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Recall that we have two approaches to connections, a geometric and an
algebraic one. Geometrically, for the total space E of a principal G-bundle
E

π→ B we have the vertical distribution, that is the tangent distribution
defined by the foliation of E into G-orbits, (TeE)v := Te(e.G). This distri-
bution is smooth, that is, spanned by vector fields, G-invariant, that is,

(Te.gE)v = (Rg)∗(TeE)v,

and is integrable, that is locally tangent to a foliation, by its very construc-
tion. A connection in a principal bundle is a choice of a complementary
G-invariant (horisontal) distribution, that is a decomposition

TeE = (TeE)v ⊕ (TeE)h

with (Te.gE)h = (Rg)∗(TeE)h. By definition, a connection is flat if the ho-
risontal distribution is integrable.

Algebraically, we note that defining a direct sum decomposition

TeE = (TeE)v ⊕ (TeE)h

at a point e ∈ E is exactly the same as defining a projection

p : TeE � (TeE)v ' g.

Indeed, from such a projection the horisontal subspace is reconstructed as
(TeE)h := ker(p). To make these subspaces depend smoothly on a point,
it is natural to require that the projection p is built out of 1-forms on E,
that is defined via a g-valued differential form ω ∈ Ω1(E)⊗ g. To formulate
conditions on such a differential form that ensure that it defines a connec-
tion, we recall that the canonical Maurer–Cartan form ωG ∈ Ω1(G) ⊗ g
on a Lie group G is defined as the left invariant g-valued differential form
corresponding to the identity operator

Idg ∈ End(g) ' g∗ ⊗ g ' Ω1(G)inv ⊗ g.

In more down to earth terms, if for α ∈ g we denote by Xα the respective
left invariant vector field on G, the form ωG is defined by ωG(Xα) = α.
Then the following result holds:
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Theorem 1. A differential form ω ∈ Ω1(E)⊗ g defines a connection on E
if and only if

• (Re)
∗(ω) = ωG;

• (Rg)
∗(ω) = (Ad(g−1)∗(ω).

Here for e ∈ E the map Re : G→ E is defined by Re(g) = e.g, for g ∈ G
the map Rg : E → E is defined by Rg(e) = e.g, pullbacks (Re)

∗ and (Rg)
∗

act on the differential forms only and do not change g, and Ad(g−1)∗ =
(Lg−1)∗(Rg)∗ comes from the adjoint action of the Lie group on its Lie
algebra (and so is pointwise in E).

Proof. First, suppose that a differential form ω satisfies the two given con-
ditions. For each e ∈ E, ωe is a map from TeE to g, and we can put
(TeE)h := ker(ωe). Since the pullback of ω by Re is ωG, ωe is surjective,
therefore, dim(TeE)h = dim(E) − dim(G), so we have a distribution. This
distribution is smooth, as the kernel distribution of a differential form. Let us
show that it gives a direct sum decomposition. Since ker(ωe) and (TeE)v ' g
have complementary dimension, it is enough to show that their sum is di-
rect, that is ker(ωe) ∩ (TeE)v = {0}. Assume that v ∈ ker(ωe) ∩ (TeE)v.
Since Re : G→ π−1(π(e)) is a diffeomorphism, the map

(Re)∗ : g→ Te(π
−1(π(e))) = (TeE)v

is an isomorphism. Hence v = (Re)∗(α) for some α ∈ g. We have

0 = ωe(v) = ωe((Re)∗(α)) = (Re)
∗(ω)(α) = ωG(α) = α,

which proves that the sum is direct. Furthermore, let u ∈ ker(ωe) be an
arbitrary vector. We have

ωe.g((Rg)∗(u)) = (Rg)
∗(ωe)(u) = (Ad(g−1)∗(ωe(u)) = 0,

since Ad∗ is a linear action and therefore Ad(g−1)∗(0) = 0. Therefore
(Rg)∗(TeE)h ⊂ (Te.gE)h, and the equality of dimensions implies that these
two subspaces coincide.

The other way around, suppose that we have a connection on E. We
define a differential form ω as the composition TeE � (TeE)v ' g, ω(X) =
(Re)

−1
∗ (Xv). Since the action of G on E as well as the vertical and the

horisontal distributions are smooth, this gives a differential form. Note that
the following identities hold for the actions of G on E and on itself:

Re.g1(g2) = (e.g1).g2 = e.(g1.g2) = Re ◦ Lg1(g2),

Re ◦Rg1(g2) = e.(g2.g1) = (e.g2).g1 = Rg1 ◦Re(g2).
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As a consequence, for X ∈ TeE we have

(Rg)
∗(ωe)(X) = ωe.g((Rg)∗(X)) =

= ωe.g((Rg)∗(X
v) + (Rg)∗(X

h)) = (Re.g)
−1
∗ ◦Rg(Xv) =

= (Lg)
−1
∗ ◦ (Re)

−1
∗ ◦Rg(Xv) = (Lg−1)∗ ◦Rg ◦ (Re)

−1
∗ (Xv) =

= (Ad(g−1)∗((Re)
−1
∗ (Xv)) = (Ad(g−1)∗(ωe(X))

and for g ∈ G, α ∈ g we have

(Re)
∗(ω)g(α) = ωe.g((Re)∗(α)) =

= (Re.g)
−1
∗ ◦ (Re)∗(α) = (Lg)

−1
∗ ◦ (Re)

−1
∗ ◦ (Re)∗(α) =

= (Lg−1)(α) = (ωG)g(α).

This completes the proof.

We now want to formulate in the language of differential forms the flat-
ness. By definition, for a g-valued differential 1-form ω we denote by dω its
exterior differential (as a differential form, that is not interacting with g),
and by [ω, ω] the 2-form defined as

[ω, ω](X,Y ) = [ω(X), ω(Y )]− [ω(Y ), ω(X)] = 2[ω(X), ω(Y )],

so that we compute the pointwise commutator in g. The curvature of ω is
made up from these two forms,

Ξ = dω +
1

2
[ω, ω].

Theorem 2. The connection defined by a differential form ω is flat if and
only if its curvature vanishes.

The equation dω+ 1
2 [ω, ω] = 0 is called the Maurer–Cartan equation and

is of crucial importance for differential geometry and mathematical physics.

Proof. According to the Cartan’s formula for the exterior derivative, we have

dω(X,Y ) = −ω([X,Y ]) +X(ω(Y ))− Y (ω(X)).

SupposeX and Y are horisontal vector fields. Then they belong to the kernel
of ω, so dω(X,Y ) = −ω([X,Y ]), and [ω, ω](X,Y ) = 0. Therefore Ξ(X,Y ) =
−ω([X,Y ]). This shows that if Ξ = 0 then horisontal vector fields are closed
under commutator, and hence define an involutive distribution which, by
Frobenius’s theorem, is integrable, so our connection is flat. Also, we see
that if our connection is flat, that is the horisontal distribution is integrable,
then it of course is involutive, and therefore the condition Ξ(X,Y ) = 0 is
satisfied on horisontal vector fields. It remains to check that condition when
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one of the vector fields is vertical. Let us consider, for each α ∈ G the vector
field Xα := (Re)∗(α) on E. We denote by exp(tα) the integral curve for the
left invariant vector field on G corresponding to α with exp(0) = 1 ∈ G.
The integral curve of the vector field Xα in E is clearly Rexp(tα)(e). The Lie
derivative of ω along the vector field Xα is

LXα(ω) =
d

dt

(
(Rexp(tα))

∗(ω)
)∣∣∣∣
t=0

=

=
d

dt

(
(Ad(exp(tα)−1)∗)(ω)

)∣∣∣∣
t=0

= ad(−α)(ω) = −[α, ω].

Alternatively, LXα = iXα ◦ d+ d ◦ iXα , so we have

LXα(ω) = iXα ◦ dω + d ◦ iXα(ω) =

= iXα ◦ dω + d(ω((Re)∗(α))) = iXα ◦ dω + d((Re)
∗(ω)(α)) =

= iXα ◦ dω + d(ωG(α)) = iXα ◦ dω + d(α) = iXα ◦ dω.

Therefore,

iXαΞ = iXα(dω +
1

2
[ω, ω]) = iXα(dω) + [ω(Xα), ω] =

= −[α, ω] + [α, ω] = 0.

Also, at each point e the operator (Re)∗ is an isomorphism, so for every
vertical vector field X, we have X(e) = Xα(e) for some α ∈ g. Thus, Ξ
vanishes when one of the arguments is vertical, and overall we conclude that
Ξ vanishes identically. This completes the proof.
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