UNIVERSITY OF DUBLIN

TRINITY COLLEGE

Faculty of Science

SCHOOL OF MATHEMATICS

JF Mathematics
Trinity Term 2011
JF Theoretical Physics
JF Two Subject Mod

Course 1212, a sample exam paper

Dr. Vladimir Dotsenko

For each task, the number of points you can get for a complete solution of that task is printed next to it.

You may use all statements proved in class and in home assignments; when using some statement, you should formulate it clearly, e.g. "in class, we proved that if A is invertible, then the reduced row echelon form of A is the identity matrix".

All vector spaces unless otherwise specified are over complex numbers.
Non-programmable calculators are permitted for this examination.

Page 2 of 3

1. In the vector space $V=\mathbb{R}^{5}$, consider the subspace U spanned by the vectors

$$
\left(\begin{array}{c}
2 \\
2 \\
1 \\
7 \\
-3
\end{array}\right), \quad\left(\begin{array}{c}
-4 \\
1 \\
-12 \\
6 \\
-4
\end{array}\right), \quad\left(\begin{array}{l}
1 \\
1 \\
3 \\
4 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
0 \\
3 \\
1 \\
2
\end{array}\right), \text { and }\left(\begin{array}{c}
-1 \\
0 \\
0 \\
1 \\
1
\end{array}\right)
$$

(a) (13 points) Compute $\operatorname{dim} U$.
(b) (12 points) Which of the vectors $\left(\begin{array}{c}4 \\ 0 \\ 5 \\ -3 \\ -1\end{array}\right),\left(\begin{array}{l}2 \\ 1 \\ 8 \\ 4 \\ 2\end{array}\right),\left(\begin{array}{l}4 \\ 2 \\ 4 \\ 0 \\ 0\end{array}\right)$, and $\left(\begin{array}{l}1 \\ 0 \\ 5 \\ 0 \\ 2\end{array}\right)$ belong to U ?
2. Consider the matrices

$$
A=\left(\begin{array}{ccc}
2 & 3 & 4 \\
-2 & -2 & -2 \\
1 & 1 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(a) (15 points) Describe the Jordan normal form and find some Jordan basis for A.
(b) (15 points) Is A similar to B ? Is A^{2} similar to B ? Explain your answers.
3. (a) (5 points) Write down the definition of a bilinear form on a real vector space. Which symmetric bilinear forms are said to be positive definite?
(b) (15 points) Consider the vector space V of all polynomials in t of degree at most 2 . The bilinear form ψ_{a} on V (depending on a [real] parameter a) is defined by the formula

$$
\psi_{a}(f(t), g(t))=\int_{-1}^{1} f(t) g(t)(t-a) d t
$$

Determine all values of a for which ψ_{a} is positive definite.
4. Consider the vector space V of all $n \times n$-matrices, and define a bilinear form on this space by the formula $(A, B)=\operatorname{tr}\left(A B^{T}\right)$.

Page 3 of 3

(a) (10 points) Show that this bilinear form actually defines a scalar product on the space of all matrices.
(b) (15 points) Show that with respect to that scalar product the subspace of all symmetric matrices (matrices A with $A=A^{T}$) is the orthogonal complement of the space of all skew-symmetric matrices (matrices A with $A=-A^{T}$).

