
Orthonormal bases, orthogonal complements,

and orthogonal direct sums

A sequence of vectors e1, . . . , en of a n-dimensional Euclidean space V is
called an orthogonal basis, if it consists of nonzero vectors, which are pairwise
orthogonal: (ei, ej) = 0 for i 6= j. An orthogonal basis is called orthonormal,
if all its vectors are of length 1.

Lemma 1. An orthogonal basis is a basis.
Indeed, assuming c1e1 + . . . + cnen = 0, we have

0 = (0, ek) = (c1e1+. . .+cnen, ek) = c1(e1, ek)+. . .+cn(en, ek) = ck(ek, ek),

which implies ck = 0, since ek 6= 0. (For any vector v we have (0, v) = 0

since (0, v) = (2 · 0, v) = 2(0, v).) Thus our system is linearly independent,
and contains dim V vectors, so is a basis.

Lemma 2. Any n-dimensional Euclidean space contains orthogonal
bases.

We shall start from any basis f1, . . . , fn, and transform it into an or-
thogonal basis. Namely, we shall prove by induction that there exists a basis
e1, . . . , ek, fk+1, . . . , fn, where the first k vectors are pairwise orthogonal.
Induction base is trivial, as for k = 1 there are no pairwise distinct vectors
to be orthogonal, and we can put e1 = f1. Assume that our statement is
proved for some k, and let us show how to deduce it for k + 1. Let us search
for ek+1 of the form fk+1 − a1e1 − . . . − akek. Conditions (ek+1, ej) = 0 for
j = 1, . . . , k mean that

0 = (fk+1 − a1e1 − . . . − akek, ej) = (fk+1, ej) − a1(e1, ej) − . . . − ak(ek, ej),

and the induction hypothesis guarantees that the latter is equal to

(fk+1, ej) − aj(ej, ej),

so we can put aj =
(fk+1,ej)

(ej,ej)
. Let us show that the vector thus obtained is

nonzero. From the very nature of our procedure, e2 is a linear combination
of f1 and f2, . . . , ek is a linear combination of f1, . . . , fk, so a1e1 + . . .+akek

is a linear combination of f1, . . . , fk, and

fk+1 − a1e1 − . . . − akek 6= 0

since f1, . . . , fn form a basis. This completes the proof of the induction step.
The procedure described above is called Gram-Schmidt orthogonalisation

procedure. If after orthogonalisation we divide all vectors by their lengths,
we obtain an orthonormal basis.
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Lemma 3. For any inner product and any basis e1, . . . , en of V, we have

(x1e1 + . . . + xnen, y1e1 + . . . + ynen) =

n∑
i,j=1

aijxiyj,

where aij = (ei, ej).
This follows immediately from linearity property of inner products.
Corollary. A basis e1, . . . , en is orthonormal if and only if

(x1e1 + . . . + xnen, y1e1 + . . . + ynen) = x1y1 + . . . + xnyn.

Corollary. A basis e1, . . . , en is orthonormal if and only if for any
vector v its kth coordinate is equal to (v, ek):

v = (v, e1)e1 + . . . + (v, en)en.

Lemma 4. Any orthonormal system of vectors in an n-dimensional Eu-
clidean space can be included in an orthonormal basis.

Indeed, a reasoning similar to the one given above would show that this
system is linearly independent. Thus it can be extended to a basis. If we
apply the orthogonalisation procedure to this basis, we shall end up with
an orthonormal basis containing our system (nothing would happen to our
vectors during orthogonalisation).

Definition 1. Let U be a subspace of a Euclidean space V. The set
of all vectors v such that (v, u) = 0 for all u ∈ U is called the orthogonal
complement of U, and is denoted by U⊥.

Lemma 5. For any subspace U, U⊥ is also a subspace.
This follows immediately from linearity property of inner products.
Lemma 6. For any subspace U, we have U ∩ U⊥ = {0}.
Indeed, if u ∈ U ∩ U⊥, we have (u, u) = 0, so u = 0.
Lemma 7. For any finite-dimensional subspace U ⊂ V, we have

V = U ⊕ U⊥. (This justifies the name “orthogonal complement” for U⊥.)
(In the lecture, that was proved for a finite-dimensional V, but here we

shall prove it for a more general case, where we have no assumptions on V.)
Let e1, . . . , ek be an orthonormal basis of U. To prove that the direct

sum coincides with V, it is enough to prove that any vector v ∈ V can be
represented in the form u + u⊥, where u ∈ U, u⊥ ∈ U⊥, or, equivalently,
in the form c1e1 + . . . + ckek + u⊥, where c1, . . . , ck are unknown coeffi-
cients. Computing inner products with ej for j = 1, . . . , k, we get a system
of equations to determine ci:

(c1e1 + . . . + ckek + u⊥, ej) = (v, ej).
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Due to orthonormality of our basis and the definition of the orthogonal com-
plement, the left hand side of this equation is cj. On the other hand, it is
easy to see that for any v, the vector

v − (v, e1)e1 − . . . , (v, ek)ek

is orthogonal to all ej, and so to all vectors from U, and so belongs to U⊥.
The lemma is proved.

Definition 2. In the notation of the previous proof, u is called the pro-
jection of v onto U and u⊥ is called the perpendicular dropped from v on
U.

Lemma 8. |u⊥| is the shortest distance from the endpoint of v to points
of U:

|u⊥| > |v − u1|

for any u1 ∈ U.
Indeed, |v − u1|

2 = |v − u + u − u1|
2 = |v − u|2 + |u − u1|

2 due to the
Pythagoras theorem, so |v − u1|

2 > |v − u|2.
Corollary (Bessel’s inequality). For any vector v ∈ V and any or-

thonormal system e1, . . . , ek (not necessarily a basis) we have

(v, v) > (v, e1)
2 + . . . + (v, ek)

2.

Indeed, we can take U = span(e1, . . . , ek) and represent v = u + u⊥.
Then

|v|2 = |u|2 + |u⊥|2 > |u|2 = (u, e1)
2 + . . . + (u, ek)

2 = (v, e1)
2 + . . . + (v, ek)

2.

Example 1. Consider the Eucludean space of all continuous functions
on [−π, π] with an inner product

(f(t), g(t)) =

∫π

−π

f(t)g(t) dt.

It is easy to see that the functions

e0 =
1√
2π

, e1 =
cos t√

π
, f1 =

sin t√
π

, . . . , en =
cos nt√

π
, fn =

sin nt√
π

form an orthonormal system there. Consider the function h(t) = t. We have

(h(t), h(t)) =
2π3

3
,

(h(t), e0) = 0),

(h(t), ek) = 0,

(h(t), fk) =
2(−1)k+1

√
π

k
,
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(the latter integral requires integration by parts to compute it), so Bessel’s
inequality implies that

2π3

3
> 4π +

4π

4
+

4π

9
+ . . . +

4π

n2
,

which can be rewritten as

π2

6
> 1 +

1

4
+

1

9
+ . . . +

1

n2
.

Actually
∑

k
1
k2 = π2

6
, which was first proved by Euler. We are not able to

establish it here, but it is worth mentioning that Bessel’s inequality gives a
sharp bound for this sum.

4


