
Solutions to the sample Christmas exam paper

1. (a) A system of vectors v1, . . . , vk is said to be linearly independent if the only linear
combination

c1v1 + c2v2 + . . . + ckvk

which is equal to zero is the trivial one (c1 = . . . = ck = 0). Assume that the
system v1, . . . , vk is linearly independent, and let us remove the vector vp from it.
Furthermore, take a linear combination of vectors of the resulting system which
is equal to 0. This combination can be thought of as a combination of v1, . . . , vk,
where the coefficient of vp is equal to 0. Since our original system was linearly
independent, we see that all coefficients should be equal to 0, which is what we
need.

(b) Assume that au′ + bv′ + cw′ = 0. Substituting into that u
′ = u + v, v

′ = u−w,
w

′ = 2v + w, we get

a(u + v) + b(u − w) + c(2v + w) = 0,

which can be rewritten as

(a + b)u + (a + 2c)v + (−b + c)w) = 0.

Since u, v and w are linearly independent, we have a + b = 0, a + 2c = 0,
−b + c = 0. This system of 3 equations with 3 unknowns has only the trivial
solution a = b = c = 0, which is what we need. Since our vector space contains 3
linearly independent vectors, its dimension is at least 3, and, clearly, can be any
number greater than 3 (we can take first three vectors of any basis as an example).

2. (a) For a linear operator A from a vector space V to the vector space W the rank of
A, by definition, is equal to the dimension of the image of A.

(b) First of all, LA is a linear operator: LA(X + Y ) = A(X + Y ) − (X + Y )A =
(AX − XA) + (AY − Y A) = LA(X) + LA(Y ), LA(cX) = A(cX) − (cX)A =

c(AX − XA) = cLA(X). Furthermore, for A =

(

2 −1
1 2

)

, we have

LA(E11) =

(

0 1
1 0

)

= E12 + E21,

LA(E12) =

(

−1 0
0 1

)

= −E11 + E22,

LA(E21) =

(

−1 0
0 1

)

= −E11 + E22,

LA(E22) =

(

0 −1
−1 0

)

= −E12 − E21,
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so the matrix of LA relative to our basis is








0 −1 −1 0
1 0 0 −1
1 0 0 −1
0 1 1 0









.

This matrix, obviously, has two linearly independent columns, so its rank is equal
to 2.

(c) We have

Im(A + B) = {(A + B)(v) | v ∈ V } ⊂ {A(v1) + B(v2) | v1, v2 ∈ V } =

= Im(A) + Im(B).

Thus

rk(A + B) = dim Im(A + B) ≤ dim(Im(A) + Im(B)) ≤

≤ dim(Im(A)) + dim(Im(B)) = rk(A) + rk(B).

(as we proved in class, dim(U1 +U2) ≤ dim(U1)+dim(U2) for every two subspaces
U1, U2).

3. (a) We have

det(A − tI) = det





−2 − t −4 16
0 2 − t 0
−1 −1 6 − t



 =

= (2 − t) det

(

−2 − t 16
−1 6 − t

)

= (2 − t)(t2 − 4t + 4) = (2 − t)3

(the 3 × 3-determinant is expanded along the second row). Also, B is triangular,
so det(B − tI) = (2− t)3. We see that all eigenvalues of A and B are equal to 2.

Also, solving the system A





x

y

z



 = 2





x

y

z



, we see that it reduces to the equation

4z = x + y (we have A − 2I =





−4 −4 16
0 0 0
−1 −1 4



). Thus, eigenvectors of A are of

the form





4v − u

u

v



, where u and v are arbitrary parameters. Also, it is easy to

see that all eigenvectors of B are of the form





s

0
0



, where s is a parameter.
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(b) We have already seen that dim Ker(A− 2I) = 2. Also, (A− 2I)2 = 0, so Ker(A−
2I)2 = V . To find a Jordan basis, we first take a nonzero vector in V outside
Ker(A − 2I) (the difference of dimensions is 3 − 2 = 1, so the relative basis

consists of one vector). For such a vector we can take f =





1
0
0



; we have (A −

2I)f =





−4
0
−1



. It remains to extend (A − 2I)f to a basis of Ker(A − 2I).

The latter subspace is 2-dimensional, so we need just one more vector which is
not proportional to (A − 2I)f . If we put u = 1, v = 0 in the parametrisation of
Ker(A−2I), we get the vector e =

(

−1 1 0
)

which is definitely not proportional
to (A−2I)f . Overall, we get a Jordan basis (A−2I)f, f, e, and the Jordan normal

form of A is





2 1 0
0 2 0
0 0 2



. Indeed,

A(A − 2I)f = (A − 2I + 2I)(A − 2I)f = ((A − 2I)2 + 2(A − 2I))f = 2(A − 2I)f,

Af = (A − 2I + 2I)f = (A − 2I)f + 2f,

Ae = (A − 2I + 2I)e = (A − 2I)e + 2e = 2e.

(c) No, A has two linearly independent eigenvectors, and B — only one, so they
cannot be matrices of the same linear operator. More generally, their Jordan
forms are different, so they are not similar.

(d) We have

C−1AC =





2 1 0
0 2 0
0 0 2



 = J,

where C =





−4 1 −1
0 0 1
−1 0 0



 is the matrix whose columns are the vectors of the

Jordan basis. We have Jn =





2n n2n−1 0
0 2n 0
0 0 2n



 and C−1 =





0 0 −1
1 1 −4
0 1 0



, so

An = CJnC−1 =





2n − n2n+1 −n2n+1 n2n+3

0 2n 0
−n2n−1 −n2n−1 2n + n2n+1



 .

4. (a) Recall that (PQ)T = QT P T for every two matrices A and B whose product is
defined. Thus, is C is invertible, we see that CT is invertible, and (CT )−1 =
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(C−1)T . Indeed, (C−1)T CT = (CC−1)T = IT = I, and CT (C−1)T = (C−1C)T =
IT = I. Finally, if B is similar to A, that is B = C−1AC, then

BT = CT AT (C−1)T = CT AT (CT )−1,

which proves that BT is similar to AT .

(b) First of all, every square matrix A is similar to a Jordan matrix, so it is enough
to show that a Jordan matrix is similar to its transpose. Also, it is enough to
show that for a single Jordan block, since if it is true for every block, we can then
collect matrices Ci for different blocks into a block diagonal matrix which will be
the transition matrix proving the similarity for A and AT . Finally, for a single
block J transposition corresponds to reversing the order of the basis vectors, so J

and JT do define the same operator in two bases which differ by the ordering of
vectors; two matrices which define the same operator in different bases are similar.

Another solution: we know that sizes of Jordan blocks are defined by numbers
rk(A − λI)k for various λ, k. Clearly,

rk(AT − λI)k = rk((A − λI)T )k = rk((A − λI)k)T = rk((A − λI)k)

(the rank does not change when we replace a matrix by its transpose), so A and
AT have the same Jordan form and are similar.
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