Orthonormal bases, orthogonal complements,
and orthogonal direct sums

A sequence of vectors ey, ..., e, of a n-dimensional Euclidean space V is
called an orthogonal basis, if it consists of nonzero vectors, which are pairwise
orthogonal: (ej, e;) =0 for 1 # j. An orthogonal basis is called orthonormal,
if all its vectors are of length 1.

Lemma 1. An orthogonal basis is a basis.

Indeed, assuming cie; + ...+ cnen = 0, we have

0=1(0,ex) = (cre1+...+cnen, ex) =ci(er, ex)+...+cnlen, ex) = cxlex, ex),

which implies ¢, = 0, since ex # 0. (For any vector v we have (0,v) = 0
since (0,v) = (2-0,v) = 2(0,v).) Thus our system is linearly independent,
and contains dim V vectors, so is a basis.

Lemma 2. Any n-dimensional Euclidean space contains orthogonal
bases.

We shall start from any basis fq, ..., f,;, and transform it into an or-
thogonal basis. Namely, we shall prove by induction that there exists a basis
€1, ..., ex, fxr1, ..., fn, where the first k vectors are pairwise orthogonal.
Induction base is trivial, as for k = 1 there are no pairwise distinct vectors
to be orthogonal, and we can put e; = f;. Assume that our statement is
proved for some k, and let us show how to deduce it for k4 1. Let us search
for ey of the form fi 1 — aje; — ... — axex. Conditions (ex;1,e;) = 0 for
j=1,...,k mean that

0= (frp1—arer—...— akex, &) = (fiyr, ) —ailer, ) — ... — ax(ex, &),
and the induction hypothesis guarantees that the latter is equal to

(figr, €5) — ajlej, e5),

so we can put a; = (f(kef'e’_e;). Let us show that the vector thus obtained is
1%
nonzero. From the very nature of our procedure, e; is a linear combination
of f; and f,, ..., ey is a linear combination of fq, ..., fi, so aje;+...4+ axex
is a linear combination of fq, ..., fy, and
fk+1 — a1€q —...—akek#O
since fq, ..., f, form a basis. This completes the proof of the induction step.

The procedure described above is called Gram-Schmidt orthogonalisation
procedure. If after orthogonalisation we divide all vectors by their lengths,
we obtain an orthonormal basis.



Lemma 3. For any inner product and any basis ej, ..., e, of V, we have

n
(x1€1+ ...+ Xnen, Y11+ ...+ Ynen) = Z aijXiYj,

ij=1

where aj = (ei, ej).
This follows immediately from linearity property of inner products.
Corollary. A basis ey, ..., ey is orthonormal if and only if

(x7e1+ ...+ xnem,y1€1+ ...+ Yynen) = X1Y7 + ...+ XnYn.

Corollary. A basis ey, ..., e, is orthonormal if and only if for any
vector v its k' coordinate is equal to (v, ey):

v=(v,ej)er+...+ (v,en)en.

Lemma 4. Any orthonormal system of vectors in an n-dimensional FEu-
clidean space can be included in an orthonormal basis.

Indeed, a reasoning similar to the one given above would show that this
system is linearly independent. Thus it can be extended to a basis. If we
apply the orthogonalisation procedure to this basis, we shall end up with
an orthonormal basis containing our system (nothing would happen to our
vectors during orthogonalisation).

Definition 1. Let U be a subspace of a Euclidean space V. The set
of all vectors v such that (v,u) = 0 for all u € U is called the orthogonal
complement of U, and is denoted by U*.

Lemma 5. For any subspace U, U™ is also a subspace.

This follows immediately from linearity property of inner products.

Lemma 6. For any subspace U, we have U N UL = {0}.

Indeed, if u € UN U+, we have (u,u) =0, so u=0.

Lemma 7. For any finite-dimensional subspace U C V, we have
V =U® UL, (This justifies the name “orthogonal complement” for U+.)

(In the lecture, that was proved for a finite-dimensional V, but here we
shall prove it for a more general case, where we have no assumptions on V.)

Let eq, ..., ex be an orthonormal basis of U. To prove that the direct
sum coincides with V, it is enough to prove that any vector v € V can be
represented in the form w + ut, where u € U, ut € Ut, or, equivalently,
in the form cieq + ...+ cxex + ut, where cq, ..., cx are unknown coeffi-
cients. Computing inner products with e; for j = 1,... k, we get a system
of equations to determine c;:

(crer +...+crer +ut,e5) = (v, e5).
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Due to orthonormality of our basis and the definition of the orthogonal com-
plement, the left hand side of this equation is ¢j. On the other hand, it is
easy to see that for any v, the vector

v—(v,er)er —..., (v,ex)ex

is orthogonal to all e;, and so to all vectors from U, and so belongs to U*.
The lemma is proved.

Definition 2. In the notation of the previous proof, u is called the pro-
jection of v onto U and u' is called the perpendicular dropped from v on
Uu.

Lemma 8. |u
of U:

1| is the shortest distance from the endpoint of v to points
ut > v — )

for any u; € U.

Indeed, v — P =pv—u+u—w? = v—uP+ u—wu? due to the
Pythagoras theorem, so [v —w;|? > |v — ul?.

Corollary (Bessel’s inequality). For any vector v € V and any or-
thonormal system ey, ..., ex (not necessarily a basis) we have

(v, v) = (v,e1)* 4+ ...+ (v, er)”

Indeed, we can take U = span(eq,...,ex) and represent v = u + ut.
Then

V2 =+ P > ul? = (we)? o (w e = (vien) 4 (v, el

Example 1. Consider the Eucludean space of all continuous functions
on [—7, 7] with an inner product

(), g(1)) = J f(t)g(t) dt.

It is easy to see that the functions
1 . __cost ‘ _ sint . _ cosnt : _ sinnt
\/ﬁ() 1_ﬁ>1_ﬁ>"->n— ﬁyn— ﬁ

form an orthonormal system there. Consider the function h(t) =t. We have

€y =

(), hit)) = 22,
(h(t)) eO) = O))
(h(t)) ek) = O)

_ 1)\k+1
(nt), f) = 2T



(the latter integral requires integration by parts to compute it), so Bessel’s
inequality implies that

27T3>47-(_|_4_T[_}_4_T[_}_ +4_T[
3 7 4 9 o2’
which can be rewritten as
71_2>]_|_1_|_1_|_ _|_l
6 = 4 9 7 n?

Actually Zk% = 7‘—62, which was first proved by Euler. We are not able to

establish it here, but it is worth mentioning that Bessel’s inequality gives a
sharp bound for this sum.



