In class, we proved that for every nilpotent linear operator A on a vector space V (that is, an operator for which $A^{k}=0$ for some k) it is possible to choose a basis

$$
\begin{gathered}
e_{1}^{(1)}, e_{2}^{(1)}, e_{3}^{(1)}, \ldots, e_{n_{1}}^{(1)}, \\
e_{1}^{(2)}, e_{2}^{(2)}, \ldots, e_{n_{2}}^{(2)}, \\
\ldots \\
e_{1}^{(l)}, \ldots, e_{n_{\imath}}^{(l)}
\end{gathered}
$$

of V such that for each "thread"

$$
e_{1}^{(\mathfrak{p})}, e_{2}^{(\mathfrak{p})}, \ldots, e_{n_{\mathfrak{p}}}^{(\mathfrak{p})}
$$

we have

$$
A\left(e_{1}^{(\mathfrak{p})}\right)=e_{2}^{(\mathfrak{p})}, A\left(e_{2}^{(\mathfrak{p})}\right)=e_{3}^{(\mathfrak{p})}, \ldots, A\left(e_{n_{\mathfrak{p}}}^{(\mathfrak{p})}\right)=0
$$

Now we shall consider several examples of how to find such "thread bases".
Example 1. $V=\mathbb{R}^{2}, A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$.
In this case, $A^{2}=0, \operatorname{rk}(A)=1, \operatorname{rk}\left(A^{k}\right)=0$ for $k \geqslant 2, \operatorname{dim} \operatorname{Ker}(A)=1, \operatorname{dim} \operatorname{Ker}\left(A^{k}\right)=2$ for $k \geqslant 2$. Moreover, $\operatorname{Ker}(\mathcal{A})=\left\{\binom{x}{0}\right\}$.

We have a sequence of subspaces $V=\operatorname{Ker} A^{2} \supset \operatorname{Ker} A \supset\{0\}$. The first one relative to the second one is one-dimensional (since $\operatorname{dim} \operatorname{Ker} \mathcal{A}^{2}-\operatorname{dim} \operatorname{Ker} A=1$). Putting $x=1$ in the formula above, we get the vector $\binom{1}{0}$ which forms a basis of the kernel of A, and after computing the reduced column echelon form and looking for missing leading 1's, we obtain a relative basis consisting of the vector $f=\binom{0}{1}$. This vector gives rise to a thread $f=\binom{0}{1}$, Af $=\binom{1}{0}$ of length 2. Since our space is 2-dimensional, this thread forms a basis.

Example 2. $V=\mathbb{R}^{3}, A=\left(\begin{array}{ccc}-3 & 1 & -1 \\ -12 & 4 & -4 \\ -3 & 1 & -1\end{array}\right)$.
In this case, $A^{2}=0, \operatorname{rk} A=1, \operatorname{rk} A^{k}=0$ for $k \geqslant 2, \operatorname{dim} \operatorname{Ker}(A)=2, \operatorname{dim} \operatorname{Ker}\left(A^{k}\right)=3$ for $k \geqslant 2$. Moreover, $\operatorname{Ker}(A)=\left\{\left(\begin{array}{c}\frac{s-t}{3} \\ s \\ t\end{array}\right)\right\}$.

We have a sequence of subspaces $V=\operatorname{Ker} A^{2} \supset \operatorname{Ker} \mathcal{A} \supset\{0\}$. The first one relative to the second one is one-dimensional (since $\operatorname{dim} \operatorname{Ker} A^{2}-\operatorname{dim} \operatorname{Ker} A=1$). The kernel of A has a basis consisting of the vectors $\left(\begin{array}{c}1 / 3 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}-1 / 3 \\ 0 \\ 1\end{array}\right)$ (corresponding to the choices $s=1, \mathrm{t}=0$ and $s=0, \mathrm{t}=1$ respectively), and after computing the reduced column echelon form and looking for missing leading 1's, we obtain a relative basis consisting of the vector $\mathrm{f}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$. This vector gives rise to the thread $\mathrm{f}, \mathrm{Af}=\left(\begin{array}{l}-1 \\ -4 \\ -1\end{array}\right)$. It remains to find a basis of $\operatorname{Ker} \mathcal{A}$ relative to the span of Af. Column reduction of the basis vectors of $\operatorname{Ker}(A)$ by $A f$ leaves us with the vector
$g=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$. Overall, $\mathrm{f}, \mathrm{Af}, \mathrm{g}$ form a basis of V . It consists of two threads, one of length 2 (f, Af) and the other one of length $1(\mathrm{~g})$.

Example 3. $V=\mathbb{R}^{3}, A=\left(\begin{array}{ccc}21 & -7 & 8 \\ 60 & -20 & 23 \\ -3 & 1 & -1\end{array}\right)$.
In this case, $A^{2}=\left(\begin{array}{ccc}-3 & 1 & -1 \\ -9 & 3 & -3 \\ 0 & 0 & 0\end{array}\right), A^{3}=0, \operatorname{rk} A=2, \operatorname{rk} A^{2}=1, \operatorname{rk} A^{k}=0$ for $k \geqslant 3$, $\operatorname{dim} \operatorname{Ker}(\mathcal{A})=1, \operatorname{dim} \operatorname{Ker}\left(A^{2}\right)=2, \operatorname{dim} \operatorname{Ker}\left(\mathcal{A}^{k}\right)=3$ for $k \geqslant 3$.

We have a sequence of subspaces $V=\operatorname{Ker} A^{3} \supset \operatorname{Ker} A^{2} \supset \operatorname{Ker} A \supset\{0\}$. The first one relative to the second one is one-dimensional ($\operatorname{dim} \operatorname{Ker} A^{3}-\operatorname{dim} \operatorname{Ker} A^{2}=1$). We have $\operatorname{Ker}\left(A^{2}\right)=\left\{\left(\begin{array}{c}\frac{s-t}{3} \\ s \\ t\end{array}\right)\right.$, so it has a basis of the vectors $\left(\begin{array}{c}1 / 3 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}-1 / 3 \\ 0 \\ 1\end{array}\right)$ (corresponding to the choices $s=1, \mathrm{t}=0$ and $s=0, \mathrm{t}=1$ respectively), and after computing the reduced column echelon form and looking for missing leading 1's, we obtain a relative basis consisting of the vector $f=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$. This vector gives rise to the thread $f, A f=\left(\begin{array}{c}8 \\ 23 \\ -1\end{array}\right), A^{2} f=\left(\begin{array}{c}-1 \\ -3 \\ 0\end{array}\right)$. Since our space is 3 -dimensional, this thread forms a basis.

Example 4. $V=\mathbb{R}^{4}, A=\left(\begin{array}{cccc}1 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ -1 & 0 & 0 & -1\end{array}\right)$.
In this case, $A^{2}=0, \operatorname{rk}(A)=2, \operatorname{rk}\left(A^{k}\right)=0$ for $k \geqslant 2, \operatorname{dim} \operatorname{Ker}(A)=2, \operatorname{dim} \operatorname{Ker}\left(A^{k}\right)=4$ for $k \geqslant 2$. Moreover, $\operatorname{Ker}(A)=\left\{\left(\begin{array}{c}-s \\ t \\ t \\ s\end{array}\right)\right\}$.

We have a sequence of subspaces $V=\operatorname{Ker}\left(A^{2}\right) \supset \operatorname{Ker}(A) \supset\{0\}$. The first one relative to the second one is two-dimensional ($\left.\operatorname{dim} \operatorname{Ker}\left(A^{2}\right)-\operatorname{dim} \operatorname{Ker}(A)=2\right)$. Clearly, the vectors $\left(\begin{array}{c}-1 \\ 0 \\ 0 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right)$ (corresponding to $s=1, t=0$ and $s=0, t=1$ respectively) form a basis of the kernel of A, and after computing the reduced column echelon form and looking for missing leading 1 's, we obtain a relative basis consisting of the vectors $f_{1}=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$ and $f_{2}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$. These vectors give rise to threads $f_{1}, \Delta f_{1}=\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right)$ and $f_{2}, \Delta f_{2}=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ -1\end{array}\right)$. These two threads together contain four vectors, and we have a basis.

