
Solutions to the Hilary term exam paper

1. (a) A system of vectors of a vector space V is said to be complete if every vector
in V can be represented as a linear combination of these vectors.

Assume that the vectors v1, . . . , vk form a complete system in V . Let us extend
them by some vector v. To prove that the new system of vectors is complete,
let us take a vector w ∈ V and find a linear combination of v1, . . . , vk which
is equal to w. This combination can be regarded as a combination of v1, . . . ,
vk, v with the coefficient of v equal to zero. Thus, the extended system is also
complete.

(b) For each x ∈ V , we would like to find some coefficients a′, b′, c′ such that

x = a′u′ + b′v′ + c′w′ = (a′ + b′)u + (a′ + 2c′)v + (−b′ + c′)w.

Since the original system was complete, we can find some coefficients a, b, c
for which

x = au + bv + cw,

so it is enough to require a = a′ + b′, b = a′ + 2c′, c = −b′ + c′ (many
of the students stopped before that in their exam papers: they re-wrote the
combination as a combination of u, v, and w, and decided that it was enough;
however, we should show that EVERY linear combination can be obtained this
way!). This system of equations with unknowns a′, b′ and c′ has solutions for
all a, b, c (for example, its matrix has a nonzero determinant), so it is possible
to find a combination of our vectors equal to x, and the system of vectors is
complete.

In class, we proved that the number of elements in a linearly independent
system of vectors is less than or equal to the number of vectors in a complete
system, so the dimension of our vector space is at most three.

2. (a) For a linear operator A from a vector space V to the vector space W the rank
of A, by definition, is equal to the dimension of the image of A.

(b) To show that A
v

is a linear operator, we should show that A
v
(w1 + w2) =

A
v
(w1) + A

v
(w2) and A

v
(cw) = cA

v
(w), or, in other words, that v × (w1 +

w2) = v × w1 + v × w2 and v × (cw) = cv × w; both these statements were
proved in class. To compute the rank of our operator, we use the fact the the
sum of the rank of an operator and the dimension of its kernel is the dimension
of the source space. This means that for an operator from R

3 to R
3 its rank is

equal to 2 if and only if its kernel is one-dimensional, so it is enough to prove
that dim Ker A

v
= 1. The kernel of A

v
consists of vectors whose cross product

with v is equal to zero. Such a vector is either equal to zero or proportional
to v (the length of the cross product is equal to the product of lengths times
the sine of the angle. . . ), which gives a one-dimensional space.

(c) First of all, Im(AB) = {ABu : u ∈ U} ⊂ {Av : v ∈ V }, so dim Im(AB) ≤
dim Im(A), rk(AB) ≤ rk(A). The same would not work for Im(B), since
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Im(AB) 6⊂ Im(B), they are subspaces in two different spaces! However,
Ker(B) ⊂ Ker(AB) (if Bx = 0, then ABx = A0 = 0), so dim Ker(B) ≤
dim Ker(AB), and so

rk(AB) = dim U − dim Ker(AB) ≤ dim U − dim Ker(B) = rk(B).

3. Consider the matrices

A =





9 5 2
−16 −9 −4
2 1 1



 and B =





1 0 1
0 1 0
0 0 1



 .

(a) The characteristic polynomial of A is −t3 + t2 + t − 1 = (1− t2)(t− 1), so the
eigenvalues are 1 and −1. The characteristic polynomial of B is (1− t)3, so all
eigenvalues are equal to 1. Solving the corresponding linear systems, we see

that for A every eigenvector with the eigenvalue 1 is proportional to





1
−2
1



,

and every eigenvector with the eigenvalue −1 is proportional to





1
−2
0



, and

for B every eigenvector is of the form





u
v
0



.

(b) For the eigenvalue −1 of A, let us consider the matrix

C = A + I =





10 5 2
−16 −8 −4
2 1 2



 .

This matrix has rank 2, and we have A2 =





24 12 4
−40 −20 −8
8 4 4



, which also

has rank 2. This means that for the eigenvalue −1 the sequence of kernels of
powers of C stabilizes at the first step, and the only contribution to the Jordan
basis is the basis of Ker(A + I), that is eigenvectors. We already know that

for this basis we can take e =





1
−2
0



.

For the eigenvalue 1 of A, let us consider the matrix

D = A − I =





8 5 2
−16 −10 −4
2 1 0



 .

This matrix has rank 2, and we have A2 =





−12 −8 −4
24 16 8
0 0 0



, which is the

matrix of rank 1. This means that the eigenvalue 1 contributes at least a thread
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of length 2. But we know that our space is 3-dimensional, and we already have
one basis vector for the other eigenvalue, so we have one thread of length 2,
and the sequence of kernels of powers of D stabilizes at the second step. To
describe the corresponding thread, we should find a basis of Ker(A−I)2 relative
to Ker(A−I), that is a vector in Ker(A−I)2 which is not in the kernel of A−I.

The kernel of (A − I)2 consists of all vectors





x
y
z



 with −12x − 8y − 4z = 0.

Let us take x = 1, y = 0, then z = −3. For the vector f =





1
0
−3



, we have

(A − I)f =





2
−4
2



 6= 0. Overall, the vectors (A − I)f , f , e form a Jordan

basis of A, and the Jordan normal form of A is





1 1 0
0 1 0
0 0 −1



.

(c) No, A is not similar to B: they have different sets of eigenvalues, different
traces, different determinants. . .

(d) We have An = CJnC−1, where C is the transition matrix to our Jordan basis,

C =





2 1 −1
−4 0 2
2 −3 0



. It is easy to see that C−1 =





3/2 3/4 1/2
1 1/2 0
3 2 1



. Also,

Jn =





1 n 0
0 1 0
0 0 −1



. Substituting and computing the matrix products, we get

An =





2n + 4 − 3(−1)n n + 2 − 2(−1)n 1 − (−1)n

−4n − 6 + 6(−1)n −2n − 3 + 4(−1)n 2(−1)n − 2
2n n 1



 .

4. First of all, let us notice that all eigenvalues of A are equal to ±i: if Ax = λx for
some x 6= 0, we have λ2x = A2x = −Ex = −x, so λ2 = −1. Secondly, the trace of
a matrix is equal to the sum of all eigenvalues (with multiplicities), so the trace of
our matrix is a multiple of i. But our matrix has real matrix elements, so its trace
is real, which implies that it should be equal to zero.
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