## Solutions to the sample Christmas exam paper

1. (a) A system of vectors $v_{1}, \ldots, v_{k}$ is said to be linearly independent if the only linear combination

$$
c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{k} v_{k}
$$

which is equal to zero is the trivial one ( $c_{1}=\ldots=c_{k}=0$ ). Assume that the system $v_{1}, \ldots, v_{k}$ is linearly independent, and let us remove the vector $v_{p}$ from it. Furthermore, take a linear combination of vectors of the resulting system which is equal to 0 . This combination can be thought of as a combination of $v_{1}, \ldots, v_{k}$, where the coefficient of $v_{p}$ is equal to 0 . Since our original system was linearly independent, we see that all coefficients should be equal to 0 , which is what we need.
(b) Assume that $a \mathbf{u}^{\prime}+b \mathbf{v}^{\prime}+c \mathbf{w}^{\prime}=0$. Substituting into that $\mathbf{u}^{\prime}=\mathbf{u}+\mathbf{v}, \mathbf{v}^{\prime}=\mathbf{u}-\mathbf{w}$, $\mathbf{w}^{\prime}=2 \mathbf{v}+\mathbf{w}$, we get

$$
a(\mathbf{u}+\mathbf{v})+b(\mathbf{u}-\mathbf{w})+c(2 \mathbf{v}+\mathbf{w})=0
$$

which can be rewritten as

$$
(a+b) \mathbf{u}+(a+2 c) \mathbf{v}+(-b+c) \mathbf{w})=0
$$

Since $\mathbf{u}, \mathbf{v}$ and $\mathbf{w}$ are linearly independent, we have $a+b=0, a+2 c=0$, $-b+c=0$. This system of 3 equations with 3 unknowns has only the trivial solution $a=b=c=0$, which is what we need. Since our vector space contains 3 linearly independent vectors, its dimension is at least 3 , and, clearly, can be any number greater than 3 (we can take first three vectors of any basis as an example).
2. (a) For a linear operator $A$ from a vector space $V$ to the vector space $W$ the rank of $A$, by definition, is equal to the dimension of the image of $A$.
(b) First of all, $L_{A}$ is a linear operator: $L_{A}(X+Y)=A(X+Y)-(X+Y) A=$ $(A X-X A)+(A Y-Y A)=L_{A}(X)+L_{A}(Y), L_{A}(c X)=A(c X)-(c X) A=$ $c(A X-X A)=c L_{A}(X)$. Furthermore, for $A=\left(\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right)$, we have

$$
\begin{gathered}
L_{A}\left(E_{11}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=E_{12}+E_{21} \\
L_{A}\left(E_{12}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)=-E_{11}+E_{22} \\
L_{A}\left(E_{21}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)=-E_{11}+E_{22} \\
L_{A}\left(E_{22}\right)=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)=-E_{12}-E_{21}
\end{gathered}
$$

so the matrix of $L_{A}$ relative to our basis is

$$
\left(\begin{array}{cccc}
0 & -1 & -1 & 0 \\
1 & 0 & 0 & -1 \\
1 & 0 & 0 & -1 \\
0 & 1 & 1 & 0
\end{array}\right) .
$$

This matrix, obviously, has two linearly independent columns, so its rank is equal to 2.
(c) We have

$$
\begin{aligned}
\operatorname{Im}(A+B)=\{(A+B)(v) \mid v \in V\} \subset\left\{A\left(v_{1}\right)+B\left(v_{2}\right) \mid\right. & \left.v_{1}, v_{2} \in V\right\} \\
& = \\
& =\operatorname{Im}(A)+\operatorname{Im}(B) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\operatorname{rk}(A+B)=\operatorname{dim} \operatorname{Im}(A+B) & \leq \operatorname{dim}(\operatorname{Im}(A)+\operatorname{Im}(B)) \leq \\
& \leq \operatorname{dim}(\operatorname{Im}(A))+\operatorname{dim}(\operatorname{Im}(B))=\operatorname{rk}(A)+\operatorname{rk}(B) .
\end{aligned}
$$

(as we proved in class, $\operatorname{dim}\left(U_{1}+U_{2}\right) \leq \operatorname{dim}\left(U_{1}\right)+\operatorname{dim}\left(U_{2}\right)$ for every two subspaces $U_{1}, U_{2}$ ).
3. (a) We have

$$
\begin{aligned}
\operatorname{det}(A-t I)= & \operatorname{det}\left(\begin{array}{ccc}
-2-t & -4 & 16 \\
0 & 2-t & 0 \\
-1 & -1 & 6-t
\end{array}\right)= \\
& =(2-t) \operatorname{det}\left(\begin{array}{cc}
-2-t & 16 \\
-1 & 6-t
\end{array}\right)=(2-t)\left(t^{2}-4 t+4\right)=(2-t)^{3}
\end{aligned}
$$

(the $3 \times 3$-determinant is expanded along the second row). Also, $B$ is triangular, so $\operatorname{det}(B-t I)=(2-t)^{3}$. We see that all eigenvalues of $A$ and $B$ are equal to 2 . Also, solving the system $A\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=2\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$, we see that it reduces to the equation $4 z=x+y$ (we have $A-2 I=\left(\begin{array}{ccc}-4 & -4 & 16 \\ 0 & 0 & 0 \\ -1 & -1 & 4\end{array}\right)$ ). Thus, eigenvectors of $A$ are of the form $\left(\begin{array}{c}4 v-u \\ u \\ v\end{array}\right)$, where $u$ and $v$ are arbitrary parameters. Also, it is easy to see that all eigenvectors of $B$ are of the form $\left(\begin{array}{l}s \\ 0 \\ 0\end{array}\right)$, where $s$ is a parameter.
(b) We have already seen that $\operatorname{dim} \operatorname{Ker}(A-2 I)=2$. Also, $(A-2 I)^{2}=0$, so $\operatorname{Ker}(A-$ $2 I)^{2}=V$. To find a Jordan basis, we first take a nonzero vector in $V$ outside $\operatorname{Ker}(A-2 I)$ (the difference of dimensions is $3-2=1$, so the relative basis consists of one vector). For such a vector we can take $f=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$; we have $(A-$ 2I) $f=\left(\begin{array}{c}-4 \\ 0 \\ -1\end{array}\right)$. It remains to extend $(A-2 I) f$ to a basis of $\operatorname{Ker}(A-2 I)$. The latter subspace is 2-dimensional, so we need just one more vector which is not proportional to $(A-2 I) f$. If we put $u=1, v=0$ in the parametrisation of $\operatorname{Ker}(A-2 I)$, we get the vector $e=\left(\begin{array}{lll}-1 & 1 & 0\end{array}\right)$ which is definitely not proportional to $(A-2 I) f$. Overall, we get a Jordan basis $(A-2 I) f, f, e$, and the Jordan normal form of $A$ is $\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)$. Indeed,

$$
\begin{gathered}
A(A-2 I) f=(A-2 I+2 I)(A-2 I) f=\left((A-2 I)^{2}+2(A-2 I)\right) f=2(A-2 I) f, \\
A f=(A-2 I+2 I) f=(A-2 I) f+2 f, \\
A e=(A-2 I+2 I) e=(A-2 I) e+2 e=2 e
\end{gathered}
$$

(c) No, $A$ has two linearly independent eigenvectors, and $B$ - only one, so they cannot be matrices of the same linear operator. More generally, their Jordan forms are different, so they are not similar.
(d) We have

$$
C^{-1} A C=\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)=J
$$

where $C=\left(\begin{array}{ccc}-4 & 1 & -1 \\ 0 & 0 & 1 \\ -1 & 0 & 0\end{array}\right)$ is the matrix whose columns are the vectors of the Jordan basis. We have $J^{n}=\left(\begin{array}{ccc}2^{n} & n 2^{n-1} & 0 \\ 0 & 2^{n} & 0 \\ 0 & 0 & 2^{n}\end{array}\right)$ and $C^{-1}=\left(\begin{array}{ccc}0 & 0 & -1 \\ 1 & 1 & -4 \\ 0 & 1 & 0\end{array}\right)$, so

$$
A^{n}=C J^{n} C^{-1}=\left(\begin{array}{ccc}
2^{n}-n 2^{n+1} & -n 2^{n+1} & n 2^{n+3} \\
0 & 2^{n} & 0 \\
-n 2^{n-1} & -n 2^{n-1} & 2^{n}+n 2^{n+1}
\end{array}\right)
$$

4. (a) Recall that $(P Q)^{T}=Q^{T} P^{T}$ for every two matrices $A$ and $B$ whose product is defined. Thus, is $C$ is invertible, we see that $C^{T}$ is invertible, and $\left(C^{T}\right)^{-1}=$
$\left(C^{-1}\right)^{T}$. Indeed, $\left(C^{-1}\right)^{T} C^{T}=\left(C C^{-1}\right)^{T}=I^{T}=I$, and $C^{T}\left(C^{-1}\right)^{T}=\left(C^{-1} C\right)^{T}=$ $I^{T}=I$. Finally, if $B$ is similar to $A$, that is $B=C^{-1} A C$, then

$$
B^{T}=C^{T} A^{T}\left(C^{-1}\right) T=C^{T} A^{T}\left(C^{T}\right)^{-1}
$$

which proves that $B^{T}$ is similar to $A^{T}$.
(b) First of all, every square matrix $A$ is similar to a Jordan matrix, so it is enough to show that a Jordan matrix is similar to its transpose. Also, it is enough to show that for a single Jordan block, since if it is true for every block, we can then collect matrices $C_{i}$ for different blocks into a block diagonal matrix which will be the transition matrix proving the similarity for $A$ and $A^{T}$. Finally, for a single block $J$ transposition corresponds to reversing the order of the basis vectors, so $J$ and $J^{T}$ do define the same operator in two bases which differ by the ordering of vectors; two matrices which define the same operator in different bases are similar. Another solution: we know that sizes of Jordan blocks are defined by numbers $\operatorname{rk}(A-\lambda I)^{k}$ for various $\lambda, k$. Clearly,

$$
\operatorname{rk}\left(A^{T}-\lambda I\right)^{k}=\operatorname{rk}\left((A-\lambda I)^{T}\right)^{k}=\operatorname{rk}\left((A-\lambda I)^{k}\right)^{T}=\operatorname{rk}\left((A-\lambda I)^{k}\right)
$$

(the rank does not change when we replace a matrix by its transpose), so $A$ and $A^{T}$ have the same Jordan form and are similar.

