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For each task, the number of points you can get for a complete solution of that task is
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All vector spaces unless otherwise specified are over complex numbers.

You may use all statements proved in class and in home assignments; when using some
statement, you should formulate it clearly, e.g. “in class, we proved that if A is invertible,

then the reduced row echelon form of A is the identity matrix”.

Non-programmable calculators are permitted.
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1. (10 points) Which of the mappings A, B, C, and D from the vector space of all

polynomials in one variable to the same space are linear operators? Explain your answers.

(Ap)(t) = p(t+ 1)− p(t),

(Bp)(t) = p(t)p′(t),

(Cp)(t) = p(t+ 1) + p′(t),

(Dp)(t) = p(t+ 1)− 1.

2. (15 points) Under what condition a subspace U of a vector space V is said to be an

invariant subspace of a linear operator A : V → V ? Is the subspace U of R4 spanned

by


1

1

4

−2

 and


−2

−1

−1

1

 an invariant subspace of the operator A whose matrix relative

to the standard basis is 
0 3 −3 −1

1 3 −1 0

7 12 2 3

−3 −6 0 −1

?

Explain your answer.

3. (25 points) Determine the Jordan normal form and find some Jordan basis for the

matrix A =


3 −3 1

2 −2 1

2 −3 2

 . Determine if A and the matrix


1 0 1

0 1 0

0 0 1

 represent the

same linear operator relative to different bases.
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