UNIVERSITY OF DUBLIN

TRINITY COLLEGE

Faculty of Science
SCHOOL OF MATHEMATICS

JF Mathematics
JF Theoretical Physics
JF Two Subject Mod

Course 1212

Dr. Vladimir Dotsenko

ATTEMPT ALL QUESTIONS

For each task, the number of points you can get for a complete solution of that task is printed next to it.

You may use all statements proved in class and in home assignments; when using some statement, you should formulate it clearly, e.g. "in class, we proved that if A is invertible, then the reduced row echelon form of A is the identity matrix".

All vector spaces unless otherwise specified are over complex numbers.
Non-programmable calculators are permitted for this examination.

1. (25 points) Let V be a vector space. Show that for every three linear operators $A, B, C: V \rightarrow V$ we have

$$
\mathrm{rk}(A B C) \leq \operatorname{rk}(B) .
$$

Show that if A and C are invertible, then $\operatorname{rk}(A B C)=\operatorname{rk}(B)$, and give an example showing that this equality might hold even if A or C is not invertible.
2. (a) (15 points) Determine the Jordan normal form and find some Jordan basis for the matrix

$$
A=\left(\begin{array}{lll}
2 & -5 & 3 \\
2 & -6 & 4 \\
3 & -9 & 6
\end{array}\right)
$$

(b) (15 points) Find a closed formula for A^{n}.
3. (a) (5 points) Write down the definition of a bilinear form on a real vector space. Which symmetric bilinear forms are said to be positive definite?
(b) (15 points) A quadratic form Q on the three-dimensional space with a basis e_{1}, e_{2}, e_{3} is defined by the formula

$$
Q\left(x e_{1}+y e_{2}+z e_{3}\right)=3 x^{2}+2 a x y+(2-2 a) x z+(a+2) y^{2}+2 a y z+3 z^{2}
$$

Find all values of the parameter a for which this form is positive definite.
4. A square matrix A (of some size $n \times n$) satisfies the condition $A^{2}-8 A+15 I=0$.
(a) (15 points) Show that this matrix is similar to a diagonal matrix.
(b) (10 points) Show that for every positive integer $k \geq 8$ there exists a matrix A satisfying the above condition with $\operatorname{tr}(A)=k$.

