A proof of the Jordan normal form theorem

Jordan normal form theorem states that any matrix is similar to a blockdiagonal matrix with Jordan blocks on the diagonal. To prove it, we first reformulate it in the following way:

Jordan normal form theorem. For any finite-dimensional vector space V and any linear operator $\mathrm{A}: \mathrm{V} \rightarrow \mathrm{V}$, there exist

- a decomposition of V

$$
\mathrm{V}=\mathrm{V}_{1} \oplus \mathrm{~V}_{2} \oplus \ldots \oplus \mathrm{~V}_{\mathrm{k}}
$$

into a direct sum of invariant subspaces of A;

- a basis $e_{1}^{(i)}, \ldots, e_{n_{i}}^{(i)}$ of V_{i} for each $i=1, \ldots, k$ such that

$$
\left(A-\lambda_{i} \operatorname{Id}\right) e_{1}^{(\mathrm{i})}=0 ;\left(A-\lambda_{\mathrm{i}} \operatorname{Id}\right) e_{2}^{(\mathrm{i})}=e_{1}^{(\mathrm{i})} ; \ldots\left(A-\lambda_{i} \operatorname{Id}\right) e_{n_{\mathrm{i}}}^{(\mathrm{i})}=e_{n_{i}-1}^{(\mathrm{i})}
$$

for some λ_{i} (which may coincide or be different for different \mathfrak{i}). Dimensions of these subspaces and coefficients λ_{i} are determined uniquely up to permutations.

Invariant subspaces, direct sums, and block matrices

Recall the following important definitions.
Definition 1. A subspace U of a vector space V is called an invariant subspace of a linear operator $A: V \rightarrow V$ if for any $u \in U$ we have $A(u) \in U$.

Definition 2. For any two subspaces U_{1} and U_{2} of a vector space V , their sum $U_{1}+U_{2}$ is defined as the set of all vectors $u_{1}+u_{2}$, where $u_{1} \in U_{1}$, $u_{2} \in U_{2}$. If $U_{1} \cap U_{2}=\{0\}$, then the sum of U_{1} and U_{2} is called direct, and is denoted by $\mathrm{U}_{1} \oplus \mathrm{U}_{2}$.

Choose any decomposition of V into a direct sum of two subspaces U_{1} and U_{2}. Note that if $u_{1} \in U_{1}$ and $u_{2} \in U_{2}$, then $u_{1}+u_{2}=0$ implies $u_{1}=u_{2}=0$. Indeed, one can rewrite it as $\mathfrak{u}_{1}=-\mathfrak{u}_{2}$ and use the fact that $\mathrm{U}_{1} \cap \mathrm{U}_{2}=\{0\}$. This means that any vector of the direct sum can be represented in the form $u_{1}+u_{2}$, where $u_{1} \in U_{1}$ and $u_{2} \in U_{2}$, in a unique way. An immediate consequence of that fact is the following important formula:

$$
\operatorname{dim}\left(\mathrm{U}_{1} \oplus \mathrm{U}_{2}\right)=\operatorname{dim} \mathrm{U}_{1}+\operatorname{dim} \mathrm{U}_{2}
$$

Indeed, it is clear that we can get a basis for the direct sum by joining together bases for summands.

Fix a basis for U_{1} and a basis for U_{2}. Joining them together, we get a basis for $\mathrm{V}=\mathrm{U}_{1} \oplus \mathrm{U}_{2}$. When we write down the matrix of any linear operator
with respect to this basis, we get a block-diagonal matrix $\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right)$; its splitting into blocks correspond to the way our basis is split into two parts.

Let use formulate important facts which are immediate from the definition of a matrix of a linear operator.

1. $A_{12}=0$ if and only if U_{2} is invariant;
2. $A_{21}=0$ if and only if U_{1} is invariant.

Thus, this matrix is block-triangular if and only if one of the subspaces is invariant, and is block-diagonal if and only if both subspaces are invariant. This admits an obvious generalisation for the case of larger number of summands in the direct sum.

Generalised eigenspaces

The first step of the proof is to decompose our vector space into the direct sum of invariant subspaces where our operator has only one eigenvalue.

Definition 3. Let $N_{1}(\lambda)=\operatorname{Ker}(A-\lambda I d), N_{2}(\lambda)=\operatorname{Ker}(A-\lambda I d)^{2}, \ldots$, $N_{m}(\lambda)=\operatorname{Ker}(A-\lambda I d)^{m}, \ldots$ Clearly,

$$
\mathrm{N}_{1}(\lambda) \subset \mathrm{N}_{2}(\lambda) \subset \ldots \subset \mathrm{N}_{\mathrm{m}}(\lambda) \subset \ldots
$$

Since we only work with finite-dimensional vector spaces, this sequence of subspaces cannot be strictly increasing; if $\mathrm{N}_{\mathrm{i}}(\lambda) \neq \mathrm{N}_{\mathrm{i}+1}(\lambda)$, then, obviously, $\operatorname{dim} \mathrm{N}_{\mathrm{i}+1}(\lambda) \geqslant 1+\operatorname{dim} \mathrm{N}_{\mathrm{i}}(\lambda)$. It follows that for some k we have $N_{k}(\lambda)=N_{k+1}(\lambda)$.

Lemma 1. We have $\mathrm{N}_{\mathrm{k}}(\lambda)=\mathrm{N}_{\mathrm{k}+1}(\lambda)=\mathrm{N}_{\mathrm{k}+2}(\lambda)=\ldots$.
Let us prove that $N_{k+l}(\lambda)=N_{k+l-1}(\lambda)$ by induction on l. Note that the induction basis (case $l=1$) follows immediately from our notation.Suppose that $N_{k+l}(\lambda)=N_{k+l-1}(\lambda)$; let us prove $N_{k+l+1}(\lambda)=N_{k+l}(\lambda)$. If we assume that it is false, then there is a vector v such that

$$
v \in \mathrm{~N}_{\mathrm{k}+\mathrm{l}+1}(\lambda), v \notin \mathrm{~N}_{\mathrm{k}+\mathrm{l}}(\lambda),
$$

that is

$$
(A-\lambda I d)^{k+l+1}(v)=0,(A-\lambda I d)^{k+l}(v) \neq 0
$$

Put $w=(A-\lambda \operatorname{Id})(v)=0$. Obviously, we have

$$
(A-\lambda I d)^{k+l}(w)=0,(A-\lambda I d)^{k+l-1}(w) \neq 0
$$

which contradicts the induction hypothesis, and our statement follows.
Lemma 2. $\operatorname{Ker}(A-\lambda \operatorname{Id})^{k} \cap \operatorname{Im}(A-\lambda \operatorname{Id})^{k}=\{0\}$.

Indeed, assume there is a vector $v \in \operatorname{Ker}(A-\lambda \operatorname{Id})^{k} \cap \operatorname{Im}(A-\lambda \operatorname{Id})^{k}$. This means that $(A-\lambda I d)^{k}(v)=0$ and that there exists a vector w such that $v=(A-\lambda \operatorname{Id})^{k}(w)$. It follows that $(A-\lambda \operatorname{Id})^{2 k}(w)=0$, so $w \in \operatorname{Ker}(A-\lambda I d)^{2 k}=N_{2 k}(\lambda)$. But from the previous lemma we know that $\mathrm{N}_{2 \mathrm{k}}(\lambda)=\mathrm{N}_{\mathrm{k}}(\lambda)$, so $w \in \operatorname{Ker}(A-\lambda \operatorname{Id})^{k}$. Thus, $v=(A-\lambda I d)^{k}(w)=0$, which is what we need.

Lemma 3. $V=\operatorname{Ker}(A-\lambda \operatorname{Id})^{k} \oplus \operatorname{Im}(A-\lambda \operatorname{Id})^{k}$.
Indeed, consider the direct sum of these two subspaces. It is a subspace of V of dimension $\operatorname{dim} \operatorname{Ker}(A-\lambda \operatorname{Id})^{k}+\operatorname{dim} \operatorname{Im}(A-\lambda I d)^{k}$. Let $A^{\prime}=(A-\lambda I d)^{k}$. Earlier we proved that for any linear operator its rank and the dimension of its kernel sum up to the dimension of the vector space where it acts. $\operatorname{rk} A^{\prime}=\operatorname{dim} \operatorname{Im} A^{\prime}$, so we have
$\operatorname{dim} \operatorname{Ker}(A-\lambda I d)^{k}+\operatorname{dim} \operatorname{Im}(A-\lambda I d)^{k}=\operatorname{dim} \operatorname{Ker} A^{\prime}+\operatorname{rk} A^{\prime}=\operatorname{dim} \mathbf{V}$.
A subspace of V whose dimension is equal to $\operatorname{dim} \mathrm{V}$ has to coincide with V , so the lemma follows.

Lemma 4. $\operatorname{Ker}(A-\lambda \operatorname{Id})^{k}$ and $\operatorname{Im}(A-\lambda I d)^{k}$ are invariant subspaces of A.

Indeed, note that $A(A-\lambda I d)=(A-\lambda I d) A$, so

- if $(A-\lambda \operatorname{Id})^{k}(v)=0$, then $(A-\lambda \operatorname{Id})^{k}(A(v))=A(A-\lambda \operatorname{Id})^{k}(v)=0$;
- if $v=(A-\lambda \operatorname{Id})^{k}(w)$, then $A(v)=A(A-\lambda \operatorname{Id})^{k}(w)=(A-\lambda \operatorname{Id})^{k}(A(w))$.

To complete this step, we use induction on $\operatorname{dim} V$. Note that on the invariant subspace $\operatorname{Ker}(A-\lambda I d)^{k}$ the operator A has only one eigenvalue (if $A v=\mu \nu$ for some $0 \neq v \in \operatorname{Ker}(A-\lambda \operatorname{Id})^{k}$, then $(A-\lambda \operatorname{Id}) v=(\mu-\lambda) v$, and $0=(A-\lambda \operatorname{Id})^{k} v=(\mu-\lambda)^{k} v$, so $\left.\mu=\lambda\right)$, and the dimension of $\operatorname{Im}(A-\lambda \operatorname{Id})^{k}$ is less than $\operatorname{dim} V$ (if λ is an eigenvalue of A), so we can apply the induction hypothesis for A acting on the vector space $V^{\prime}=\operatorname{Im}(A-\lambda I d)^{k}$. This results in the following

Theorem. For any linear operator $\mathrm{A}: \mathrm{V} \rightarrow \mathrm{V}$ whose (different) eigenvalues are $\lambda_{1}, \ldots, \lambda_{k}$, there exist integers n_{1}, \ldots, n_{k} such that

$$
V=\operatorname{Ker}\left(A-\lambda_{1} I d\right)^{n_{1}} \oplus \ldots \oplus \operatorname{Ker}\left(A-\lambda_{k} I d\right)^{n_{k}} .
$$

Normal form for a nilpotent operator

The second step in the proof is to establish the Jordan normal form theorem for the case of an operator $\mathrm{B}: \mathrm{V} \rightarrow \mathrm{V}$ for which $\mathrm{B}^{k}=0$ (such operators are called nilpotent). This would basically complete the proof, after we put $B=A-\lambda$ Id and use the result that we already obtained; we will discuss it more precisely below.

Let us modify slightly the notation we used in the previous section; put $\mathrm{N}_{1}=\operatorname{Ker} \mathrm{B}, \mathrm{N}_{2}=\operatorname{Ker} \mathrm{B}^{2}, \ldots, \mathrm{~N}_{\mathrm{m}}=\operatorname{Ker~B}^{\mathrm{m}}, \ldots$ We have $\mathrm{N}_{\mathrm{k}}=\mathrm{N}_{\mathrm{k}+1}=\mathrm{N}_{\mathrm{k}+2}=\ldots=\mathrm{V}$.

To make our proof more neat, we shall use the following definition.
Definition 4. For a vector space V and a subspace $\mathrm{U} \subset \mathrm{V}$, we say that a sequence of vectors e_{1}, \ldots, e_{l} is a basis of V relative to U if any vector $v \in V$ can be uniquely represented in the form $c_{1} e_{1}+c_{2} e_{2}+\ldots+c_{l} e_{l}+u$, where $\mathfrak{c}_{1}, \ldots, c_{l}$ are coefficients, and $u \in U$. In particular, the only linear combination of e_{1}, \ldots, e_{l} that belongs to U is the trivial combination (all coefficients are equal to zero).

Example 1. The usual notion of a basis is contained in the new notion of a relative basis: a usual basis of V is a basis relative to $\mathrm{U}=\{0\}$.

Definition 5. We say that a sequence of vectors e_{1}, \ldots, e_{l} is linearly independent relative to U if the only linear combination of e_{1}, \ldots, e_{l} that belongs to U is the trivial combination (all coefficients are equal to zero).

Exercise 1. Any sequence of vectors that is linearly independent relative to U can be extended to a basis relative to U .

Now we are going to prove our statement, constructing a required basis in k steps. First, find a basis of $V=N_{k}$ relative to N_{k-1}. Let e_{1}, \ldots, e_{s} be vectors of this basis.

Lemma 5. The vectors $e_{1}, \ldots, e_{s}, B\left(e_{1}\right), \ldots, B\left(e_{s}\right)$ are linearly independent relative to $\mathrm{N}_{\mathrm{k}-2}$.

Indeed, assume that

$$
c_{1} e_{1}+\ldots+c_{s} e_{s}+d_{1} B\left(e_{1}\right)+\ldots+d_{s} B\left(e_{s}\right) \in N_{k-2} .
$$

Since $e_{i} \in N_{k}$, we have $B\left(e_{i}\right) \in N_{k-1} \supset N_{k-2}$, so

$$
\mathrm{c}_{1} e_{1}+\ldots+\mathrm{c}_{\mathrm{s}} e_{\mathrm{s}} \in-\mathrm{d}_{1} \mathrm{~B}\left(e_{1}\right)-\ldots-\mathrm{d}_{\mathrm{s}} \mathrm{~B}\left(e_{\mathrm{s}}\right)+\mathrm{N}_{\mathrm{k}-2} \subset \mathrm{~N}_{\mathrm{k}-1},
$$

which means that $c_{1}=\ldots=c_{s}=0\left(e_{1}, \ldots, e_{s}\right.$ form a basis relative to $\mathrm{N}_{\mathrm{k}-1}$). Thus,

$$
\mathrm{B}\left(\mathrm{~d}_{1} e_{1}+\ldots+\mathrm{d}_{\mathrm{s}} e_{s}\right)=\mathrm{d}_{1} \mathrm{~B}\left(e_{1}\right)+\ldots+\mathrm{d}_{s} \mathrm{~B}\left(e_{s}\right) \in \mathrm{N}_{\mathrm{k}-2},
$$

so

$$
\mathrm{d}_{1} e_{1}+\ldots+\mathrm{d}_{\mathrm{s}} e_{s} \in \mathrm{~N}_{\mathrm{k}-1}
$$

and we deduce that $d_{1}=\ldots=d_{s}=0\left(e_{1}, \ldots, e_{s}\right.$ form a basis relative to $\mathrm{N}_{\mathrm{k}-1}$), so the lemma follows.

Now we extend this collection of vectors by vectors f_{1}, \ldots, f_{t} which together with $B\left(e_{1}\right), \ldots, B\left(e_{s}\right)$ form a basis of N_{k-1} relative to N_{k-2}. Absolutely analogously one can prove

Lemma 6. The vectors $e_{1}, \ldots, e_{s}, \mathrm{~B}\left(e_{1}\right), \ldots, \mathrm{B}\left(e_{s}\right), \mathrm{B}^{2}\left(e_{1}\right), \ldots, \mathrm{B}^{2}\left(e_{s}\right)$, $f_{1}, \ldots, f_{t}, B\left(f_{1}\right), \ldots, B\left(f_{t}\right)$ are linearly independent relative to N_{k-3}.

We continue that extension process until we end up with a usual basis of V of the following form:

$$
\begin{gathered}
e_{1}, \ldots, e_{s}, B\left(e_{1}\right), \ldots, B\left(e_{s}\right), B^{2}\left(e_{1}\right), \ldots, B^{k-1}\left(e_{1}\right), \ldots, B^{k-1}\left(e_{s}\right), \\
f_{1}, \ldots, f_{t}, B\left(f_{1}\right), \ldots, B^{k-2}\left(f_{1}\right), \ldots, B^{k-2}\left(f_{t}\right), \\
\ldots, \\
g_{1}, \ldots, g_{u},
\end{gathered}
$$

where the first line contains a vector from N_{k}, a vector from $\mathrm{N}_{\mathrm{k}-1}, \ldots$, a vector from N_{1}, the second one - a vector from $\mathrm{N}_{\mathrm{k}-1}$, a vector from $\mathrm{N}_{\mathrm{k}-2}$, \ldots, a vector from N_{1}, \ldots, the last one - just a vector from N_{1}.

To get from this basis a Jordan basis, we just re-number the basis vectors. Note that the vectors

$$
v_{1}=\mathrm{B}^{k-1}\left(e_{1}\right), v_{2}=\mathrm{B}^{k-2}\left(e_{1}\right), \ldots, v_{k-1}=\mathrm{B}\left(e_{1}\right), v_{k}=e_{1}
$$

form a "thread" of vectors for which $\mathrm{B}\left(v_{1}\right)=0, \mathrm{~B}\left(v_{i}\right)=v_{i-1}$ for $\mathrm{i}>1$, which are precisely formulas for the action of a Jordan block matrix. Arranging all vectors in chains like that, we obtain a Jordan basis.

Remark 1. Note that if we denote by $\mathfrak{m}_{\boldsymbol{d}}$ the number of Jordan blocks of size d, we have

$$
\begin{aligned}
\mathfrak{m}_{1}+\mathfrak{m}_{2}+\ldots+\mathfrak{m}_{k} & =\operatorname{dim} N_{1} \\
m_{2}+\ldots+\mathfrak{m}_{k} & =\operatorname{dim} N_{2}-\operatorname{dim} N_{1} \\
\ldots & \\
m_{k} & =\operatorname{dim} N_{k}-\operatorname{dim} N_{k-1}
\end{aligned}
$$

so the sizes of Jordan blocks are uniquely determined by the properties of our operator.

General case of the Jordan normal form theorem

From the second section we know that V can be decomposed into a direct sum of invariant subspaces $\operatorname{Ker}\left(\mathcal{A}-\lambda_{i} \mathrm{Id}\right)^{{ }^{n}}{ }^{i}$. From the third section, changing the notation and putting $B=A-\lambda_{i}$ Id, we deduce that each of these subspaces can be decomposed into a direct sum of subspaces where A acts by a Jordan block matrix; sizes of blocks can be computed from the dimension data listed above. This completes the proof of the Jordan normal form theorem.

