
Anick-type resolutions,
shuffle algebras,

and
consecutive pattern avoidance

Vladimir Dotsenko

Dublin Institute for Advanced Studies and Trinity College Dublin

joint work with Anton Khoroshkin (ETH Zurich)

arXiv:1002.2761

British Mathematics Colloquium, Edinburgh

April 6, 2010



Word avoidance in real life



Word avoidance in real life



Avoidance of SEX

Problem:
Enumerate words of length N which do not contain a subword SEX.

Solution:

SEX-less words = (all words)−
− (words with at least one subword SEX)+

+ (words with at least two subwords SEX)− . . .

which easily yields a formula for generating functions

fno−SEX(t) =
1

1− (26t + y)

∣∣∣∣
y=−t3

=
1

1− 26t + t3
.
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Avoidance of SEX and EXPERT

Problem:
Enumerate words of length N which do not contain either a
subword SEX or a subword EXPERT.

Solution: Same inclusion–exclusion argument gives the formula

fno−SEX,no−EXPERT(t) =
1

1− 26t + t3 + t6 − t7
,

where

t3 = weight(SEX), t6 = weight(EXPERT), t7 = weight(SEXPERT).

Here

SEXPERT =

{
SEX
EXPERT

}
is a cluster.
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Goulden–Jackson cluster method

Theorem (I. P. Goulden & D. M. Jackson ’79):
Let P be a set of illegal words in the alphabet X . Then

fno−P(t) =
1

1− |X |t + ClP(t,−1)
,

where ClP(t, s) =
∑

clPn,mtnsm counts clusters (clPn,m is the
number of clusters on n letters formed by m words from P).



Avoidance of SEX and EXPERTISE

Problem:
Enumerate words of length N which do not contain either a
subword SEX or a subword EXPERTISE.

Here we have infinitely many clusters, e.g. EXPERTISE,
EXPERTISEXPERTISE, EXPERTISEXPERTISEXPERTISE etc.

Moreover, some words admit many different coverings, e.g. we
have the following two clusters

{
EXPERTISE

EXPERTISE

}
and


EXPERTISE

SEX
EXPERTISE

 .
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Avoidance of SEX and EXPERTISE

Observation: Contributions of the two clusters{
EXPERTISE

EXPERTISE

}
and


EXPERTISE

SEX
EXPERTISE

 .

cancel each other because the first one is formed by two illegal
words, and the second one — by three.

After cancellations: clusters that contribute are SEX, EXPERTISE,
SEXPERTISE, EXPERTISEX, SEXPERTISEX, so that

fno−SEX,no−EXPERTISE(t) =
1

1− 26t + t3 + t9 − 2t10 + t11
.
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Anick chains

Question: how to describe clusters that survive after those
obvious cancellations?

Answer (D. J. Anick ’86): chains, defined as follows:
— a single letter is a 0-chain;
— an m-chain is obtained by linking together m illegal words so
that only neighbours are linked, the first (m− 1) illegal words form
an (m − 1)-chain, and no proper beginning forms an m-chain.

Example:
EXPERTISEXPERTISE, even though can be represented as a link of
two illegal words, is not a 2-chain because its proper beginning
EXPERTISEX is already a 2-chain! It’s not a 3-chain either, because
the first and the third illegal words are linked.
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Anick chains

Theorem (D. J. Anick ’86): We have

fno−P(t) =
1

1− |X |t + CP(t,−1)
,

where CP(t, s) =
∑

cP
n,mtnsm counts chains (cP

n,m is the number of
m-chains on n letters).



Anick resolution

Proof: Denote by A the associative algebra with generators X and
relations P = 0. Also, denote by Cm the vector space with a basis
of m-chains. Then there exists a chain complex

. . .→ Cn ⊗ A→ Cn−1 ⊗ A→ . . .→ C1 ⊗ A→ C0 ⊗ A→ A→ 0,

whose homology is concentrated in the rightmost term and is
one-dimensional. Boundary maps move “tails” through the tensor
product: ∂(w ′t ⊗ a) = w ′ ⊗ ta.

Compute (graded) Euler characteristics of this complex:

(1− C0(t) + C1(t)− . . .)A(t) = 1.

Clearly, 1− C0(t) + C1(t)− . . . = 1−mt + CP(t,−1), and A(t)
enumerates words that avoid P.
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Pattern avoidance in permutations

Definition: Let σ ∈ Sn, τ ∈ Sm be permutations. We say that σ
contains τ as a consecutive pattern if a subword of σ is
order-isomorphic to τ . Otherwise we say that σ avoids τ .

For example, 132 is contained in 41532 (since 153 is
order-isomorphic to 132), and is avoided by 52134.

For enumeration, exponential generating functions are used, e.g.

fno−132(t) = 1 +
∑
n≥1

ano−132(n)

n!
tn.
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Pattern avoidance in permutations

Theorem (I. P. Goulden & D. M. Jackson ’79):

fno−123(t) =
1

1− t + t3

3! −
t4

4! + t6

6! −
t7

7! + . . .
.

Theorem (S. Elizalde & M. Noy ’03):

fno−132(t) =
1

1−
∫ t
0 e−u2/2 du

.
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Shuffle product of graded vector spaces

Wanted: a materialization on the level of vector spaces for the
product of exponential generating functions; on the level of
coefficients,

cn =
∑
k

(
n

k

)
akbn−k .

Claim: Such a product of vector spaces exists!

For two graded k-vector spaces A = ⊕n≥1An and B = ⊕n≥1Bn,
their shuffle product A � B is defined as the graded vector space
C = ⊕n≥1Cn with

Cn =
⊕

k+l=n

kSh(k , l)⊗ Ak ⊗ Bl ,

where Sh(k , l) is the set of all (k , l)-shuffles in Sn. It’s what we
want for generating functions, since |Sh(k, l)| =

(k+l
k

)
.
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Shuffle algebras

Definition (M. Ronco ’07): A shuffle algebra is a graded vector
space with an associative product A � A→ A.

Example: The vector space ⊕
n

kSn

is a free shuffle algebra with one generator.

Generalisation: let P be a set of illegal patterns, and let An,P be
the linear span in kSn of all P-avoiding permutations. Then AP is
a shuffle algebra which is the quotient of the free algebra by the
ideal generated by P.

If we start with the free shuffle algebra with several generators, we
shall end up with the notion of coloured patterns (Mansour ’01);
all our further statements remain.
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Anick-type chains

Chains in the context of permutations are defined as follows:

— the only permutation of one element is a 0-chain;
— an m-chain is obtained by linking together m illegal patterns so
that only neighbours are linked, the first (m − 1) illegal patterns
form an (m − 1)-chain (up to order-iso), and no proper beginning
forms an m-chain.

Example: for P = {123} we get 1, 123,

{
123

234

}
,


123

234
456

, . . .

Note that 12345 is neither a 2-chain (as 1234 is already a 2-chain)
nor a 3-chain (as 123 and 345 are linked).
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Anick-type resolution

Denote by A the shuffle algebra with one generator whose relations
are all illegal patterns. Also, denote by Cm the vector space with a
basis of m-chains. Then there exists a chain complex

. . .→ Cn � A→ Cn−1 � A→ . . .→ C1 � A→ C0 � A→ A→ 0,

whose homology is concentrated in the rightmost term and is
one-dimensional. Boundary maps move “tails” through the shuffle
product.



Anick-type resolution

Consequently, we proved the following

Theorem: We have

fno−P(t) =
1

1− t + CP(t,−1)
,

where

CP(t, s) =
∑

cP
n,m

tn

n!
sm

is the exponential generating function counting chains (cP
n,m is the

number of m-chains on n letters).

Many corollaries, for example, a proof of the following
Conjecture (S. Elizalde ’03): For a pattern τ without
self-overlaps, the number of permutations avoiding τ depends only
on the first and the last element of τ .
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Thank you for your patience!


