TRINITY COLLEGE

Faculty of Science
 SCHOOL OF MATHEMATICS

JF Mathematics
JF Theoretical Physics
JF Two Subject Mod

This sample paper is provided for training purposes only; you are not supposed to hand in your solutions. Please, do attempt all questions by Monday March 2: both lectures on that day will be mostly about discussing this paper.

For each task, the number of points you can get for a complete solution of that task is printed next to it.

You may use all statements proved in class and in home assignments; when using some statement, you should formulate it clearly, e.g. "in class, we proved that if A is invertible, then the reduced row echelon form of A is the identity matrix".

All vector spaces unless otherwise specified are over complex numbers.
Non-programmable calculators are permitted for this examination.

1. (a) (6 points) Under which condition a system of vectors of a vector space V is called linearly independent? Prove that if a system of vectors $\left\{v_{1}, \ldots, v_{k}\right\}$ is linearly independent, then for every $p=1, \ldots, k$ it remains linearly independent after removing the vector v_{p} from it.
(b) (8 points) Assume that the system of vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} (all belonging to the same vector space V) is linearly independent. Prove that then the system of vectors $\mathbf{u}^{\prime}=\mathbf{u}+\mathbf{v}, \mathbf{v}^{\prime}=\mathbf{u}-\mathbf{w}, \mathbf{w}^{\prime}=2 \mathbf{v}+\mathbf{w}$ is also linearly independent. What are possible values of $\operatorname{dim} V$ in this situation? Explain your answer.
2. (a) (5 points) Define the rank of a linear operator.
(b) (9 points) Consider the vector space V of all 2×2-matrices (with obvious addition and multiplication by scalars). Show that for every 2×2-matrix A the mapping $L_{A}: V \rightarrow V$ given by the formula $L_{A}(X)=A X-X A$, is a linear operator. In the case $A=\left(\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right)$, write down the matrix of L_{A} relative to the basis $E_{11}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), E_{12}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), E_{21}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right), E_{22}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$, and compute $\operatorname{rk}\left(L_{A}\right)$.
(c) (12 points) Let V and W be vector spaces. Show that for every two linear operators $A, B: V \rightarrow W$ we have

$$
\operatorname{rk}(A+B) \leq \operatorname{rk}(A)+\operatorname{rk}(B)
$$

3. Consider the matrices

$$
A=\left(\begin{array}{ccc}
-2 & -4 & 16 \\
0 & 2 & 0 \\
-1 & -1 & 6
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{lll}
2 & 1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right)
$$

(a) (7 points) Describe all eigenvalues and eigenvectors of A and B.
(b) (16 points) Describe the Jordan normal form of A and find a Jordan basis for A.
(c) (8 points) Is A similar to B ? Explain your answer.
(d) (9 points) Find a closed formula for A^{n}.
4. (a) (5 points) Show that if for square matrices A and B it is known that A is similar to B, then A^{T} is similar to B^{T} (here X^{T}, as usual, denotes the transpose matrix of X).
(b) (15 points) Show that (over complex numbers) every square matrix A is similar to A^{T}.

