
Jordan normal forms: some examples

From this week’s lectures, one sees that for computing the Jordan normal form and a
Jordan basis of a linear operator A on a vector space V , one can use the following plan:

• Find all eigenvalues of A (that is, compute the characteristic polynomial det(A−tI)
and determine its roots λ1, . . . , λk).

• For each eigenvalue λ, form the operator Bλ = A − λI and consider the increasing
sequence of subspaces

{0} ⊂ KerBλ ⊂ KerB2λ ⊂ . . .
and determine where it stabilizes, that is find k which is the smallest number such
that KerBkλ = KerBk+1λ . Let Uλ = KerBkλ. The subspace Uλ is an invariant subspace
of Bλ (and A), and Bλ is nilpotent on Uλ, so it is possible to find a basis consisting
of several “threads” of the form f, Bλf, B

2
λf, . . ., where Bλ shifts vectors along each

thread (as in the previous tutorial).
• Joining all the threads (for different λ) together (and reversing the order of vectors

in each thread!), we get a Jordan basis for A. A thread of length p for an eigenvalue
λ contributes a Jordan block Jp(λ) to the Jordan normal form.

Example 1. Let V = R3, and A =

−2 2 1

−7 4 2

5 0 0

.

The characteristic polynomial of A is −t + 2t2 − t3 = −t(1 − t)2, so the eigenvalues
of A are 0 and 1.

Furthermore, rk(A) = 2, rk(A2) = 2, rk(A − I) = 2, rk(A − I)2 = 1. Thus, the
kernels of powers of A stabilise instantly, so we should expect a thread of length 1 for
the eigenvalue 0, whereas the kernels of powers of A− I do not stabilise for at least two
steps, so that would give a thread of length at least 2, hence a thread of length 2 because
our space is 3-dimensional.

To determine the basis of Ker(A), we solve the system Av = 0 and obtain a vec-

tor f =

 0

−1
2

.

To deal with the eigenvalue 1, we see that the kernel of A− I is spanned by the vector 1

−1
5

, the kernel of (A− I)2 =

 0 0 0

10 −5 −3
−20 10 6

 is spanned by the vectors

1/21
0

 and3/100
1

. Reducing the latter vectors using the former one, we end up with the vector

e =

 0

3

−5

, which gives rise to a thread e, (A− I)e =

 1

−1
5

. Overall, a Jordan basis is

given by f, (A − I)e, e, and the Jordan normal form has a block of size 2 with 1 on the
diagonal, and a block of size 1 with 0 on the diagonal.

Example 2. Let V = R4, and A =


0 1 0 0

11 6 −4 −4
22 15 −8 −9
−3 −2 1 2

.



The characteristic polynomial of A is 1−2t2+ t4 = (1+ t)2(1− t)2, so the eigenvalues
of A are −1 and 1.

To avoid unnecessary calculations (similar to avoiding computing (A− I)3 in the pre-
vious example), let us compute the ranks for both eigenvalues simultaneously. For λ = −1

we haveA+I =


1 1 0 0

11 7 −4 −4
22 15 −7 −9
−3 −2 1 3

, rk(A+I) = 3, (A+I)2 =


12 8 −4 −4
12 8 −4 −4
60 40 −20 −24
−12 −8 4 8

,

rk((A + I)2) = 2. For λ = 1 we have A − I =


−1 1 0 0

11 5 −4 −4
22 15 −9 −9
−3 −2 1 1

, rk(A − I) = 3,

(A − I)2 =


12 4 −4 −4
−32 −16 12 12

−28 −20 12 12

0 0 0 0

, rk((A − I)2) = 2. Thus, each of these eigenvalues

gives rise to a thread of length at least 2, and since our vector space is 4-dimensional,
each of the threads should be of length 2, and in each case the stabilisation happens on
the second step.

In the case of the eigenvalue −1, we first determine the kernel of A + I, solving the

system (A + I)v = 0; this gives us a vector


−1
1

−1
0

. The equations that determine the

kernel of (A + I)2 are t = 0, 3x + 2y = z so y and z are free variables, and for the basis

vectors of that kernel we can take


1/3

0

1

0

 and


−2/3
1

0

0

. Reducing the basis vectors of

Ker(A+ I)2 using the basis vector of Ker(A+ I), we end up with a relative basis vector

e =


0

1

2

0

, and a thread e, (A+ I)e =


1

−1
1

0

.

In the case of the eigenvalue 1, we first determine the kernel of A − I, solving the

system (A − I)v = 0; this gives us a vector


0

0

1

−1

. The equations that determine the

kernel of (A− I)2 are 4x = z+ t, 4y = z+ t so z and t are free variables, and for the basis

vectors of that kernel we can take


1/4

1/4

1

0

 and


1/4

1/4

0

1

. Reducing the basis vectors of

Ker(A− I)2 using the basis vector of Ker(A+ I), we end up with a relative basis vector



f =


1/4

1/4

0

1

, and a thread e, (A− I)e =


0

0

1/4

−1/4

.

Finally, the vectors (A + I)e, e, (A − I)f, f form a Jordan basis for A; the Jordan

normal form of A is


−1 1 0 0

0 −1 0 0

0 0 1 1

0 0 0 1

.

Example 3. V is arbitrary, all eigenvalues of V are different.
In this case, for every eigenvalue we get at least one thread of length 1 which altogether

is already enough to form a basis. Thus, we recover our old result: the eigenvectors form a
Jordan basis, and the Jordan normal form consists of blocks of size 1, so the corresponding
Jordan matrix is not just block-diagonal but really diagonal.

Example 4. How to use Jordan normal forms to compute something with matrices?
There are two main ideas: (1) to multiply block-diagonal matrices, one can multiply the
corresponding blocks, and (2) for a Jordan block Jp(λ) we have

Jp(λ)
n =


λn nλn−1

(
n
2

)
λn−2 . . .

(
n
p−1

)
λn−p+1

0 λn nλn−1 . . .
(
n
p−2

)
λn−p+2

...
...

. . . . . .
...

0 0 . . . λn nλn−1

0 0 0 . . . λn

 .

In particular,

(
λ 1

0 λ

)n
=

(
λn nλn−1

0 λn

)
.

For example, to compute the nth power of the matrix from Example 1 in closed

form, we notice that C−1AC = J, where J =

0 0 0

0 1 1

0 0 1

 is its Jordan normal form, and

C =

 0 1 0

−1 −1 3

2 5 −5

 is the transition matrix to the Jordan basis (its columns form the

Jordan basis). Thus, we have C−1AnC = Jn, and An = CJnC−1. From the above formula,

Jn =

0 0 0

0 1 n

0 0 1

, so we get

An =

 −3n+ 1 2n n

3n− 10 −2n+ 6 −n+ 3
−15n+ 20 10n− 10 5n− 5

 .


