
Linear Algebra (MA113): solutions to the final exam

1. Solution: (a) Computing minors and cofactors explicitly, we get: M11 = −3, M12 =
−3, M13 = 0, M21 = −3, M22 = −6, M23 = −3, M31 = 0, M32 = −3, M33 = −2,
C11 = −3, C12 = 3, C13 = 0, C21 = 3, C22 = −6, C23 = 3, C31 = 0, C32 = 3,
C33 = −2, det(A) = a11C11 + a12C12 + a13C13 = 3 and A−1 = 1

det(A)
adj(A) =





−1 1 0
1 −2 1
0 1 −2/3



.

(b) We have x = A−1b =





−6
9

−7/3



.

2. Solution: since all numbers from 1 to 7 should occur as first subscripts (an element
from each row is present), we should have {i, j} = {5, 7}; the same is true for
columns, so we have {k, l} = {2, 6}. Let us consider the case i = 5, j = 7,
k = 2, l = 6: in this case the product is a14a23a35a42a56a67a71, the corresponding
permutation 4, 3, 5, 2, 6, 7, 1 contains 10 inversions, and the coefficient is equal to 1.
Since a transposition of rows/columns changes all signs in the expansion of the
determinant, we see that for i = 7, j = 5, k = 2, l = 6 and i = 5, j = 7, k = 6,
l = 2 the coefficient is −1, and for i = 7, j = 5, k = 6, l = 2 the coefficient is 1. So
the answer is i = 7, j = 5, k = 2, l = 6 or i = 5, j = 7, k = 6, l = 2.

3. Solution: (a) We have

tr(AB) =

n
∑

i=1

n
∑

j=1

aijbji =

n
∑

i,j=1

aijbji =

n
∑

j=1

n
∑

i=1

bjiaij = tr(BA).

(b) From the previous statement, it follows that tr(ABC) = tr(CAB) = tr(BCA)
and tr(ACB) = tr(BAC) = tr(CBA), so either all the six traces are equal or
there are two distinct numbers. If A = B = C, all the traces are equal, and for

A =

(

0 1
0 0

)

, B =

(

0 0
1 0

)

, C =

(

1 0
0 0

)

, We have ABC = C and BAC = 0, so

tr(ABC) = 1, tr(BAC) = 0 and there are two distinct numbers.

4. Solution: denote these vectors by v1 and v2; we have Av1 =









−7
0
21
−7









and Av2 =









−1
−4
−25
11









. Our subspace U is invariant if the image of every vector is again in U ; it

is enough to check that the images of v1 and v2 are in U , so we have to find out
whether or not Avi can be represented as combinations of v1 and v2. Solving the
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corresponding systems of equations, we get Av1 = 7v1 + 7v2, Av2 = −7v1 − 3v2, so
U is invariant.

5. Solution: (a) The characteristic polynomial of B is (t−2)2, so the only eigenvalue is
2. We have B−2I 6= 0, (B−2I)2 = 0, dim Ker(B−2I) = 1, dim Ker(B−2I)2 = 2,
so to obtain the Jordan basis of B we should take a basis of Ker(B − 2I)2 relative

to Ker(B − 2I), for which we can take, for example, f =

(

1
0

)

; the two vectors

e1 = (B−2I)f =

(

−1
1

)

and e2 = f form a Jordan basis for B, the transition matrix

C =

(

−1 1
1 0

)

is obtained by joining the vectors of the Jordan basis together, and

the Jordan normal form of B is J =

(

2 1
0 2

)

. Indeed, (B − 2I)2f = 0, so Be1 =

B(B−2I)f = 2I(B−2I)f = 2(B−2I)f = 2e1 and Be2 = Bf = (B−2I)f +2If =
(B − 2I)f + 2f = e1 + 2e2.

(b) We have

Bn = CJnC−1 =

(

2n − n2n−1 −n2n−1

n2n−1 2n + n2n−1

)

.

Also, if we let vn =

(

xn

yn

)

, we get vk+1 = Bvk, so by induction vn = Bnv0 =
(

2n + n2n+1

−(3n + 5)2n

)

.

6. Solution: (a) A basis e1, . . . , en of a Euclidean space V is called orthogonal if
(ei, ej) = 0 for all i 6= j. An orthogonal basis is called orthonormal if (ei, ei) = 1 for
all i.

(b) In class, we proved that n vectors in R
n form a basis if and only if they are

linearly independent. For n columns, they are linearly independent if and only if the
system Ax = 0 has only the trivial solution, where A is the matrix whose columns
are our given columns. In our case, det(A) = 15 6= 0, so, as we proved in class, A
is invertible, and the system Ax = 0 has only the trivial solution.

(c) We have

e1 = f1,

e2 = f2 −
(f2, e1)

(e1, e1)
e1,

e3 = f3 −
(f3, e1)

(e1, e1)
e1 −

(f3, e2)

(e2, e2)
e2,

so

e1 =





−1
0
2



 , e2 = 1/5





6
−10
3



 , e3 = 15/29





4
3
2



 .
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7. Solution: (a) For a real vector space V , a function f : V ×V → R is called a bilinear
form if

f(cv, w) = cf(v, w),

f(v, cw) = cf(v, w),

f(v1 + v2, w) = f(v1, w) + f(v2, w),

f(v, w1 + w2) = f(v, w1) + f(v, w2)

for all v, w, v1, v2, w1, w2 ∈ V , c ∈ R. A symmetric bilinear form is said to be
positive definite if f(v, v) ≥ 0 for all v ∈ V , and f(v, v) = 0 only for v = 0.

(b) It is easy to see that relative to the standard basis 1, t, t2 of V the matrix of our
bilinear form is





−2a 2/3 −2a/3
2/3 −2a/3 2/5

−2a/3 2/5 −2a/5



 .

In class, we proved the Sylvester’s criterion stating that a quadratic form is positive

definite if and only if the principal minors ∆1 = a11, ∆2 = det

(

a11 a12

a21 a22

)

, . . . , ∆n

of its matrix relative to any basis are all positive. In our case, we have ∆1 = −2a,
∆2 = 4(a2/3− 1/9), ∆3 = 8(−4/135a3 + 4/225a), so we have a < 0, a2 < 1/3, a2 <
3/5. The common solution set to all these inequalities is the set {a : a < −

√

3/5}.
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