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ATTEMPT ALL QUESTIONS

For each task, the number of points you can get for a complete solution of that task is
printed next to it.

You may use all statements proved in class and in home assignments; when using some
statement, you should formulate it clearly, e.g. “in class, we proved that if A is invertible,

then the reduced row echelon form of A is the identity matrix”.

All vector spaces unless otherwise specified are over complex numbers.

Non-programmable calculators are permitted for this examination.
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1. (25 points) Let V be a vector space. Show that for every three linear operators

A,B,C : V → V we have

rk(ABC) ≤ rk(B).

Show that if A and C are invertible, then rk(ABC) = rk(B), and give an example

showing that this equality might hold even if A or C is not invertible.

2. (a) (15 points) Determine the Jordan normal form and find some Jordan basis for the

matrix

A =


2 −5 3

2 −6 4

3 −9 6

 .

(b) (15 points) Find a closed formula for An.

3. (a) (5 points) Write down the definition of a bilinear form on a real vector space.

Which symmetric bilinear forms are said to be positive definite?

(b) (15 points) A quadratic form Q on the three-dimensional space with a basis

e1, e2, e3 is defined by the formula

Q(xe1 + ye2 + ze3) = 3x2 + 2axy + (2− 2a)xz + (a+ 2)y2 + 2ayz + 3z2

Find all values of the parameter a for which this form is positive definite.

4. A square matrix A (of some size n× n) satisfies the condition A2 − 8A+ 15I = 0.

(a) (15 points) Show that this matrix is similar to a diagonal matrix.

(b) (10 points) Show that for every positive integer k ≥ 8 there exists a matrix A

satisfying the above condition with tr(A) = k.
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