Jordan normal forms: some examples

From this week's lectures, one sees that for computing the Jordan normal form and a Jordan basis of a linear operator A on a vector space V, one can use the following plan:

- Find all eigenvalues of A (that is, compute the characteristic polynomial $\operatorname{det}(A-t I)$ and determine its roots $\lambda_{1}, \ldots, \lambda_{k}$).
- For each eigenvalue λ, form the operator $\mathrm{B}_{\lambda}=A-\lambda I$ and consider the increasing sequence of subspaces

$$
\{0\} \subset \operatorname{Ker} \mathrm{B}_{\lambda} \subset \operatorname{Ker} \mathrm{B}_{\lambda}^{2} \subset \ldots
$$

and determine where it stabilizes, that is find k which is the smallest number such that $\operatorname{Ker} B_{\lambda}^{k}=\operatorname{Ker} B_{\lambda}^{k+1}$. Let $U_{\lambda}=\operatorname{Ker} B_{\lambda}^{k}$. The subspace U_{λ} is an invariant subspace of $B_{\lambda}(\operatorname{and} A)$, and B_{λ} is nilpotent on U_{λ}, so it is possible to find a basis consisting of several "threads" of the form $f, B_{\lambda} f, B_{\lambda}^{2} f, \ldots$, where B_{λ} shifts vectors along each thread (as in the previous tutorial).

- Joining all the threads (for different λ) together (and reversing the order of vectors in each thread!), we get a Jordan basis for A. A thread of length p for an eigenvalue λ contributes a Jordan block $J_{p}(\lambda)$ to the Jordan normal form.

Example 1. Let $\mathrm{V}=\mathbb{R}^{3}$, and $A=\left(\begin{array}{ccc}-2 & 2 & 1 \\ -7 & 4 & 2 \\ 5 & 0 & 0\end{array}\right)$.
The characteristic polynomial of A is $-t+2 t^{2}-t^{3}=-t(1-t)^{2}$, so the eigenvalues of A are 0 and 1 .

Furthermore, $\operatorname{rk}(A)=2, \operatorname{rk}\left(A^{2}\right)=2, \operatorname{rk}(A-I)=2, \operatorname{rk}(A-I)^{2}=1$. Thus, the kernels of powers of A stabilise instantly, so we should expect a thread of length 1 for the eigenvalue 0 , whereas the kernels of powers of $A-I$ do not stabilise for at least two steps, so that would give a thread of length at least 2 , hence a thread of length 2 because our space is 3-dimensional.

To determine the basis of $\operatorname{Ker}(A)$, we solve the system $A v=0$ and obtain a vector $\mathrm{f}=\left(\begin{array}{c}0 \\ -1 \\ 2\end{array}\right)$.

To deal with the eigenvalue 1 , we see that the kernel of $A-I$ is spanned by the vector $\left(\begin{array}{c}1 \\ -1 \\ 5\end{array}\right)$, the kernel of $(A-I)^{2}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 10 & -5 & -3 \\ -20 & 10 & 6\end{array}\right)$ is spanned by the vectors $\left(\begin{array}{c}1 / 2 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}3 / 10 \\ 0 \\ 1\end{array}\right)$. Reducing the latter vectors using the former one, we end up with the vector $e=\left(\begin{array}{c}0 \\ 3 \\ -5\end{array}\right)$, which gives rise to a thread $e,(A-I) e=\left(\begin{array}{c}1 \\ -1 \\ 5\end{array}\right)$. Overall, a Jordan basis is given by $f,(A-I) e, e$, and the Jordan normal form has a block of size 2 with 1 on the diagonal, and a block of size 1 with 0 on the diagonal.

Example 2. Let $\mathrm{V}=\mathbb{R}^{4}$, and $\mathrm{A}=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 11 & 6 & -4 & -4 \\ 22 & 15 & -8 & -9 \\ -3 & -2 & 1 & 2\end{array}\right)$.

The characteristic polynomial of A is $1-2 t^{2}+t^{4}=(1+t)^{2}(1-t)^{2}$, so the eigenvalues of A are -1 and 1 .

To avoid unnecessary calculations (similar to avoiding computing $(A-I)^{3}$ in the previous example), let us compute the ranks for both eigenvalues simultaneously. For $\lambda=-1$ we have $A+\mathrm{I}=\left(\begin{array}{cccc}1 & 1 & 0 & 0 \\ 11 & 7 & -4 & -4 \\ 22 & 15 & -7 & -9 \\ -3 & -2 & 1 & 3\end{array}\right), \operatorname{rk}(A+\mathrm{I})=3,(A+\mathrm{I})^{2}=\left(\begin{array}{cccc}12 & 8 & -4 & -4 \\ 12 & 8 & -4 & -4 \\ 60 & 40 & -20 & -24 \\ -12 & -8 & 4 & 8\end{array}\right)$, $\operatorname{rk}\left((A+I)^{2}\right)=$ 2. For $\lambda=1$ we have $A-I=\left(\begin{array}{cccc}-1 & 1 & 0 & 0 \\ 11 & 5 & -4 & -4 \\ 22 & 15 & -9 & -9 \\ -3 & -2 & 1 & 1\end{array}\right), \operatorname{rk}(A-I)=3$, $(A-I)^{2}=\left(\begin{array}{cccc}12 & 4 & -4 & -4 \\ -32 & -16 & 12 & 12 \\ -28 & -20 & 12 & 12 \\ 0 & 0 & 0 & 0\end{array}\right), \operatorname{rk}\left((A-I)^{2}\right)=2$. Thus, each of these eigenvalues gives rise to a thread of length at least 2, and since our vector space is 4-dimensional, each of the threads should be of length 2, and in each case the stabilisation happens on the second step.

In the case of the eigenvalue -1 , we first determine the kernel of $A+I$, solving the system $(A+I) v=0$; this gives us a vector $\left(\begin{array}{c}-1 \\ 1 \\ -1 \\ 0\end{array}\right)$. The equations that determine the kernel of $(A+I)^{2}$ are $t=0,3 x+2 y=z$ so y and z are free variables, and for the basis vectors of that kernel we can take $\left(\begin{array}{c}1 / 3 \\ 0 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}-2 / 3 \\ 1 \\ 0 \\ 0\end{array}\right)$. Reducing the basis vectors of $\operatorname{Ker}(A+I)^{2}$ using the basis vector of $\operatorname{Ker}(A+I)$, we end up with a relative basis vector $e=\left(\begin{array}{l}0 \\ 1 \\ 2 \\ 0\end{array}\right)$, and a thread $e,(A+I) e=\left(\begin{array}{c}1 \\ -1 \\ 1 \\ 0\end{array}\right)$.

In the case of the eigenvalue 1 , we first determine the kernel of $\mathcal{A}-\mathrm{I}$, solving the system $(A-I) v=0$; this gives us a vector $\left(\begin{array}{c}0 \\ 0 \\ 1 \\ -1\end{array}\right)$. The equations that determine the kernel of $(A-I)^{2}$ are $4 x=z+t, 4 y=z+t$ so z and t are free variables, and for the basis vectors of that kernel we can take $\left(\begin{array}{c}1 / 4 \\ 1 / 4 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}1 / 4 \\ 1 / 4 \\ 0 \\ 1\end{array}\right)$. Reducing the basis vectors of $\operatorname{Ker}(\mathcal{A}-\mathrm{I})^{2}$ using the basis vector of $\operatorname{Ker}(\mathcal{A}+\mathrm{I})$, we end up with a relative basis vector
$f=\left(\begin{array}{c}1 / 4 \\ 1 / 4 \\ 0 \\ 1\end{array}\right)$, and a thread $e,(A-I) e=\left(\begin{array}{c}0 \\ 0 \\ 1 / 4 \\ -1 / 4\end{array}\right)$.
Finally, the vectors $(\mathcal{A}+I) e, e,(A-I) f, f$ form a Jordan basis for A; the Jordan normal form of A is $\left(\begin{array}{cccc}-1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right)$.

Example 3. V is arbitrary, all eigenvalues of V are different.
In this case, for every eigenvalue we get at least one thread of length 1 which altogether is already enough to form a basis. Thus, we recover our old result: the eigenvectors form a Jordan basis, and the Jordan normal form consists of blocks of size 1, so the corresponding Jordan matrix is not just block-diagonal but really diagonal.

Example 4. How to use Jordan normal forms to compute something with matrices? There are two main ideas: (1) to multiply block-diagonal matrices, one can multiply the corresponding blocks, and (2) for a Jordan block $\mathrm{J}_{\mathrm{p}}(\lambda)$ we have

$$
J_{p}(\lambda)^{n}=\left(\begin{array}{ccccc}
\lambda^{n} & n \lambda^{n-1} & \binom{n}{2} \lambda^{n-2} & \cdots & \binom{n}{p-1} \lambda^{n-p+1} \\
0 & \lambda^{n} & n \lambda^{n-1} & \cdots & \binom{n-2}{p-2} \lambda^{n-p+2} \\
\vdots & \vdots & \ddots & \ldots & \vdots \\
0 & 0 & \cdots & \lambda^{n} & n \lambda^{n-1} \\
0 & 0 & 0 & \cdots & \lambda^{n}
\end{array}\right) .
$$

In particular, $\left(\begin{array}{cc}\lambda & 1 \\ 0 & \lambda\end{array}\right)^{n}=\left(\begin{array}{cc}\lambda^{n} & n \lambda^{n-1} \\ 0 & \lambda^{n}\end{array}\right)$.
For example, to compute the $\mathrm{n}^{\text {th }}$ power of the matrix from Example 1 in closed form, we notice that $C^{-1} A C=J$, where $J=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$ is its Jordan normal form, and $C=\left(\begin{array}{ccc}0 & 1 & 0 \\ -1 & -1 & 3 \\ 2 & 5 & -5\end{array}\right)$ is the transition matrix to the Jordan basis (its columns form the Jordan basis). Thus, we have $\mathrm{C}^{-1} A^{n} \mathrm{C}=\mathrm{J}^{\mathrm{n}}$, and $\mathrm{A}^{n}=\mathrm{CJ}^{\mathrm{n}} \mathrm{C}^{-1}$. From the above formula, $J^{n}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & n \\ 0 & 0 & 1\end{array}\right)$, so we get

$$
A^{n}=\left(\begin{array}{ccc}
-3 n+1 & 2 n & n \\
3 n-10 & -2 n+6 & -n+3 \\
-15 n+20 & 10 n-10 & 5 n-5
\end{array}\right) .
$$

