
Solutions to the sample final paper

1. Since we are asked to solve both the homogeneous and the inhomogeneous system, it makes sense
to bring the augmented matrix to the reduced row echelon form:





4 0 1 2 1 | 7
3 1 2 0 −1 | 2
5 −1 0 4 2 | 0





1/4(1),(2)−3(1),(3)−5(1)
7→





1 0 1/4 1/2 1/4 | 7/4
0 1 5/4 −3/2 −7/4 | −13/4
0 −1 −5/4 3/2 3/4 | −35/4





(3)+(2)
7→





1 0 1/4 1/2 1/4 | 7/4
0 1 5/4 −3/2 −7/4 | −13/4
0 0 0 0 −1 | −12





−1·(3),(1)−1/4(3),(2)+7/4(3)
7→





1 0 1/4 1/2 0 | −5/4
0 1 5/4 −3/2 0 | 71/4
0 0 0 0 1 | 12





It follows that the reduced row echelon form of the original matrix is





1 0 1/4 1/2 0
0 1 5/4 −3/2 0
0 0 0 0 1



 ,

variables x1, x2, and x5 are leading, variables x3 and x4 are free, the general solution to the
homogeneous system Ax = 0 is

(−
1

4
u −

1

2
v,−

5

4
u +

3

2
v, u, v, 0),

where u and v are arbitrary parameters, and the general solution to the given inhomogeneous
system is

(−
5

4
−

1

4
u −

1

2
v,

71

4
−

5

4
u +

3

2
v, u, v, 12),

where u and v are arbitrary parameters.

2. In order for this term to occur in the expansion at all, we should have

{4, 3, 6, j, i, 1, 7} = {1, l, 4, 5, 6, k, 3} = {1, 2, 3, 4, 5, 6, 7}

(one element should be taken from each row and from each column). This implies {i, j} = {2, 5}
and {k, l} = {2, 7}, so there are four different options for i, j, k, l. Let us consider the case
i = k = 2, j = 5, l = 7, that is the term

a41a3la64aj5ai6a1ka73 = a12a26a37a41a55a64a73.

The corresponding permutation 2 6 7 1 5 4 3 has 12 inversions and hence is even. The term
for i = 2, k = 7, j = 5, l = 2 is obtained from this one by exchanging two columns, so the
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corresponding permutation is odd, the term for i = 5, k = 2, j = 2, l = 7 is obtained by
exchanging two rows, so the permutation is also odd, and finally the term for i = 5, k = 7, j = 2,
l = 2 is obtained by exchanging two rows and then two columns; each of these operations changes
the parity, so the permutation is again even. Overall, there are two options: i = 2, k = 7, j = 5,
l = 2 and i = 5, k = 2, j = 2, l = 7.

3. Assume the A is invertible. Then we have

B − A−1BA = I,

so 0 = tr(B) − tr(A−1BA) = tr(B − A−1BA) = tr(I) = n, which is a contradiction.

4. Let us first find the bases of these subspaces. To make our computation somehow more familiar,
we write coordinates of the vectors in rows. To find a basis of the space spanned by rows of a
matrix, we bring it to its reduced row echelon form; the nonzero rows of the result give us a basis.
Doing that for our systems of vectors, we have





2 1 0 −4 2
−4 1 3 −1 2
0 5 −1 −1 14





1/2(1),(2)+4(1)
7→





1 1/2 0 −2 1
0 3 3 −9 6
0 5 −1 −1 14





1/3(2),(3)−5(2)
7→





1 1/2 0 −2 1
0 1 1 −3 2
0 0 −16 44 16





1−1/2(2),−1/16(3)
7→





1 0 −1/2 −1/2 0
0 1 1 −3 2
0 0 1 −11/4 1





(2)−(3),1+1/2(3)
7→





1 0 0 −15/8 1/2
0 1 0 −1/4 1
0 0 1 −11/4 1





and








2 1 0 1 1
2 −1 −2 −3 −1
1 0 −2 −2 2
0 1 1 2 1









1/2(1),(2)−2(1),(3)−(1)
7→









1 1/2 0 1/2 1/2
0 −2 −2 −4 −2
0 −1/2 −2 −5/2 3/2
0 1 1 2 1









−1/2(2),(1)−1/2(2),(3)+1/2(2),(4)−(2)
7→









1 0 −1/2 −1/2 0
0 1 1 2 1
0 0 −3/2 −3/2 2
0 0 0 0 0









−2/3(3),(1)+1/2(3),(2)−(3)
7→









1 0 0 0 −2/3
0 1 0 1 7/3
0 0 1 1 −4/3
0 0 0 0 0









.

2



This means that each of the subspaces is three-dimensional. To compute the intersection, recall
that by definition the intersection consists of all vectors that belong to both of the subspaces. Let
us denote by u1, u2, u3 the basis vectors for U found above, and by w1, w2, w3 the basis vectors
for W found above. Then the intersection consists of all vectors v that can be represented in the
form

v = c1u1 + c2u2 + c3u3 = c4w1 + c5w2 + c6w3

for some c1, c2, c3, c4, c5, c6, or, equivalently,

c1u1 + c2u2 + c3u3 − c4w1 − c5w2 − c6w3 = 0.

This is a homogeneous system of linear equations with unknowns ci. Its matrix is













1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1

−15/8 −1/4 −11/4 0 1 1
1/2 1 1 −2/3 7/3 −4/3













Bringing it to the reduced row echelon form (calculations are omitted), we get the matrix













1 0 0 −1 0 0
0 1 0 0 0 0
0 0 1 0 0 −1
0 0 0 1 0 2
0 0 0 0 1 0













,

so the general solution is c1 = −2t, c2 = 0, c3 = t, c4 = −2t, c5 = 0, c6 = t, and the intersection
can be described as the set of all vectors of the form

t(−2u1 + u3) = t(−2w1 + w3),

so for a basis of the intersection we can take −2u1 + u3 =













−2
0
1
1
0













.

5. (a) The characteristic polynomial of our matrix is t2−3t+1, so the eigenvalues are λ1 = 3+
√

5
2

and

λ2 = 3−
√

5
2

. Solving the systems for the eigenvectors, we obtain the corresponding eigenvectors

t

(

1
3±

√
5

2

)

.

(b) Our matrix has a basis of eigenvectors (there are two linearly independent ones, and they

have to form a basis), so the Jordan normal form is J =

(

λ1 0
0 λ2

)

. For the transition matrix

we take the matrix whose columns are aigenvectors: C =

(

1 1
λ1 λ2

)

.
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(c) We have C−1BC = J , so Bn = CJnC−1. One can easily see that C−1 = 1
λ2−λ1

(

λ2 −1
−λ1 1

)

,

so (we use the formula λ1λ2 = 1)

Bn =

(

λn−1

1
−λn−1

2

λ2−λ1

λn

2
−λn

1

λ2−λ1

λn

1−λn

2

λ2−λ1

λn+1

2
−λn+1

1

λ2−λ1

)

.

Let us consider the sequence of vectors vn =

(

xn

xn+1

)

. Clearly, vn+1 = Bvn which, by

induction, means that

vn = Bnv0 = Bn

(

0
1

)

=

(

λn

2−λn

1

λ2−λ1

λn+1

2
−λn+1

1

λ2−λ1

)

.

Finally, xn is the first coordinate of vn, that is
λn

2−λn

1

λ2−λ1
.

6. (a) A basis e1, . . . , en of a Euclidean space is called orthogonal if (ei, ej) = 0 for i 6= j and
(ei, e) = 1 for all i.

(b) The matrix of coordinates of these vectors relative to the standard basis 1, t, t2 is




1 1 2
1 2 0
0 1 −1



 ,

its determinant is equal to 1 6= 0, so it is invertible and is a transition matrix to a basis.

(c) We have

e1 = f1,

e2 = f2 −
(e1, f2)

(e1, e1)
e1,

e3 = f3 −
(e1, f3)

(e1, e1)
e1 −

(e2, f3)

(e2, e2)
e2,

so

e1 = 1 + t,

e2 = 1 + 2t + t2 −
4

8/3
(1 + t) = −

1

2
+

1

2
t + t2,

e3 = 2 − t2 −
10/3

8/3
(1 + t) −

−11/15

2/5
(−

1

2
+

1

2
t + t2) =

5

6
t2 −

1

3
t −

1

6
.

7. (a) For a vector space V , a function f : V × V → R is said to define an inner product if it is
bilinear (f(v1 + v2, w) = f(v1, w) + f(v2, w), (f(v, w1 + w2) = f(v, w1) + f(v, w2), f(cv, w) =
f(v, cw) = cf(v, w) for all v, w, v1, v2, w1, w2), symmetric (f(v, w) = f(w, v) for all v, w), and
positive definite (f(v, v) ≥ 0 for all v, amd f(v, v) = 0 only for v = 0).

(b) This function is clearly a bilinear form (bilinear and symmetric); its matrix relative to the
given basis is





1 a − 1 a + 1
a − 1 1 4
a + 1 4 20



 .
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According to the Sylvester’s criterion, to be positive definite, this matrix should have its top
left corner minors to be positive. They are

∆1 = 1, ∆2 = 1 − (a − 1)2 = −a(a − 2), ∆3 = −13a2 + 38a − 25 = −(a − 1)(13a − 25).

To have these expression positive, we should have

0 < a < 2, 1 < a < 25/13,

which together mean 1 < a < 25/13.
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