Orthonormal bases, orthogonal complements, and orthogonal direct sums

A sequence of vectors e_{1}, \ldots, e_{n} of a n-dimensional Euclidean space V is called an orthogonal basis, if it consists of nonzero vectors, which are pairwise orthogonal: $\left(e_{i}, e_{\mathfrak{j}}\right)=0$ for $\mathfrak{i} \neq \mathfrak{j}$. An orthogonal basis is called orthonormal, if all its vectors are of length 1 .

Lemma 1. An orthogonal basis is a basis.
Indeed, assuming $c_{1} e_{1}+\ldots+c_{n} e_{n}=0$, we have
$0=\left(0, e_{k}\right)=\left(c_{1} e_{1}+\ldots+c_{n} e_{n}, e_{k}\right)=c_{1}\left(e_{1}, e_{k}\right)+\ldots+c_{n}\left(e_{n}, e_{k}\right)=c_{k}\left(e_{k}, e_{k}\right)$,
which implies $c_{k}=0$, since $e_{k} \neq 0$. (For any vector v we have $(0, v)=0$ since $(0, v)=(2 \cdot 0, v)=2(0, v)$.) Thus our system is linearly independent, and contains $\operatorname{dim} \mathrm{V}$ vectors, so is a basis.

Lemma 2. Any n-dimensional Euclidean space contains orthogonal bases.

We shall start from any basis f_{1}, \ldots, f_{n}, and transform it into an orthogonal basis. Namely, we shall prove by induction that there exists a basis $e_{1}, \ldots, e_{k}, f_{k+1}, \ldots, f_{n}$, where the first k vectors are pairwise orthogonal. Induction base is trivial, as for $k=1$ there are no pairwise distinct vectors to be orthogonal, and we can put $e_{1}=f_{1}$. Assume that our statement is proved for some k, and let us show how to deduce it for $k+1$. Let us search for e_{k+1} of the form $f_{k+1}-a_{1} e_{1}-\ldots-a_{k} e_{k}$. Conditions $\left(e_{k+1}, e_{j}\right)=0$ for $j=1, \ldots, k$ mean that
$0=\left(f_{k+1}-a_{1} e_{1}-\ldots-a_{k} e_{k}, e_{j}\right)=\left(f_{k+1}, e_{j}\right)-a_{1}\left(e_{1}, e_{j}\right)-\ldots-a_{k}\left(e_{k}, e_{j}\right)$, and the induction hypothesis guarantees that the latter is equal to

$$
\left(f_{k+1}, e_{j}\right)-a_{j}\left(e_{j}, e_{j}\right),
$$

so we can put $a_{j}=\frac{\left(f_{k+1}, e_{j}\right)}{\left(e_{j}, e_{j}\right)}$. Let us show that the vector thus obtained is nonzero. From the very nature of our procedure, e_{2} is a linear combination of f_{1} and f_{2}, \ldots, e_{k} is a linear combination of f_{1}, \ldots, f_{k}, so $a_{1} e_{1}+\ldots+a_{k} e_{k}$ is a linear combination of f_{1}, \ldots, f_{k}, and

$$
f_{k+1}-a_{1} e_{1}-\ldots-a_{k} e_{k} \neq 0
$$

since f_{1}, \ldots, f_{n} form a basis. This completes the proof of the induction step.
The procedure described above is called Gram-Schmidt orthogonalisation procedure. If after orthogonalisation we divide all vectors by their lengths, we obtain an orthonormal basis.

Lemma 3. For any inner product and any basis e_{1}, \ldots, e_{n} of V, we have

$$
\left(x_{1} e_{1}+\ldots+x_{n} e_{n}, y_{1} e_{1}+\ldots+y_{n} e_{n}\right)=\sum_{i, j=1}^{n} a_{i j} x_{i} y_{j}
$$

where $a_{i j}=\left(e_{i}, e_{j}\right)$.
This follows immediately from linearity property of inner products.
Corollary. A basis e_{1}, \ldots, e_{n} is orthonormal if and only if

$$
\left(x_{1} e_{1}+\ldots+x_{n} e_{n}, y_{1} e_{1}+\ldots+y_{n} e_{n}\right)=x_{1} y_{1}+\ldots+x_{n} y_{n}
$$

Corollary. A basis e_{1}, \ldots, e_{n} is orthonormal if and only if for any vector v its $\mathrm{k}^{\text {th }}$ coordinate is equal to $\left(v, e_{\mathrm{k}}\right)$:

$$
v=\left(v, e_{1}\right) e_{1}+\ldots+\left(v, e_{n}\right) e_{n} .
$$

Lemma 4. Any orthonormal system of vectors in an n-dimensional Euclidean space can be included in an orthonormal basis.

Indeed, a reasoning similar to the one given above would show that this system is linearly independent. Thus it can be extended to a basis. If we apply the orthogonalisation procedure to this basis, we shall end up with an orthonormal basis containing our system (nothing would happen to our vectors during orthogonalisation).

Definition 1. Let U be a subspace of a Euclidean space V. The set of all vectors v such that $(v, u)=0$ for all $u \in U$ is called the orthogonal complement of U , and is denoted by U^{\perp}.

Lemma 5. For any subspace $\mathrm{U}, \mathrm{U}^{\perp}$ is also a subspace.
This follows immediately from linearity property of inner products.
Lemma 6. For any subspace U , we have $\mathrm{U} \cap \mathrm{U}^{\perp}=\{0\}$.
Indeed, if $\mathfrak{u} \in \mathbf{U} \cap \mathbf{U}^{\perp}$, we have $(u, u)=0$, so $u=0$.
Lemma 7. For any finite-dimensional subspace $\mathrm{U} \subset \mathrm{V}$, we have $\mathrm{V}=\mathrm{U} \oplus \mathrm{U}^{\perp}$. (This justifies the name "orthogonal complement" for U^{\perp}.)
(In the lecture, that was proved for a finite-dimensional V , but here we shall prove it for a more general case, where we have no assumptions on V .)

Let e_{1}, \ldots, e_{k} be an orthonormal basis of U . To prove that the direct sum coincides with V , it is enough to prove that any vector $v \in \mathrm{~V}$ can be represented in the form $u+u^{\perp}$, where $u \in U, u^{\perp} \in U^{\perp}$, or, equivalently, in the form $c_{1} e_{1}+\ldots+c_{k} e_{k}+u^{\perp}$, where c_{1}, \ldots, c_{k} are unknown coefficients. Computing inner products with e_{j} for $\mathfrak{j}=1, \ldots, k$, we get a system of equations to determine \boldsymbol{c}_{i} :

$$
\left(c_{1} e_{1}+\ldots+c_{k} e_{k}+u^{\perp}, e_{j}\right)=\left(v, e_{j}\right) .
$$

Due to orthonormality of our basis and the definition of the orthogonal complement, the left hand side of this equation is c_{j}. On the other hand, it is easy to see that for any ν, the vector

$$
v-\left(v, e_{1}\right) e_{1}-\ldots,\left(v, e_{k}\right) e_{k}
$$

is orthogonal to all e_{j}, and so to all vectors from U , and so belongs to U^{\perp}. The lemma is proved.

Definition 2. In the notation of the previous proof, u is called the projection of v onto U and u^{\perp} is called the perpendicular dropped from v on U.

Lemma 8. $\left|\mathbf{u}^{\perp}\right|$ is the shortest distance from the endpoint of v to points of U:

$$
\left|u^{\perp}\right| \geqslant\left|v-u_{1}\right|
$$

for any $u_{1} \in U$.
Indeed, $\left|v-u_{1}\right|^{2}=\left|v-u+u-u_{1}\right|^{2}=|v-u|^{2}+\left|u-u_{1}\right|^{2}$ due to the Pythagoras theorem, so $\left|v-u_{1}\right|^{2} \geqslant|v-u|^{2}$.

Corollary (Bessel's inequality). For any vector $v \in \mathrm{~V}$ and any orthonormal system $e_{1}, \ldots, e_{\mathrm{k}}$ (not necessarily a basis) we have

$$
(v, v) \geqslant\left(v, e_{1}\right)^{2}+\ldots+\left(v, e_{k}\right)^{2} .
$$

Indeed, we can take $\mathrm{U}=\operatorname{span}\left(e_{1}, \ldots, e_{\mathrm{k}}\right)$ and represent $v=u+\mathfrak{u}^{\perp}$. Then
$|v|^{2}=|u|^{2}+\left|u^{\perp}\right|^{2} \geqslant|u|^{2}=\left(u, e_{1}\right)^{2}+\ldots+\left(u, e_{k}\right)^{2}=\left(v, e_{1}\right)^{2}+\ldots+\left(v, e_{k}\right)^{2}$.
Example 1. Consider the Eucludean space of all continuous functions on $[-\pi, \pi]$ with an inner product

$$
(f(t), g(t))=\int_{-\pi}^{\pi} f(t) g(t) d t .
$$

It is easy to see that the functions

$$
e_{0}=\frac{1}{\sqrt{2 \pi}}, e_{1}=\frac{\cos t}{\sqrt{\pi}}, f_{1}=\frac{\sin t}{\sqrt{\pi}}, \ldots, e_{n}=\frac{\cos n t}{\sqrt{\pi}}, f_{n}=\frac{\sin n t}{\sqrt{\pi}}
$$

form an orthonormal system there. Consider the function $h(t)=t$. We have

$$
\begin{gathered}
(h(t), h(t))=\frac{2 \pi^{3}}{3} \\
\left.\left(h(t), e_{0}\right)=0\right) \\
\left(h(t), e_{k}\right)=0 \\
\left(h(t), f_{k}\right)=\frac{2(-1)^{k+1} \sqrt{\pi}}{k},
\end{gathered}
$$

(the latter integral requires integration by parts to compute it), so Bessel's inequality implies that

$$
\frac{2 \pi^{3}}{3} \geqslant 4 \pi+\frac{4 \pi}{4}+\frac{4 \pi}{9}+\ldots+\frac{4 \pi}{n^{2}}
$$

which can be rewritten as

$$
\frac{\pi^{2}}{6} \geqslant 1+\frac{1}{4}+\frac{1}{9}+\ldots+\frac{1}{n^{2}}
$$

Actually $\sum_{k} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}$, which was first proved by Euler. We are not able to establish it here, but it is worth mentioning that Bessel's inequality gives a sharp bound for this sum.

