TRINITY COLLEGE

Faculty of Science

SCHOOL OF MATHEMATICS

JF Mathematics

Michaelmas Term 2008
JF Theoretical Physics
JF Two Subject Mod
Course 113, a SAMPle exam paper

Dr. Vladimir Dotsenko

For each task, the number of points you can get for a complete solution of that task is printed next to it.

You may use all statements proved in class and in home assignments; when using some statement, you should formulate it clearly, e.g. "in class, we proved that if A is invertible, then the reduced row echelon form of A is the identity matrix".

Log tables are available from the invigilators, if required.
Non-programmable calculators are permitted for this examination,—please indicate the make and model of your calculator on each answer book used.

1. (14 points) Consider the plane α defined by the equation $2 x+3 y+z=-3$ and the plane β passing through the points $(1,-2,1),(4,0,2)$, and $(2,-2,1)$. Find the angle between the intersection line of α and β and the vector $\mathbf{a}=(1,0,1)$.
2. Consider the system of linear equations

$$
\left\{\begin{array}{c}
x_{1}+4 x_{2}+2 x_{3}=1 \\
x_{1}+x_{2}-x_{3}=3 \\
5 x_{1}-x_{2}+x_{3}=3
\end{array}\right.
$$

(a) (11 points) Write down its matrix A. Compute $\operatorname{det}(A)$, and show that A is invertible.
(b) (11 points) Show how to compute the inverse matrix A^{-1} using row operations, and how to use the inverse matrix to solve the system.
(c) (11 points) Show how to compute the inverse matrix A^{-1} using the adjoint matrix.
3. (10 points) Is the permutation $\left(\begin{array}{cccccccccc}1 & 4 & 3 & 5 & 10 & 8 & 9 & 6 & 7 & 2 \\ 3 & 4 & 5 & 10 & 9 & 8 & 7 & 6 & 2 & 1\end{array}\right)$ even or odd? Why?
4. (18 points) Prove that for an $n \times n$-matrix A, the system $A x=0$ has a nontrivial solution if and only if the system $A^{4} x=0$ has a nontrivial solution.
5. (25 points)

$$
A_{n}=\left(\begin{array}{cccccc}
2 & -1 & 0 & 0 & \ldots & 0 \\
-1 & 2 & -1 & 0 & \ldots & 0 \\
0 & -1 & 2 & -1 & \ldots & 0 \\
\vdots & \vdots & \ldots & \ddots & \ldots & \vdots \\
0 & 0 & \ldots & -1 & 2 & -1 \\
0 & 0 & \ldots & \ldots & -1 & 2
\end{array}\right)
$$

is the $n \times n$-matrix for which all elements on the main diagonal are equal to 2 , all elements on the diagonals next to the main are equal to -1 , all other elements are equal to 0 . Show that $\operatorname{det}\left(A_{n}\right)=2 \operatorname{det}\left(A_{n-1}\right)-\operatorname{det}\left(A_{n-2}\right)$ for all $n \geq 3$, and use this formula to compute $\operatorname{det}\left(A_{n}\right)$.

