Linear Algebra (MA113): solutions to the final exam

1. Solution: (a) Computing minors and cofactors explicitly, we get: $M_{11}=-3, M_{12}=$ $-3, M_{13}=0, M_{21}=-3, M_{22}=-6, M_{23}=-3, M_{31}=0, M_{32}=-3, M_{33}=-2$, $C_{11}=-3, C_{12}=3, C_{13}=0, C_{21}=3, C_{22}=-6, C_{23}=3, C_{31}=0, C_{32}=3$, $C_{33}=-2, \operatorname{det}(A)=a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13}=3$ and $A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)=$ $\left(\begin{array}{ccc}-1 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2 / 3\end{array}\right)$.
(b) We have $x=A^{-1} b=\left(\begin{array}{c}-6 \\ 9 \\ -7 / 3\end{array}\right)$.
2. Solution: since all numbers from 1 to 7 should occur as first subscripts (an element from each row is present), we should have $\{i, j\}=\{5,7\}$; the same is true for columns, so we have $\{k, l\}=\{2,6\}$. Let us consider the case $i=5, j=7$, $k=2, l=6$: in this case the product is $a_{14} a_{23} a_{35} a_{42} a_{56} a_{67} a_{71}$, the corresponding permutation $4,3,5,2,6,7,1$ contains 10 inversions, and the coefficient is equal to 1 . Since a transposition of rows/columns changes all signs in the expansion of the determinant, we see that for $i=7, j=5, k=2, l=6$ and $i=5, j=7, k=6$, $l=2$ the coefficient is -1 , and for $i=7, j=5, k=6, l=2$ the coefficient is 1 . So the answer is $i=7, j=5, k=2, l=6$ or $i=5, j=7, k=6, l=2$.
3. Solution: (a) We have

$$
\operatorname{tr}(A B)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} b_{j i}=\sum_{i, j=1}^{n} a_{i j} b_{j i}=\sum_{j=1}^{n} \sum_{i=1}^{n} b_{j i} a_{i j}=\operatorname{tr}(B A) .
$$

(b) From the previous statement, it follows that $\operatorname{tr}(A B C)=\operatorname{tr}(C A B)=\operatorname{tr}(B C A)$ and $\operatorname{tr}(A C B)=\operatorname{tr}(B A C)=\operatorname{tr}(C B A)$, so either all the six traces are equal or there are two distinct numbers. If $A=B=C$, all the traces are equal, and for $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), B=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right), C=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$, We have $A B C=C$ and $B A C=0$, so $\operatorname{tr}(A B C)=1, \operatorname{tr}(B A C)=0$ and there are two distinct numbers.
4. Solution: denote these vectors by v_{1} and v_{2}; we have $A v_{1}=\left(\begin{array}{c}-7 \\ 0 \\ 21 \\ -7\end{array}\right)$ and $A v_{2}=$ $\left(\begin{array}{c}-1 \\ -4 \\ -25 \\ 11\end{array}\right)$. Our subspace U is invariant if the image of every vector is again in U; it is enough to check that the images of v_{1} and v_{2} are in U, so we have to find out whether or not $A v_{i}$ can be represented as combinations of v_{1} and v_{2}. Solving the
corresponding systems of equations, we get $A v_{1}=7 v_{1}+7 v_{2}, A v_{2}=-7 v_{1}-3 v_{2}$, so U is invariant.
5. Solution: (a) The characteristic polynomial of B is $(t-2)^{2}$, so the only eigenvalue is 2. We have $B-2 I \neq 0,(B-2 I)^{2}=0$, $\operatorname{dim} \operatorname{Ker}(B-2 I)=1, \operatorname{dim} \operatorname{Ker}(B-2 I)^{2}=2$, so to obtain the Jordan basis of B we should take a basis of $\operatorname{Ker}(B-2 I)^{2}$ relative to $\operatorname{Ker}(B-2 I)$, for which we can take, for example, $f=\binom{1}{0}$; the two vectors $e_{1}=(B-2 I) f=\binom{-1}{1}$ and $e_{2}=f$ form a Jordan basis for B, the transition matrix $C=\left(\begin{array}{cc}-1 & 1 \\ 1 & 0\end{array}\right)$ is obtained by joining the vectors of the Jordan basis together, and the Jordan normal form of B is $J=\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right)$. Indeed, $(B-2 I)^{2} f=0$, so $B e_{1}=$ $B(B-2 I) f=2 I(B-2 I) f=2(B-2 I) f=2 e_{1}$ and $B e_{2}=B f=(B-2 I) f+2 I f=$ $(B-2 I) f+2 f=e_{1}+2 e_{2}$.
(b) We have

$$
B^{n}=C J^{n} C^{-1}=\left(\begin{array}{cc}
2^{n}-n 2^{n-1} & -n 2^{n-1} \\
n 2^{n-1} & 2^{n}+n 2^{n-1}
\end{array}\right) .
$$

Also, if we let $v_{n}=\binom{x_{n}}{y_{n}}$, we get $v_{k+1}=B v_{k}$, so by induction $v_{n}=B^{n} v_{0}=$ $\binom{2^{n}+n 2^{n+1}}{-(3 n+5) 2^{n}}$.
6. Solution: (a) A basis e_{1}, \ldots, e_{n} of a Euclidean space V is called orthogonal if $\left(e_{i}, e_{j}\right)=0$ for all $i \neq j$. An orthogonal basis is called orthonormal if $\left(e_{i}, e_{i}\right)=1$ for all i.
(b) In class, we proved that n vectors in \mathbb{R}^{n} form a basis if and only if they are linearly independent. For n columns, they are linearly independent if and only if the system $A x=0$ has only the trivial solution, where A is the matrix whose columns are our given columns. In our case, $\operatorname{det}(A)=15 \neq 0$, so, as we proved in class, A is invertible, and the system $A x=0$ has only the trivial solution.
(c) We have

$$
\begin{aligned}
& e_{1}=f_{1}, \\
& e_{2}=f_{2}-\frac{\left(f_{2}, e_{1}\right)}{\left(e_{1}, e_{1}\right)} e_{1}, \\
& e_{3}=f_{3}-\frac{\left(f_{3}, e_{1}\right)}{\left(e_{1}, e_{1}\right)} e_{1}-\frac{\left(f_{3}, e_{2}\right)}{\left(e_{2}, e_{2}\right)} e_{2},
\end{aligned}
$$

so

$$
e_{1}=\left(\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right), e_{2}=1 / 5\left(\begin{array}{c}
6 \\
-10 \\
3
\end{array}\right), e_{3}=15 / 29\left(\begin{array}{l}
4 \\
3 \\
2
\end{array}\right) .
$$

7. Solution: (a) For a real vector space V, a function $f: V \times V \rightarrow \mathbb{R}$ is called a bilinear form if

$$
\begin{gathered}
f(c v, w)=c f(v, w), \\
f(v, c w)=c f(v, w), \\
f\left(v_{1}+v_{2}, w\right)=f\left(v_{1}, w\right)+f\left(v_{2}, w\right), \\
f\left(v, w_{1}+w_{2}\right)=f\left(v, w_{1}\right)+f\left(v, w_{2}\right)
\end{gathered}
$$

for all $v, w, v_{1}, v_{2}, w_{1}, w_{2} \in V, c \in \mathbb{R}$. A symmetric bilinear form is said to be positive definite if $f(v, v) \geq 0$ for all $v \in V$, and $f(v, v)=0$ only for $v=0$.
(b) It is easy to see that relative to the standard basis $1, t, t^{2}$ of V the matrix of our bilinear form is

$$
\left(\begin{array}{ccc}
-2 a & 2 / 3 & -2 a / 3 \\
2 / 3 & -2 a / 3 & 2 / 5 \\
-2 a / 3 & 2 / 5 & -2 a / 5
\end{array}\right)
$$

In class, we proved the Sylvester's criterion stating that a quadratic form is positive definite if and only if the principal minors $\Delta_{1}=a_{11}, \Delta_{2}=\operatorname{det}\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right), \ldots, \Delta_{n}$ of its matrix relative to any basis are all positive. In our case, we have $\Delta_{1}=-2 a$, $\Delta_{2}=4\left(a^{2} / 3-1 / 9\right), \Delta_{3}=8\left(-4 / 135 a^{3}+4 / 225 a\right)$, so we have $a<0, a^{2}<1 / 3, a^{2}<$ $3 / 5$. The common solution set to all these inequalities is the set $\{a: a<-\sqrt{3 / 5}\}$.

