii) and (iv) will get cancelled by
corresponding terms coming from (i) or (ii).

Proposition 6.18 ([80, Section 5.4]) There is a natural action of the twisted
brace trees operad Tw BT on the Hochschild cochain complex of an A∞-alge-
bras such that the actions of

2

1
+

1

2
and

1 2

give respectively the Gerstenhaber bracket and the cup product on cohomol-
ogy.

Proof Let us recall that the Hochschild cochain complex of an A∞-algebra
(A, d,m2,m3, . . .) is a graded module with components of the form Hom

(
(sA)⊗l,

A
)

for l ≥ 1, see Example 1.57 or Section 4.1. Here we view the structural op-
erations ml as degree −2 elements of them. The action

FΓ : Hom
(
(sA)⊗l1 , A

)
⊗ · · · ⊗ Hom

(
(sA)⊗ln , A

)
7→ Hom

(
(sA)⊗p, A

)
of a planar rooted tree Γ with n labelled white vertices and k black vertices is
defined as follows. Let fi ∈ Hom

(
(sA)⊗li , A

)
, for 1 ≤ i ≤ n, and let a j ∈ A, for

1 ≤ j ≤ p. We attach m additional vertices decorated respectively by a j, for
1 ≤ j ≤ m, to the planar rooted tree Γ, each connected by a single edge to one
of the already existing vertices (black or white) in Γ, so that their order agrees
with the one imposed by the planar structure of Γ. We denote the new planar
rooted tree by Γ′. If |Li(Γ′)| , mi, for at least one index 1 ≤ i ≤ n, we set the
upshot value to be trivial, that is FΓ( f1, . . . , fn)(sa1, . . . , sap) B 0. Otherwise,
we decorate each edge by the suspension s, each white vertex with the corre-
sponding map fi, and each black vertex v with m|Lv(Γ′)|. The sum over all the
possible evaluations of such operations on the respective elements according
the composition scheme provided by the planar rooted trees Γ′ gives an ele-
ment of A which defines the requested action FΓ( f1, . . . , fn)(sa1, . . . , sap) . We
leave the interested reader to check that this definition is compatible with the
respective differentials, see [29, Appendix B] if needed. �

We are now going to see that the dg operad Tw BT provides us with a solu-
tion to the Deligne conjecture. However, this is better seen with the following
homotopy equivalent sub-operad, introduced originally by M. Kontsevich and
Y. Soibelman in [80].
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Definition 6.19 (The braces operad Br) The brace operad Br is the dg sub-
operad of TwBT spanned by planar rooted trees whose black vertices have at
least two incoming edges.

The following statement shows that there is no loss of operadic homotopical
data.

Theorem 6.20 ([29, Theorem 9.3]) The natural inclusion Br → Tw BT is a
quasi-isomorphism.

In the end, Proposition 6.18 and the following result give a proof to the
Deligne conjecture.

Theorem 6.21 ([80, Theorem 3]) The dg operad Br is quasi-isomorphic to
the dg operad of the singular chains of the little disks operad.

One can actually go a bit further and show that this solution of the Deligne
conjecture shares some universal properties. First, one can see, by a direct
computation, that the canonical Tw-coalgebra structure on the twisted operad
Tw BT restricts to the brace suboperad Br. Recall that the dg operad of the
singular chains of the little disks is formal [78, 131, 84] and that its homology
is isomorphic to the Gerstenhaber operad [25]. These above-mentioned results
with Proposition 5.49 and Theorem 6.7, show that the respective counits of
these two Tw-stable dg operads Tw BT and Br are quasi-isomorphisms:

Tw
(
Tw BT

) ∼
−→ Tw BT and Tw Br

∼
−→ Br .

Using all these facts, Dolgushev–Willwacher [29, Theorem 1.1] show that “ev-
ery solution to the Deligne conjecture is homotopic to one compatible with the
operadic twisting”.

6.7 Lie version of the Deligne conjecture

One of the motivations for studying the twisted operad TwP of an operad P ,
into which the operad L∞, maps comes from the search for operations that
are naturally defined on twisted L∞-algebras coming from P-algebras. Since
the deformation complexes a C,A of morphisms of operads carry canonical pre-
Lie algebra structures, see Section 3.1, the twisted dg Lie algebra structure on
each of them is in fact a part of a Tw PreLie-algebra structure. It is thus natural
to ask whether the dg Lie algebra structure is the only homotopy meaningful
structure on those complexes.
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A general framework to studying some universal operations on the defor-
mation complexes aαP¡,A

of P-algebra structures α : P → EndA, for a Koszul
operad P , was proposed by M. Markl in [95]. Inspired by the construction of
the brace operad Br of Kontsevich–Soibelman [80] in the case of the Koszul
operad P = Ass, see Proposition 6.18, he defined in op. cit. a dg operad BP
acting on such deformation complexes. (Recall the usual operadic convention
for the category of associative algebras: they can be either encoded by an ns
operad denoted As or by an operad denoted Ass.) That operad is not very man-
ageable in general, as it is spanned by operations indexed by certain decorated
trees labelled additionally by maps

Φl1,...,ln,p : P ¡(p)→ P ¡(l1) ⊗ · · · ⊗ P ¡(ln)

for appropriate values of arities p, l1, . . . , ln,.

There are exactly two situations where the definition of the operad BP sim-
plifies rather drastically: the cases P = Lie and P = Ass. In each of these
cases, the components of P ¡ are, in a sense, one-dimensional: for the Lie op-
erad, that is literally true, while for the associative operad, it is the Koszul
dual ns cooperad which is one-dimensional in each arity. An exhaustive study
of the operad BAss was undertaken by M. Batanin and M. Markl in [9]: they
established that this operad has the homotopy type of the operad of singular
chains on the little disks, thus establishing a strong form of the Deligne con-
jecture. The operad BLie has not been thoroughly investigated until recently:
M. Markl used it in [96] to describe Lie elements in free pre-Lie algebras, but
otherwise it only received due attention in a recent article of the first author
and A. Khoroshkin in [36].

From the previous section 6.6, we already know that the operadic twisting
procedure plays a key role in understanding the Deligne conjecture in a con-
ceptual way. We shall now explain that the operad BLie also admits an interpre-
tation in the context of the operadic twisting, that leads to a Lie version of the
Deligne conjecture. The presentation is aligned with that of the two previous
sections 6.5 and 6.6.

Recall from Section 4.5, that the definition of the shifted version S−1RT
of the rooted trees operad is similar to the graph operad Gra (Section 6.5)
and to the brace trees operad BT (Section 6.6) but where one is using non-
planar rooted trees this time. Recall also that the rooted trees operad has been
proved by Chapoton–Livernet [22, Theorem 1.9] to be isomorphic to the pre-
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Lie operad:

RT � PreLie .

There is a map of operads S−1L∞ � S−1 Lie → S−1RT that sends the
binary generator of S−1L∞ to

2

1
+

1

2
.

Thus the operad S−1RT is an operad under S−1L∞, and we can twist it. Un-
folding the definitions given in Section 5.6, we see that the elements of Tw
S−1RT(n) are series, indexed by k ≥ 0, of linear combinations of rooted trees
with n white vertices labelled by 1, . . . , n and k unlabelled black vertices of
degree −2, with edges of degree 1. We identify the Maurer–Cartan element α
with the rooted tree with no edges

α =

and in general we think of a rooted tree with n white vertices labelled by
1, . . . , n and k unlabelled black vertices as an element of S−1RT(n + k) with
the last k inputs filled in with α’s. The operadic composition for these series
of planar rooted trees is defined in exactly the same way as in the case of the
rooted trees operad RT, see Section 4.5.

The twisted differential dλ
α
1 can be computed on each rooted tree Γ as the

sum of four types of terms.

(i) Replace a black vertex v by the rooted tree

with two black vertices and connect all edges from Lv(Γ) to these two new
black vertices in all possible ways. When the black vertex ν is not the root
vertex, then attach its output edge to the root vertex of the above two-
vertices tree. Multiply the resulting sum of graphs by −1. We consider the
sum over all black vertices v of Γ.

(ii) Replace the white vertex labelled by i with the sum of the two rooted trees

i
+

i
,
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and connect all edges from Li(Γ) to these two new vertices in all possible
ways. When the white vertex i is not the root vertex, then attach its output
edge to the root vertex of the above two-vertices trees. Multiply the result-
ing sum of planar rooted trees by −1. We consider the sum over all white
vertices of Γ.

(iii) Add one extra black vertex to Γ with an edge that connects it to an existing
vertex of Γ. We consider the sum over all white and black vertices of Γ and
over all different ways to connect a new edge to these vertices with respect
to the planar structure.

(iv) Attach a new root black vertex

below the root.

In all these cases, the orientation of the space of edges of the new rooted trees
obtained from Γ descends from Γ, with the new edge added at the first place.
Notice that many terms cancel due to the sign issue. For rooted trees with at
least two vertices (either white or black), only some planar rooted trees from (i)
and (ii) will remain in the image of the twisted differential since all the terms
coming from (iii) and (iv) will get cancelled by corresponding terms coming
from (i) or (ii).

It turns out that the homology of this twisted dg operad is simpler than that
of the operad Tw BT, which is given by the Gerstenhaber operad. We outline
the corresponding proof, and we refer the reader to [36] for further details on
the other results of this section.

Theorem 6.22 ([36, Theorem 5.1]) The inclusion of dg operads

S−1 Lie→ TwS−1RT

induces a homology isomorphism.

Proof We shall first establish that the arity zero part of TwS−1RT is acyclic.
For that, we note that for such rooted trees the differential is the “usual” graph
complex differential of M. Kontsevich [75], and its acyclicity can be proved by
the following version of an argument of T. Willwacher [142, Proposition 3.4].
Let us call an antenna of a rooted tree Γ a maximal connected subtree consist-
ing of vertices of valences 1 and 2 (in particular, each leaf of Γ is included in
its own antenna); a tree can be viewed as a “core” without vertices of valence
1 with several antennas attached to it. We consider the filtration of the chain
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complex TwS−1RT(0) by the size of the core: F pTwS−1RT(0) is spanned by
rooted trees whose all vertices are black and whose core has at least −p ver-
tices. The differential of the first page of the corresponding spectral sequence is
the summand that preserves the size of the core and increases the length of the
antennas; it can be easily seen acyclic as follows. We may first consider planar
rooted trees, fixing a total order on the children of each vertex; this forces the
graph automorphisms to disappear, and the first page of the spectral sequence
is the tensor product of acyclic complexes for (the non-empty set of) individual
antennas; dealing with trees without a fixed planar structure amounts to taking
the subcomplex of invariants complex with respect to graph automorphisms,
which is acyclic since it splits as a direct summand due to the Maschke theo-
rem. Since this filtration is exhaustive and bounded below, we conclude with
the convergence of the spectral sequence.

Let us now consider the case of positive arities n > 0. We consider the de-
composition TwS−1RT � V(n) ⊕ W(n), where V(n) is spanned by the rooted
trees where the vertex with label 1 has no incident edge, and W(n) is spanned
by the trees where the white vertex with label 1 has at least one incident
edge. The above-mentioned analysis of the twisted differential dλ

α
1 shows that

it has components mapping V(n) to V(n), mapping W(n) to V(n), and map-
ping W(n) to W(n). We consider the increasing filtration F pTwS−1RT(n) for
which F pV(n) is spanned by rooted trees from V(n) with at least −p edges and
F pW(n) is spanned by rooted trees from W(n) with at least −p−1 edges. Notice
already that this filtration is exhaustive and bounded below, so its associated
spectral sequence converges. On the first page E0 of the associated spectral
sequence, the first differential d0 is given by the part of the full differential that
maps W(n) to V(n); it takes the white vertex labelled by 1 in Γ, turns it into
a vertex black, and attach to it a new white vertex without inputs and labelled
by 1:

d0 :

· · ·

1 7→

1 · · ·

.

Such an assignment is injective. For n = 1, the cokernel of d0 is spanned by
the single one-vertex tree with its white vertex labelled by 1, proving that the
map S−1 Lie(1) → TwS−1RT(1) is a quasi-isomorphism. For n > 1, the cok-
ernel of d0 is spanned by the rooted trees Γ for which the white vertex labelled
by1 has no input edge and such that its output is connected to another white
vertex. It splits into a direct sum of subcomplexes according to the number i
labelling that latter white vertex; the number of such subcomplexes in arity n
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is equal to n − 1. One can see that each of these subcomplexes are isomor-
phic to TwS−1RT(n − 1), by erasing the white vertex labelled by 1. We may
proceed and conclude by induction: each of these subcomplexes is assumed
to have its homology isomorphic to S−1 Lie(n − 1) of dimension (n − 2)! . So
the total dimension of the homology of TwS−1RT(n) is (n − 1)! which is the
same as the dimension of S−1 Lie(n). It remains to note that the map of operads
S−1 Lie→ S−1RT is injective, since even the composite

S−1 Lie→ S−1RT � S−1PreLie→ S−1 Ass

is injective. Since all the elements in the image of the twisted differential dλ
α
1

contain at least one occurrence of α (i.e. black vertex), this inclusion of dg
operads S−1 Lie → TwS−1RT yields an injective on the level of homology.
The equality of dimensions implies that this inclusion is an isomorphism. �

Examining the operad BLie of universal operations of deformation com-
plexes of L∞-algebra structures, one discovers that it is very close to the op-
erad TwS−1RT, so very similar methods apply for computing its homology.
This way one can prove the following result.

Theorem 6.23 (Lie version of the Deligne conjecture, [36, Theorem 6.3])
The operad BLie of universal operations on deformation complexes of L∞-
algebra structures has the homotopy type of the operad Lie.

We conclude this section with another guise of operadic twisting arising in
this research area. In [96], M. Markl considers the pre-Lie algebra rPL(V),
where “r” stands for “reduced”, defined by the formula

rPL(V) :=
PreLie(V ⊕ k◦)

(◦ ? ◦)
,

where ◦ is an additional generator of degree −1. According to [96, Proposi-
tion 3.2], there is a well defined map d : rPL(V) → rPL(V) of degree −1 that
annihilates all generators (V and ◦) and satisfies d2 = 0. But, it fails to make
rPL(V) a dg pre-Lie algebra, since the “derivation” relation required here takes
the following form:

d(a ? b) = d(a) ? b + (−1)|a|a ? d(b) + Q(a, b) ,

where Q(a, b) B (◦ ? a) ? b − ◦ ? (a ? b). The bright point of this definition
lies in the following result.

Theorem 6.24 ([96, Theorem 3.3]) The subspace of Lie elements in PreLie(V)
equals the kernel of d on the space of degree 0 elements rPL(V)0 � PreLie(V):

Lie(V) � ker
(
d : rPL(V)0 → rPL(V)−1

)
.
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In fact, as explained in loc. cit., one can define a differential graded operad
(rPL, d) and view the chain complex (rPL(V), d) as the result of evaluating the
Schur functor corresponding to differential graded S-module rPL on the vector
space V . This operad is given by the coproduct of the rooted tree operad with
an arity 0 operation

placed in degree −1 modulo the operadic ideal generated by

.

Its differential is defined by

d
( )

= 0 and d


1

2

 =
1 2

.

This brings us very close to the key observation: examining the formulas for
the differential in the operad TwS−1RT and performing the operadic suspen-
sion, we find that

dλ
α
1 :

1

2
7→

1 2

in the operad Tw PreLie � STwS−1RT. So one must think of the element ◦
as a shadow of the element α ∈ Tw PreLie. Incidentally, this calculation also
shows why the brace tree corresponding to the Gerstenhaber product in the
case of the operad Tw BT, see Proposition 6.18, does not survive in the homol-
ogy of the operad TwS−1RT. Thus, the operadic twisting emerges naturally
in the algebraic context of Lie elements in pre-Lie algebras, from the study of
universal operations on deformation complexes.

An argument similar to that of the proof of Theorem 6.22 can now be used
to establish a result conjectured by M. Markl about fifteen years ago. We note
that the operadic ideal of Tw PreLie generated by

is closed under differential, and so one may consider the filtration by powers
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of that ideal and the associated graded chain complex. It turns out that the ho-
mology of the associated graded complex is already isomorphic to the operad
Lie.

Theorem 6.25 ([36, Theorem 6.2]) The quotient dg operad

Tw PreLie 
is isomorphic to the dg operad rPL, and the morphism Lie → rPL induces a
homology isomorphism.
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Applications

In this final chapter, we provide details on seminal applications of the twist-
ing procedure in several domains of mathematics mentioned throughout the
book: deformation theory, higher Lie theory, rational homotopy theory, higher
category theory, and symplectic topology. Other occurrences of the twisting
procedure kept emerging as we were preparing this book, and it has been clear
from the beginning that it would be impossible to give an exhaustive overview
of applications. Yet we attempted to cover several crucial works in many dif-
ferent domains, both to confirm the omnipresence of the twisting procedure
and to encourage the reader to make the list of related areas even longer.

7.1 Fundamental theorem of deformation theory

Let us go back to the fundamental theorem of deformation theory. In order to
formulate it, one first needs to provide a proper definition of a “deformation
problem”. In this direction, considering simply functors from local Artinian
rings to sets is too restrictive.

Given any complete dg Lie algebra g, its gauge group Γ is well-defined and
it acts on the set of Maurer–Cartan elements, as explained in Section 1.2. One
can consider the moduli space of Maurer–Cartan elements (Definition 1.54)

MC (g) B MC(g)/Γ ,

given by the set of orbits. This way, one looses the data of the gauge group

This material will be published by Cambridge University Press & Assessment as ‘Maurer-Cartan
Methods in Deformation Theory: the twisting procedure’ by Vladimir Dotsenko, Sergey Shadrin
and Bruno Vallette. This version is free to view and download for personal use only. Not for re-
distribution, re-sale or use in derivative works. c©Cambridge University Press & Assessment
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elements. To circumvent this, we introduced in Definition 1.55 the Deligne gr-
oupoid whose objects are Maurer–Cartan elements and whose isomorphisms
are given by the action of the gauge group elements. From there, one might ask
whether this is a way to compare these actions among them, that is to coin a
suitable notion of a Deligne 2-groupoid, and, why not, higher up to a Deligne
∞-groupoid. This can be achieved as follows.

Definition 7.1 (Sullivan simplicial algebra [129]) The Sullivan simplicial al-
gebra is the simplicial commutative dg algebra Ω• defined by the piecewise
polynomial differential forms on the geometric n-simplicies:

Ωn B
k[t0, . . . , tn, dt0, . . . , dtn]

(t0 + · · · + tn − 1, dt0 + · · · + dtn)
,

equipped with their simplicial maps.

Theorem 7.2 (Hinich [64]) For any complete dg Lie algebra g, the simplicial
set

MC•(g) B MC
(
g ⊗̂Ω•

)
is a Kan complex, that is an∞-groupoid, satisfying

π0(MC•(g)) � MC (g) .

This construction shows that one would rather consider functors

R � k ⊕m 7→ MC•(g ⊗m)

from the category of Artinian local rings to the category sSet of simplicial
sets. The source of deformation functors has also to be upgraded to the derived
world, i.e., to differential graded objects.

Definition 7.3 (Differential graded Artin algebra) A differential graded (dg)
Artin algebra is an augmented commutative differential graded algebra A sat-
isfying:

(i) each Hi(A) is finite dimensional, for any i ∈ N,
(ii) the homology groups Hi(A) � 0 vanish, for i < 0 and for i big enough,

(iii) the commutative algebra H0(A) is a local Artinian algebra.

We denote their category by dgArt.

The idea behind this definition is that any dg Artin algebra can be obtained,
up to a quasi-isomorphism, by successive square-zero extensions from k, see
[132].
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Definition 7.4 (Formal moduli problem) A formal moduli problem is a func-
tor

F : dgArt→ sSet

such that:

(i) it sends quasi-isomorphisms of dg commutative algebras to weak equiva-
lences of simplicial sets,

(ii) the image F(k) ∼ ∗ of the initial algebra is contractible,
(iii) the image under F of any homotopy cartesian square

D //

��

B

��
C // A

of augmented dg commutative algebras, such that H0(B) � H0(A) and
H0(C)� H0(A), is a homotopy cartesian square of simplicial sets.

Theorem 7.5 (Fundamental theorem of deformation theory [89, 117]) Over
a field k of characteristic 0, the∞-categories of dg Lie algebras and of formal
moduli problems are equivalent.

The proof of such a conceptual result goes far beyond the scope of the
present manuscript. However, one can notice that this equivalence heuristically
comes from the following two functors. From formal moduli problems to dg
Lie algebras, one can consider the tangent space functor

T : F 7→ F
(
k[t]/

(
t2)) .

In the other way round, one can consider the functor given above

Defg : A 7→ MC•
(
g ⊗ Ā

)
,

where Ā stands for the augmentation ideal. The fact that Defg forms a formal
moduli problem is not completely trivial: Point (i) of Definition 7.4 comes
from the homotopy invariance property of Hinich’s construction [64], which
ultimately goes back to Goldman–Millson [59].

Example 7.6 There is a general case where one can make the deformation
dg Lie algebra explicit: the deformation problem of P∞-algebras when P is a
Koszul operad or properad. The operadic calculus shows that the deformation
dg Lie algebra is given by the convolution dg Lie algebra

g B
(
HomS

(P ¡,EndV
)
, ∂, [ , ]

)
,
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see [88, Section 12.2] and [104, 67] for more details.

Remark 7.7 The above treatment actually deals with pointed deformation
problems: formal moduli problems are defined by augmented dg commutative
algebras and they are modelled by dg Lie algebras which admit 0 for canonical
Maurer–Cartan element. It is natural to expect that non-necessarily pointed
deformation problems should be encoded by curved Lie algebras.

7.2 Higher Lie theory

Hinich’s construction of a Deligne ∞-groupoid associated to a complete dg
Lie algebra introduced in the previous section prompts the following two ques-
tions.

(i) Does the set MC1(g) of 1-simplicies coincide with the set of gauges?
(ii) Does Hinich’s construction MC• extend to complete L∞-algebras?

The answer to the second question is actually straightforward as the same
formula

MC•(g) B MC
(
g ⊗̂Ω•

)
applies mutatis mutandis to complete L∞-algebras g .

The answer to the first question is negative: the set MC1(g) of 1-simplicies is
slightly bigger than the set of gauges. As a consequence, the last point of The-
orem 7.2 is not trivial: the set of 1-simplicies of MC•(g) is the set of Maurer–
Cartan elements of the complete dg Lie algebra g ⊗̂ k[t, dt], as such it contains
strictly the set of gauges but they define equivalent equivalence relation on the
Maurer–Cartan elements of g . The issue raised by Point (i) was solved by E.
Getzler [56] who coined a homotopy equivalent ∞-subgroupoid of MC•(g),
whose set of 1-simplicies coincides with the set of gauges.

Actually, Getzler’s construction solves both questions. In this section, we
give a presentation of it along the lines of [121]. Let us first recall that the
notion of a gauge between Maurer–Cartan elements in complete L∞-algebras
is defined in a way similar to dg Lie algebras (Section 1.2): for any degree 0
element λ, the twisted differential defines a vector field Υλ ∈ Γ(T (MC(g))) by
the formula

Υλ(ω) := dω(λ) =
∑
k≥0

1
k!`k+1

(
ωk, λ

)
.
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We refer the reader to [121, Proposition 1.10] for a closed formula for the in-
tegration of a Maurer–Cartan element along the associated flow.

The key idea of the integration theory of complete L∞-algebras amounts
to using the linear dual of the cellular chain complexes of the geometric n-
simplices

C• B Ccell(∆•)∨ ,

instead of the Sullivan simplicial algebra, under Dupont’s simplicial contrac-
tion [44]:

Ω• C• .
p•

i•
h•

Pulling back along the bar-cobar resolution ΩBCom → Com, one endows Ω•

with a simplicial ΩBCom-algebra structure, which is then transferred to C• un-
der the homotopy transfer theorem [88, Section 10.3]. Since this latter one is
degree-wise finite dimensional, its linear dual C• B Ccell(∆•) carries a cosim-
plicial ΩBCom-coalgebra structure. Finally, we consider its image under the
complete cobar construction Ω̂π associated to the operadic twisting morphism
π : BΩCom∨ → ΩCom∨ � SL∞ .

Proposition 7.8 The collection

mc
• B Ω̂π C•

forms a cosimplicial complete shifted L∞-algebra, called the universal Maurer–
Cartan algebra.

For instance, the complete shifted L∞-algebramc0 is quasi-free on one Mau-
rer–Cartan element

mc
0 � ŜL∞(a)

with differential given by

da = −
∑
m>2

1
m!`m(a, . . . , a) .

Definition 7.9 (Integration functor) The integration functor of complete shifted
L∞-algebras is defined by

R : complete SL∞-alg −→ sSet

g 7−→ Homcomplete SL∞−alg (mc•, g) .
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The category of complete shifted L∞-algebras is considered here with re-
spect to strict morphisms. The functoriality of R with respect to∞-morphisms
is more subtle, so we refer the reader to [121, Section 3] for more details. Ap-
plied to chain complexes viewed as trivial complete shifted L∞-algebras, the
integration functor gives the Dold–Kan functor. The form of mc0 mentioned
above shows that the 0-simplicies of the integration functor are the Maurer–
Cartan elements:

R(g)0 � MC(g) .

Proposition 7.10 ([120, Proposition 4.3]) The set R(g)1 of 1-simplicies is
in canonical bijection with the set of triples consisting of a pair of Maurer–
Cartan elements related by a gauge.

This provides us with a direct computation of the connected components:

π0(R(g)) � MC (g) .

Remark 7.11 Getzler’s original construction was given in terms of the fol-
lowing “gauge condition”:

γ•(g) B MC•(g) ∩ ker
(
id ⊗̂ h•

)
.

It turns out that both higher integration functors are canonically isomorphic:

R•(g) � γ•(g) .

The definition given here in term of the universal Maurer–Cartan algebra
allows one to introduce the following left adjoint functor.

Proposition 7.12 ([121, Theorem 2.12]) The functor

L B LanYmc•

of SL∞-algebra of a simplicial set, defined as the left Kan extension along the
Yoneda embedding Y, is left adjoint to the integration functor

L : sSet complete SL∞-alg : R .⊥

As usual, such left Kan extensions can be computed as the colimit

L(X•) � colim
E(X•)

mc
•

over the category of elements of a simplicial set, that is by gluing, in a suit-
able way, quasi-free complete shifted L∞-algebras generated by the cells of
standard simplicies.
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Theorem 7.13 ([56]) The simplicial set R(g) integrating any complete shifted
L∞-algebra g is a Kan complex with a canonical algebraic∞-groupoid struc-
ture. It is a homotopy equivalent sub-Kan complex of MC•(g) .

Proof For n > 2, one can show [121, Lemma 5.1] that there is an isomor-
phism of complete shifted L∞-algebras

mc
n = L

(
∆n) � L(Λn

k
)
∨̂ ŜL∞(u, du) ,

where u is a generator of degree n and where the differential on the right-hand
side is given by d(u) = du . Using the adjunction of Proposition 7.12, this
shows that the set of Λn

k-horn fillers is in one-to-one correspondence with the
component gn of degree n of the complete shifted L∞-algebra. Therefore any
horn can be canonically filled by 0 ∈ gn . �

The first horn filler

0

0

0

x y

BCH(x, y)

0

produces the Baker–Campbell–Hausdorff formula [7, Proposition 5.2.36], wh-
ich is the most conceptual formula underlying Lie theory. The higher horn
fillers produce higher Baker–Campbell–Hausdorff formulae, whose promising
extensive study is yet to be achieved.

The algebraic ∞-groupoid R(g), which integrates complete shifted L∞-al-
gebras, behaves as follows with respect to the twisting procedure.

Lemma 7.14 ([121, Theorem 3.17]) For any complete shifted L∞-algebra g
and any Maurer–Cartan element α ∈ MC(g) , the translation by α induces an
isomorphism of pointed Kan complexes

(R(g), α) � (R (gα) , 0) .

Since R(g) is a Kan complex, one might try to compute its homotopy groups.
This can be done using the following beautiful Hurewicz type theorem due to
A. Berglund.
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Theorem 7.15 ([12]) For any complete shifted L∞-algebra g and any Maurer–
Cartan element α ∈ MC(g) , there is a canonical group isomorphism

πn(R(g), α) � Hn (gα) , for n > 1 ,

where the group structure on the right-hand side is given by the Baker–Campbell–
Hausdorff formula for n = 1 and by the sum for n > 2 .

Proof The idea of the proof given in [121, Section 6.1] amounts first to using
Lemma 7.14 to reduce the problem to the trivial Maurer–Cartan element

πn(R(g), α) � πn (R (gα) , 0)

and then, since everything is based at 0, to using the properties of the higher
Baker–Campbell–Hausdorff formulae:

πn (R (gα) , 0) � Hn (gα) .

�

Remark 7.16 The present higher Lie theory extends to complete shifted
curved L∞-algebras; this is the subject of the Ph.D. Thesis of Victor Roca i
Lucio [123]. This generalisation requires however to improve the operadic cal-
culus to the curved level and to introduce new genuine model category struc-
tures.

7.3 Rational homotopy theory

The Maurer–Cartan methods alluded to in the title of this monograph are also
behind the construction of models of spaces in rational homotopy theory. They
are already omnipresent in the two foundational articles of D. Quillen [118]
and D. Sullivan [129]. We give here a short survey of recent progress made
using the results presented in this monograph.

Let us quickly recall the basic framework of rational homotopy theory.

Definition 7.17 (Nilpotent simplicial set) A connected pointed simplicial set
X• is nilpotent when its fundamental group π1X• is nilpotent and when its
higher homotopy groups πnX• are nilpotent as π1X•-modules, for all n > 2 .

Definition 7.18 (Rational simplicial set) A nilpotent simplicial set X• is ra-
tional when its homotopy groups πnX• are uniquely divisible, for any n > 1,
that is the equation xm = g has a unique solution x ∈ πnX•, for any g ∈ πnX•
and any integer m > 1 .
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Since the homotopy groups πnX• are abelian for n > 2, this latter condition
simply means that they are Q-vector spaces.

Definition 7.19 (Rationalisation) A rationalisation of a nilpotent simplicial
set X• is a rational simplicial set XQ

• equipped with a morphism r : X• → XQ
•

such that

πnr : πnX• ⊗Q
�
−→ πnXQ

• ,

for any n > 1 , where the left-hand side stands for the Malcev completion [90]
in the case n = 1 .

Any nilpotent simplicial set admits a rationalisation [100, Theorem 5.3.2];
some classes of nilpotent simplicial sets admit functorial rationalisations, two
of which are given below.

The first algebraic models for the rational homotopy type of topological
spaces were given by D. Quillen [118] in terms of dg Lie algebras. However,
this original approach relies on the composite of many intermediate functors.
The adjunction described in Proposition 7.12, which arose in the higher Lie
theory, provides us with direct functors between simplicial sets and complete
shifted L∞-algebras. (We refer the reader to [17] for the similar theory de-
veloped on the level of shifted Lie algebras.) We will show below that they
faithfully encode the rational homotopy types. Let us first extend their defini-
tions to pointed spaces. The integration functor extends naturally to a functor
R̃ landing in pointed simplicial sets under

∗ � R(0)
R(0)
−−−→ R(g) .

Definition 7.20 (L∞-algebra model) A complete shifted L∞-algebra g is a
model of a pointed simplicial set X• when it is equipped with a homotopy
equivalence

R̃(g) ' XQ
• .

Proposition 7.21 When g is a complete shifted L∞-algebra model of a pointed
simplicial set X•, there are group isomorphisms

πn(X•) ⊗Q � Hn(g) , for n > 1 ,

where the right-hand side is equipped with the Baker–Campbell–Hausdorff
product, for n = 1, and with the sum, for n > 2 .

Proof This is a direct corollary of Berglund’s Hurewicz type theorem 7.15.
�
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In the pointed setting, the complete shifted L∞-algebra functor produces
a new artificial base point provided by the trivial Maurer–Cartan element 0,
which thus needs to be killed.

Lemma 7.22 The reduced shifted L∞-algebra of pointed simplicial sets given
by the coequalizer

L(∗) � mc0 L(X•) L̃(X•)
L (∗ → X•)

0

defines a functor which is left adjoint to the pointed integration functor

L̃ : sSet∗ complete SL∞-alg : R̃ .⊥

Theorem 7.23 ([121, Theorem 7.19]) For any pointed connected finite type
simplicial set X•, the unit

X• −→ R̃ L̃(X•)

of this adjunction is homotopy equivalent to the Q-completion of Bousfield–
Kan. So it gives a functorial rationalisation for pointed connected finite sim-
plicial sets that are nilpotent.

Otherwise stated, the reduced shifted L∞-algebra L̃(X•) is a functorial model
for pointed connected finite nilpotent simplicial sets.

Corollary 7.24 For any finite type nilpotent simplicial set X•, there are group
isomorphisms

πn(X•) ⊗Q � Hn

(
L̃(X•)

)
, for n > 1 ,

where the right-hand side is equipped with the Baker–Campbell–Hausdorff
product, for n = 1, and with the sum, for n > 2 .

Remark 7.25 The proof given in loc. cit. relies on the Sullivan approach,
given below, under linear dualisation. So we conjecture that the present finite-
ness hypothesis can be significantly weakened by a more intrinsic proof.

The second algebraic model for the rational homotopy type of topological
spaces was given by D. Sullivan [129] in terms of dg (augmented unital) com-
mutative algebras. (Recall that the category of augmented unital commutative
algebras is isomorphic to the category of non-necessarily unital commutative
algebras). The first step of his theory amounts to defining a suitable generalisa-
tion of the de Rham algebra on the level of topological spaces, or equivalently
simplicial sets.



7.3 Rational homotopy theory 159

Lemma 7.26 The two functors

APL : sSet∗ dg Com-algop : 〈−〉⊥

defined respectively by

APL(X•) B HomsSet(X•,Ω•) and 〈A〉 B Homdg Com-alg(A,Ω•)

are adjoint.

The functor APL(X•) produces the algebra of polynomial differential forms
of a simplicial set and the functor 〈A〉 is the spatial realisation of dg commu-
tative algebras.

Remark 7.27 Notice that this adjunction is “Koszul dual” to the main adjunc-
tion of higher Lie theory given in Proposition 7.12. For instance, the algebra of
polynomial differential forms can be obtained as the right Kan extension along
the Yoneda embedding:

APL(X•) � RanYopΩ•(X•) .

The original rationalisation of spaces was given by the unit of the derived
version of this adjunction.

Theorem 7.28 ([129], [15, Theorem 11.2]) For finite type nilpotent simplicial
sets X• , the unit

X• −→ R〈APL(X•)〉

of the derived APL a R〈−〉-adjunction is a functorial rationalisation.

As any pointed simplicial set is already cofibrant, one does not need to con-
sider any cofibrant replacement to derive the functor APL. On the other hand,
the right derived functor R〈−〉 is defined by applying 〈−〉 to a cofibrant replace-
ment of a dg (augmented unital) commutative algebra. Such cofibrant replace-
ment are given by (retracts of some) quasi-free dg commutative algebras.

Definition 7.29 (Quasi-free dg unital commutative algebra) A quasi-free
dg unital commutative algebra is a dg unital commutative algebra (S (V), d),
whose underlying graded algebra is free.

In this case, V is a graded module and d is a square-zero derivation of ho-
mological degree −1 . As such it is completely characterised by the image
d|V : V → S (V) of the generators, which splits according to the length of
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monomials as

d0 : V → Q ,

d1 : V → V ,

d2 : V → V�2 ,

d3 : V → V�3 ,

... ,

where V�n B
(
V⊗n)

Sn
denotes the symmetric tensor product. Under suitable

finiteness assumptions, the degree-wise linear dual of V is thus equipped with
the following dual maps

`0 : Q→ V∨ ,

`1 : V∨ → V∨ ,

`2 :
(
V∨

)�2
→ V∨ ,

`3 :
(
V∨

)�3
→ V∨ ,

...

of degree −1, where `n B d∨n . The relation d2 = 0 is equivalent to the shifted
curved L∞-relations for these operations.

Proposition 7.30 Under suitable finiteness assumptions, the data of a quasi-
free dg unital commutative algebra (S (V), d) is equivalent to the data of a
shifted curved L∞-algebra

(
V∨, `0, `1, `2, `3, . . .

)
.

One can thus say that D. Sullivan was the first one to consider shifted curved
L∞-algebras, though this notion is not clearly emphasised in [129].

Definition 7.31 (Sullivan model) A Sullivan model of a pointed simplicial
set X• is a quasi-free dg unital commutative algebra (S (V), d) generated by a
graded module V concentrated in negative homological degrees and endowed
with an exhaustive filtration

{0} = V (−1) ⊆ V (0) ⊆ V (1) ⊆ V (2) ⊆ · · ·

satisfying d
(
V (k)

)
⊂ S

(
V (k−1)

)
, for any k > 0, and equipped with a quasi-

isomorphism

(S (V), d)
∼
−→ APL(X•) .

The degree condition on the space of generators implies that d0 = 0, so Sul-
livan models are augmented dg unital commutative algebras, where d1 squares
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to zero. This means that under the finite type condition the data of the differen-
tial of the space of generators of a Sullivan model is equivalent to the data of a
shifted L∞-algebra structure. Recall that a chain complex has finite type when
each component is finite dimensional.

Proposition 7.32 ([12, Proposition 2.2]) A finite type quasi-free dg unital
commutative algebra

(
S
(
g∨

)
, d

)
satisfies the underlying conditions of a Sulli-

van model if and only if g carries a finite type positively graded profinite shifted
L∞-algebra structure.

Proof The chain complex V B g∨ is negatively graded and since it is of finite
type, one can dualise the L∞-operations in order to form a differential d on the
quasi-free dg unital commutative algebra S

(
g∨

)
. The increasing exhaustive

filtration V (k) corresponds to a decreasing complete filtration Fkg under linear
dualisation V (k) B (Fkg)⊥ . For the definition of the profinite condition and the
rest of the proof, we refer the reader to op. cit.. �

One can go even further in the relationship between Sullivan’s approach to
rational homotopy theory and higher Lie theory.

Proposition 7.33 For any finite type non-negatively graded complete shifted
L∞-algebra g, there is a canonical isomorphism of simplicial sets

MC•(g) �
〈
S
(
g
∨)〉 .

Proof The proof relies on the direct inspection〈
S
(
g
∨)〉 = Homdg Com-alg

(
S
(
g
∨),Ω•) � MC

(
g ⊗̂Ω•

)
= MC•(g)

that the Maurer–Cartan equation is equivalent to the commutativity with the
respective differentials. �

This result allows us to connect the two notions of algebraic models of the
rational homotopy type.

Corollary 7.34 Let g be a finite type positively graded profinite shifted L∞-
algebra such that

(
S
(
g∨

)
, d

)
is a Sullivan model of a finite type nilpotent sim-

plicial set X• . Then g is an L∞-algebra model of X• .

Proof Since a Sullivan model is a cofibrant dg commutative algebra, it can
be used to compute the derived composite

R〈APL(X•)〉 '
〈
S
(
g
∨)〉 ,

which is a rationalisation of X• by Theorem 7.28. Then Proposition 7.33 shows
that MC•(g) is also a rationalisation of X• . We conclude by Theorem 7.13:
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Hinich’s construction MC•(g) is homotopy equivalent to the integration functor
R(g) . �

A deep application of the two types of algebraic models of the rational ho-
motopy type lies in the following result dealing with the most ubiquitous but
most complicated type of topological spaces: mapping spaces.

Theorem 7.35 ([87, 12, 16]) For any Sullivan model A of a connected pointed
space X• and any profinite shifted L∞-algebra model g of a nilpotent space Y•
of finite Q-type, the complete tensor product A ⊗̂ g is a model of the mapping
space, that is

map
(
X•,YQ

•

)
' R

(
A ⊗̂ g

)
.

In this case, the homotopy classes of maps f : X• → YQ
• are in one-to-

one correspondence with the gauge classes of Maurer–Cartan elements α ∈
MC

(
A ⊗̂ g

)
, [

X•,YQ
•

]
� MC

(
A ⊗̂ g

)
.

Corollary 7.36 Under the same hypotheses, the twisted shifted L∞-algebra(
A ⊗̂ g

)α is a model for the connected component of f of the mapping space:
there group isomorphisms

πn

(
map

(
X•,YQ

•

)
, f

)
⊗Q � Hn

((
A ⊗̂ g

)α)
, for n > 1 ,

where the right-hand side is equipped with the Baker–Campbell–Hausdorff
product, for n = 1, and with the sum, for n > 2 .

Remark 7.37 The same results hold mutatis mutandis when one works with
dg (homotopy) cocommuative coalgebra models and convolution algebras un-
der

Hom(C, g) � C∨ ⊗̂ g .

We refer the reader to [122, Section 9] for more details.

7.4 Simplicial theory of homotopy algebras

Dolgushev–Hoffnung–Rogers settled in [33] a meaningful simplicial enrich-
ment of the category of homotopy algebras with their ∞-morphisms. In this
section, we give it a short presentation using the properties of the twisting pro-
cedure established in Chapter 4.

Let C be a filtered dg cooperad and let A and B be two complete graded
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modules. Recall that the direct sum provides us with the product in the category
of complete dg Lie algebras. We consider here the complete dg Lie algebra(

homS
(C, endB

)
⊕ homS

(C, endA
)
, ∂, [ , ]

)
with bracket defined by[(

f , f ′
)
,
(
g, g′

)]
B (−1)|g|| f

′ | ([ f , g
]
,
[
f ′, g′

])
.

Its Maurer–Cartan elements coincide with pairs of complete ΩC-algebra struc-
tures on B and A respectively. We will need the complete S-module

endA
B B

{
hom(A⊗n, B)

}
n∈N

equipped with its canonical left endA-module and right endB-module struc-
tures. We denote by

C
∆(n)
−−→ C ◦̂(n) C

the suitable (n − 1)-fold iterations of the partial decomposition maps which
produce all the 2-levelled trees with n top vertices.

Lemma 7.38 The complete dg module

s homS
(C, endB

)
⊕ homS

(
C, endA

B

)
⊕ s homS

(C, endA
)

equipped with

`2 ( f1, sα) : C
∆(1)
−−→ C ◦̂(1) C

(−1)| f1 | f1 ◦̂(1) α
−−−−−−−−−−→ endA

B ◦̂(1) endA → endA
B ,

`n+1 (sβ, f1, . . . , fn) : C
∆(n)
−−→ C ◦̂(n) C

−β ◦̂(n) f1�···� fn
−−−−−−−−−−−→ endA

B ◦̂(n) endA → endA
B ,

for any n > 1 and for any α ∈ homS
(C, endA

)
, β ∈ homS

(C, endB
)
, f1, . . . , fn ∈

homS
(
C, endA

B

)
, forms a complete shifted L∞-algebra extension of the shifted

dg Lie algebra s homS
(C, endB

)
⊕ s homS

(C, endA
)

.

Proof The proof amounts to a straightforward computation. �

Proposition 7.39 Maurer–Cartan elements (sβ, f , sα) of this complete shifted
L∞-algebra are in one-to-one correspondence with the data of two complete
ΩC-algebra structures on A and B respectively related by an∞-morphism.

Proof It remains to check that the part of the Maurer–Cartan equation sat-
isfied by f on homS

(
C, endA

B

)
is equivalent to the equation (3.2) defining the

notion of an∞-morphism. Notice that one has to consider here Maurer–Cartan
elements which live in the first part F0 of the filtration. The Maurer–Cartan
equation is an infinite sum of terms involving `2, `3, . . .; it actually makes sense
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here in fully generality since their evaluation on elements of C only involve a
first number of non-trivial terms. �

Given any ΩC-algebra structures (A, α) and (B, β), we consider the following
complete shifted L∞-sub-algebra of the above algebra twisted by (sβ, 0, sα):

homα,β B(
homS

(
C, endA

B

)
, `2(−, sα) + `2(sβ,−) − ∂, `n+1(sβ,−, . . . ,−), n > 2

)
.

Theorem 7.39 shows that its Maurer–Cartan elements MC
(
homα,β

)
correspond

bijectively to∞-morphisms from α to β.

Remark 7.40 In order to make this last claim precise and to solve the issue
raised at the end of the proof of Theorem 7.39, Dolgushev–Hoffnung–Rogers
restricted themselves in [33] to filtered dg cooperads C with trivial component
C(0) = 0 of arity 0. Then, they considered the complete filtration on homα,β
given by f ∈ Fkhomα,β if f (n) : C(n) → hom

(
A⊗n, B

)
is trivial for n < k . Fi-

nally, Maurer–Cartan elements concentrated in F1homα,β are indeed in one-to-
one correspondence with ∞-morphisms from α to β. As we mentioned above,
the Maurer–Cartan equation in this shifted L∞-algebra always makes sense,
no matter the filtration considered. As such it forms an absolute shifted L∞-
algebra, notion introduced and studied by V. Roca i Lucio in [123], where
infinite series of operations make sense.

The first step toward a simplicial enrichment of complete ΩC-algebras with
their ∞-morphisms amounts to enrich them over complete shifted (curved)
L∞-algebras using the above construction. In this direction, one first needs to
extend the cartesian monoidal structure on dg Lie algebras.

Lemma 7.41 The category

(∞-complete curved SL∞-alg,⊕, 0)

of complete shifted curved L∞-algebras with ∞-morphisms equipped with the
direct sum forms a cartesian monoidal category.

Proof It is straightforward to check that the direct sum

(A,F, `0, `1, `2, `3, . . .) ⊕ (B,G, k0, k1, k2, k3, . . .) B

(A ⊕ B,F ⊕ G, `0 + k0, `1 + k1, `2 + k,`3 + k3, . . .)

of two complete shifted curved L∞-algebras is again a complete shifted curved
L∞-algebra. The functoriality of this construction is given by

( f ⊕ g)n
(
(a1, b1), . . . , (an, bn)

)
B fn(a1, . . . , an) ⊕ gn(b1, . . . , bn)
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for any∞-morphisms f and g. One can check that this construction provides us
with the product in the category of complete shifted curved L∞-algebras. �

Proposition 7.42 ([33, Section 3]) The composition

Φα,β,γ : homβ,γ ⊕ homα,β  homα,γ

defined by Φ
α,β,γ
0 B 0, Φ

α,β,γ
1 B 0, and, for n > 2, by

Φ
α,β,γ
n ( f1, . . . , fn) : C

∆(n−1)
−−−−→ C ◦̂(n−1) C → endB

C ◦̂(n−1) endA
B → endA

C ,

where the second map is equal to
n∑

i=1

f ′i ◦̂(n−1) f ′′1 � · · · � f ′′i−1 � f ′′i+1 � · · · � f ′′n ,

under the notation fi =
(

f ′i , f ′′i

)
∈ homβ,γ ⊕ homα,β, and the unit

Υα : 0 homα,α

defined by

Υα
0 B idA and Υα

n B 0 , for n > 1 ,

endow ΩC-algebras with a structure of a category enriched over the cartesian
monoidal category of complete shifted curved L∞-algebras.

Proof All the axioms are straightforward applications of the operadic calcu-
lus. �

It remains to integrate these complete shifted (curved) L∞-algebras in order
to obtain a simplicial enrichment.

Lemma 7.43 Hinich’s construction of a Deligne ∞-groupoid defines a sym-
metric monoidal functor

MC• : (∞-complete curved SL∞-alg,⊕, 0)→ (sSet,×, ∗) .

Proof Given any complete unital dg commutative algebra (B,G, d, µ, 1), the
assignment

(A,F, `0, `1, `2, `3, . . .) 7→
(
A ⊗̂ B,F ⊗ G, `0 ⊗̂ 1, `1 ⊗̂ d, `2 ⊗̂ µ, `3 ⊗ µ

2, . . .
)

generates a new complete shifted curved L∞-algebra out of another one. It is
functorial with respect to the following assignment of∞-morphisms: given any
∞-morphism f : (A, α) (A′, α′), one considers the ∞-morphism defined by
f0 ⊗ 1 and by(

a1 ⊗̂ b1, . . . , an ⊗̂ bn

)
7→ fn(a1, . . . , an) ⊗̂ µn−1(b1, . . . , bn) ,
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for n > 1. So this defines defines a symmetric monoidal endofunctor in the cat-
egory∞-complete curved SL∞-alg. Proposition 4.16 shows that the Maurer–
Cartan functor MC is a symmetric monoidal functor from this category to that
of sets. In the end, since Hinich’s construction

MC•(g) B MC
(
g ⊗̂Ω•

)
is the composite of all these symmetric monoidal functors, it is also a symmet-
ric monoidal functor. �

Theorem 7.44 ([33, Theorem 3.6]) The category with objects the complete
ΩC-algebras and with mapping spaces the Kan complexes

Map(α, β) B MC•
(
homα,β

)
forms a simplicial category whose image under the 0-simplicies functor gives
the category of complete ΩC-algebras with their∞-morphisms.

Proof The first part is a direct corollary of Proposition 7.42 and Lemma 7.43.
Regarding the second part, it is enough to check that

MC0

(
Φα,β,γ

)
(g, f ) = MC

(
Φα,β,γ

)
(g, f ) = g} f ,

for any pair f ∈ MC
(
homα,β

)
and g ∈ MC

(
homβ,γ

)
of∞-morphisms. �

Remark 7.45 One might want instead to integrate “more efficiently” these
complete shifted L∞-algebras with Getzler’s functor R. This is not directly
possible as its functoriality with respect to ∞-morphisms is still unclear, see
[121, Section 3] for more details.

From now on, we suppose that the filtered dg cooperad C is coaugmented.
This hypothesis implies that the underlying space of any ΩC-algebra is a chain
complex and that the notion of an ∞-quasi-isomorphism makes sense. In this
case, the above simplicial category ∞-ΩC-alg∆ provides us with a suitable
localisation of the category ∞-ΩC-alg of complete ΩC-algebras with respect
to∞-quasi-isomorphisms.

Theorem 7.46 ([33, Theorem 4.1]) When the filtered dg cooperad C is coaug-
mented, the canonical functor

∞-ΩC-alg→ π0

(
∞-ΩC-alg∆

)
sends∞-quasi-isomorphisms to isomorphisms and is universal with respect to
this property.

One example of an appealing homotopical property that this setting allows
to prove lies in the following characterisation of∞-quasi-isomorphisms.
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Proposition 7.47 ([33]) When the filtered dg cooperad C is coaugmented, the
following assertions are equivalent:

(i) an∞-morphism f : α β is an∞-quasi-isomorphism,
(ii) the pullback maps MC• ( f ∗):

Map(β, α)
∼
−→ Map(α, α) and Map(β, β)

∼
−→ Map(α, β)

are homotopy equivalences,
(iii) the pushforward maps MC• ( f∗):

Map(β, α)
∼
−→ Map(β, β) and Map(α, α)

∼
−→ Map(α, β)

are homotopy equivalences.

7.5 Floer cohomology of Lagrangian submanifolds

In order to introduce a well-defined notion a Floer cohomology for (pairs of)
Lagrangians submanifods, Fukaya–Oh–Ohta–Ono introduced and used in [50]
the twisting procedure for curved A∞-algebras in a crucial way. This provides
symplectic geometry/topology with a conceptual and powerful tool. It also de-
fines properly the sets of morphisms of Fukaya A∞-categories which appear
on the A-side of the homological mirror symmetry conjecture.

One version of the Arnold’s conjecture [3] states that the number of non-
degenerate fixed points of any Hamiltonian diffeomorphism is bounded below
by the total rank of the homology of the ambient (compact) symplectic man-
ifold. In order to prove it, Floer introduced in [46] a (co)homology theory for
Lagrangian submanifolds where the boundary operator is given by counting the
number of pseudo-holomorphic discs lying between two Lagrangian submani-
folds. Since he focused on the case of pairs of Lagrangian submanifolds where
one is the image of the other under an Hamiltonian diffeomorphism, he was
able to prove that this boundary operator squares to zero. In the general case,
such a property does not hold anymore and the authors of [50] had to study
the associated obstruction problem. The problem of counting the number of
pseudo-holomorphic discs is actually not well-defined as it depends on various
choices like the perturbations to make the associated moduli spaces transver-
sal. Fukaya–Oh–Ohta–Ono introduced some curved A∞-algebras whose con-
stant structures are based on the numbers of pseudo-holomorphic discs and
they show that their homotopy type does not depend on the various choices
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involved. In the end, twisting these curved A∞-algebras by Maurer–Cartan el-
ements produces cochain complexes which define Floer cohomology for (pairs
of) Lagrangian submanifolds. Let us now describe their work in more details.

These authors initiate their theory with the following A∞-algebra that they
call classical.

Proposition 7.48 ([50, Theorem 3.1.2]) For any smooth oriented manifold
L, there exists a countable set χL of smooth singular simplicies on L such
that ZχL admits an A∞-algebra structure (m1, . . . ,mn, . . .) constructed from
a Kuranishi structure on the moduli space of constant pseudo-holomorphic
discs such that m1 = (−1)ndsing, where dim L = n, where dsing is the singular
boundary operator, and such that H• (ZχL,m1) � H•sing (L,Z) .

This A∞-algebra is uniquely determined by L up to homotopy equivalence
and its real extension (RχL,m1, . . . ,mn, . . .) is homotopy equivalent to the de
Rham dg associative algebra of L.

They introduce then a quantum deformation of it as a curved A∞-algebra
defined over the following extension of Q.

Definition 7.49 (Universal Novikov ring)

Λ0,Nov B

 ∞∑
i=0

aiT λi eni | ai ∈ Q, λi ∈ R>0, ni ∈ Z, lim
i→∞

λi = ∞


where T and e are elements of degree 0 and 2 respectively.

This ring is filtered and complete with respect to the energy filtration

FλΛ0,Nov B T λΛ0,Nov

indexed by the monoid R>0, and not N as in Chapter 2. Geometrically, the
parameters λi correspond to the symplectic area of a pseudo-holomorphic disc
and 2ni correspond to its Maslov index.

Theorem 7.50 ([50, Theorem 3.1.5 & Theorem 3.1.9]) For any relatively
spin Lagrangian submanifold L and for any χL given in Proposition 7.48,
there exists a countable set χ1(L) ⊃ χl of smooth singular simplicies on L
such that Q χ1(L) ⊗̂Q Λ0,Nov admits a complete curved A∞-algebra structure
(m0,m1, . . . ,mn, . . .) whose reduction to Q and to χL gives the A∞-algebra of
Proposition 7.48.

The construction of this complete curved A∞-algebra associated to a rela-
tively spin Lagrangian submanifold encodes the contributions of all pseudo-
holomorphic discs attached to it. There are non-trivial issues of transversality
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and orientation of this moduli space of pseudo-holomorphic discs with La-
grangian boundary conditions in the choices of χ1(L) and in the A∞-algebra
structure, which are discussed in [51, Chapters 7-8] and which required the
relatively spin assumption, see [50, Definition 3.1.1].

The existence of pseudo-holomorphic discs bubbling off at the boundary of
a pseudo-holomorphic strip prevents this curved A∞-algebra to be strict, i.e.,
(m1)2 , 0 in general. (The appearance of A∞-algebra structure in the present
context is not a surprise as all the configurations of bubbling off holomorphic
discs can be described by planar trees.) A Maurer–Cartan element in the above-
mentioned complete curved A∞-algebra is an element a in

F>0
(
Q χ1(L) ⊗̂Q Λ0,Nov

)1
,

since the filtration is indexed by the monoid of non-negative integers and since
the authors are working with cohomological degree convention. It is required
to satisfy the Maurer–Cartan equation (4.1):

m0(1) + m1(a) +
∑
n>2

mn(a, . . . , a) = 0 . (7.1)

In this context, the set of Maurer–Cartan elements is denoted by MC(L).

Definition 7.51 (Unobstructed Lagrangian submanifold) A relatively spin
Lagrangian submanifold L is called unobstructed when the set MC(L) of Mau-
rer–Cartan elements is not empty.

Cohomological Floer obstruction classes to the vanishing of MC(L) are
given in [50, Theorem 3.1.11].

Remark 7.52 In loc. cit., the notion of a curved A∞-algebra is called a
filtered A∞-algebra and the notion of a Maurer–Cartan element is called a
bounding cochain.

Definition 7.53 (Floer cohomology of a Lagrangian submanifold) The Floer
cohomology deformed by a Maurer–Cartan element a ∈ MC(L) is the underly-
ing cohomology of the twisted A∞-algebra of Theorem 4.8:

HF•
(
L, a; Λ0,Nov

)
B H•

(
Q χ1(L) ⊗̂Q Λ0,Nov,ma

1

)
.

The fundamental class of L can actually be represented by some linear com-
binations of the smooth singular simplicies of χL; it provides the classical A∞-
algebra and the quantum curved A∞-algebra with a homotopy unit. Though
this notion is not the subject of the present monograph, let us just mention that
it gives rise to another Maurer–Cartan equation where the right-hand side is
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not 0 but equal to this homotopy unit. This induces a weaker obstruction the-
ory.

In the case of pairs
(
L(0), L(1)

)
of Lagrangian submanifolds which are either

transversal or which intersect in a clean way, Fukaya–Oh–Ohta–Ono coin a no-
tion of a Floer cohomology theory following the same method, but considering
a curved A∞-bimodule over Q χ1

(
L(0)

)
⊗̂Q Λ0,Nov and Q χ1

(
L(1)

)
⊗̂Q Λ0,Nov

and by twisting it with Maurer–Cartan elements, see [50, Section 3.7].

Definition 7.54 (Gauge equivalence) Two Maurer–Cartan elements of a com-
plete curved A∞-algebra are gauge equivalent if they are gauge equivalent in
the associated complete curved L∞-algebras obtained by symmetrization, see
Proposition 4.13.

We refer the reader to the beginning of Section 7.2 for this latter notion.

Proposition 7.55 (Gauge independence) Two gauge equivalent Maurer–Car-
tan elements a ∼ a′ induce two isomorphic deformed Floer cohomology

HF•
(
L, a; Λ0,Nov

)
� HF•

(
L, a′; Λ0,Nov

)
.

Passing from one gauge class of the Maurer–Cartan elements to another one
can lead to two different Floer cohomology groups. This is called the wall
crossing phenomenon.

Proposition 7.56 Given any symplectic diffeomorphism ψ : M → M′ and
two Lagrangian submanifolds L ⊂ M and L′ ⊂ M′ such that L′ = ψ(L), there
exists an∞-morphism of curved A∞-algebras(

Q χ1(L) ⊗̂Q Λ0,Nov,m0,m1, . . . ,
)
→

(
Q χ1(L′) ⊗̂Q Λ0,Nov,m′0,m

′
1, . . .

)
,

which is a homotopy equivalence.

A Goldman–Millson type theorem [59] holds in the complete curved A∞-
algebra case: any homotopy equivalent complete curved A∞-algebras have bi-
jective moduli spaces of Maurer–Cartan elements [50, Corollary 4.3.14]. As a
direct corollary of this and Proposition 7.56, one obtains that the Floer coho-
mology theory is independent of the various choices made.
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[21] Cartan, Élie. 1904. Sur la structure des groupes infinis de transformation. Ann.
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[28] Deligne, Pierre. 1974. Théorie de Hodge. III. Inst. Hautes Études Sci. Publ.
Math., 5–77.

[29] Dolgushev, Vasily, and Willwacher, Thomas. 2015. Operadic twisting—with an
application to Deligne’s conjecture. J. Pure Appl. Algebra, 219(5), 1349–1428.

[30] Dolgushev, Vasily A., and Rogers, Christopher L. 2012. Notes on algebraic
operads, graph complexes, and Willwacher’s construction. Pages 25–145 of:
Mathematical aspects of quantization. Contemp. Math., vol. 583. Amer. Math.
Soc., Providence, RI.

[31] Dolgushev, Vasily A., and Rogers, Christopher L. 2015. A version of the
Goldman-Millson theorem for filtered L∞-algebras. J. Algebra, 430, 260–302.

[32] Dolgushev, Vasily A., and Rogers, Christopher L. 2017. On an enhancement of
the category of shifted L∞-algebras. Appl. Categ. Structures, 25(4), 489–503.

http://publications.ias.edu/sites/default/files/millson.pdf


References 173

[33] Dolgushev, Vasily A., Hoffnung, Alexander E., and Rogers, Christopher L. 2015.
What do homotopy algebras form? Adv. Math., 274, 562–605.

[34] Donaldson, S. K. 1983. An application of gauge theory to four dimensional
topology. J. Differ. Geom., 18, 279–315.

[35] Donaldson, S. K., and Kronheimer, P. B. 1997. The geometry of four-manifolds.
Paperback ed. edn. Oxford Math. Monogr. Oxford: Clarendon Press.

[36] Dotsenko, Vladimir, and Khoroshkin, Anton. 2020. Homotopical rigidity of the
pre-Lie operad. ArXiv e-prints. Available from the webpage: https://arxiv.
org/abs/2002.12918.

[37] Dotsenko, Vladimir, Shadrin, Sergei, and Vallette, Bruno. 2013. Givental group
action on topological field theories and homotopy Batalin–Vilkovisky algebras.
Adv. Math., 236, 224–256.

[38] Dotsenko, Vladimir, Shadrin, Sergey, and Vallette, Bruno. 2015a. De Rham
cohomology and homotopy Frobenius manifolds. J. Eur. Math. Soc. (JEMS),
17(3), 535–547.

[39] Dotsenko, Vladimir, Shadrin, Sergey, and Vallette, Bruno. 2015b. Givental ac-
tion and trivialisation of circle action. J. Éc. polytech. Math., 2, 213–246.
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[79] Kontsevich, Maxim. 2003. Deformation quantization of Poisson manifolds. Lett.
Math. Phys., 66(3), 157–216.

[80] Kontsevich, Maxim, and Soibelman, Yan. 2000. Deformations of algebras over
operads and the Deligne conjecture. Pages 255–307 of: Conférence Moshé Flato
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differential graded module, 44
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formal moduli problem, 151
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fundamental theorem of deformation theory,
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internal differential, 30

Jacobi identity, 28
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Sullivan , 160
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pre-Lie algebra, 54
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circle product, 60
complete, 54
convolution, 56
left nucleus, 94
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principal bundle, 19

quasi-free dg unital commutative algebra, 159

rational homotopy theory, 156
rationalisation, 157
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simplicial enrichment, 162
simplicial set
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spatial realisation, 159
square-zero element, 30
Sullivan simplicial algebra, 150

twistable homotopy algebras, 86
twisted
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de Rham differential, 16
dg Lie algebra, 29
differential, 29

twisted A∞-operad, 97
twisted operad, 95
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