
Solutions to the sample midterm test 2011

1. A and C are linear operators (in the latter case linearity follows from the linearity properties
of derivatives); B and D are not:

B(cp(t)) = (cp(t))(cp(t))′ = c2p(t)p′(t),

which is not equal to cp(t)p′(t) for p(t) = t, c = 2, and

D(0) = −1,

while under a linear operator zero is mapped to zero.

2. A subspace U of a vector space V is said to be an invariant subspace of a linear operator
A : V → V if A(U) ⊆ U .

Let us find a “simpler” basis for the linear span of the vectors in question; computing the
reduced column echelon form of the matrix whose columns are these vectors, we obtain the

matrix


1 0
0 1
−3 7
1 −3

. The images of the columns c1, c2 of these matrix under our linear operator

are Ac1 =


8
4
4
−4

 and Ac2 =


−15
−4
17
3

.

To find out whether our subspace is invariant, it is sufficient to check that the images of its
basis vectors are in it again (this would clearly imply that the image of every its vector is in
it). To check that, we may reduce the columns Ac1 and Ac2 using the columns of c1 and c2
only; the result in the case of an invariant subspace will be two zero columns, and it really is
so: Ac1 = 8c1 + 4c2, Ac2 = −15c1 − 4c2. Therefore U is invariant.

3. Computing the characteristic polynomial of A directly, we get 1− 3t+ 3t2 − t3 = (1− t)3, so

all eigenvalues are equal to 1. Also, A − I =

2 −3 1
2 −3 1
2 −3 1

 which is a matrix of rank 1, and

(A− I)2 = 0. This means that kernels of powers stabilise at the second step, and we have a
sequence of subspaces Ker(A− I) ⊂ Ker(A− I)2 where the first one is two-dimensional and
the second one is three-dimensional.

Let us describe the kernel of A− I. It consists of all vectors

xy
z

 with 2x− 3y+ z = 0, so y

and z are free variables for the respective system of linear equations, and a basis of the kernel

is formed by the vectors

3/2
1
0

 (corresponding to the choice y = 1, z = 0) and

−1/2
0
1


(corresponding to the choice y = 0, z = 1).
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To find a basis of the kernel of (A−I)2 (which is in our case the whole vector space R3) relative
to the kernel of A− I, we find the reduced column echelon form of the matrix whose columns
form a basis of the kernel, and take the standard unit vectors that make up for the “missing

leading 1’s”. In this case, the reduced column echelon form is given by the matrix

 1 0
0 1
−2 3

,

therefore the missing leading 1 is provided by the third standard unit vector f =

0
0
1

. This

vector gives rise to the thread f, (A− I)f =

1
1
1

.

The vector (A − I)f belongs to the kernel of A − I, and to complete the construction of a
Jordan basis, we should find a basis of the kernel relative to the span of that vector. To do
that, we reduce the columns of the reduced column echelon form we found above using this

vector, obtaining the matrix

 0 0
−1 1
−3 3

 whose reduced column echelon form is

0 0
1 0
3 0

, and

the only nonzero column e =

0
1
3

 can be chosen as a relative basis vector. Overall, for a

Jordan basis for our matrix we may choose (A− I)f, f, e (we reversed the order of vectors in

threads), and the Jordan normal form is

1 1 0
0 1 0
0 0 1

.

From class, we know that two matrices represent the same linear operator if and only if they
have the same Jordan normal forms, for which it is enough to check that they have the same
eigenvalue, and for each eigenvalue λ the dimensions of kernels coincide: dim Ker(A−λI)k =
dim Ker(B − λI)k. It is easy to see that all eigenvalues of B are equal to 1, that B − I has
rank 1 (and therefore a two-dimensional kernel), and (B − I)2 = 0, which means that B and
A indeed represent the same operator in different coordinate systems.
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