In class, we proved that for every *nilpotent* linear operator A on a vector space V (that is, an operator for which $A^k = 0$ for some k) it is possible to choose a basis

of V such that for each "thread"

$$e_1^{(p)}, e_2^{(p)}, \dots, e_{n_p}^{(p)}$$

we have

$$A(e_1^{(p)}) = e_2^{(p)}, A(e_2^{(p)}) = e_3^{(p)}, \dots, A(e_{n_p}^{(p)}) = 0.$$

Now we shall consider several examples of how to find such "thread bases".

Example 1.
$$V = \mathbb{R}^2$$
, $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

In this case, $A^2 = 0$, $\operatorname{rk}(A) = 1$, $\operatorname{rk}(A^k) = 0$ for $k \ge 2$, $\dim \operatorname{Ker}(A) = 1$, $\dim \operatorname{Ker}(A^k) = 2$ for $k \ge 2$. Moreover, $\operatorname{Ker}(A) = \{ \begin{pmatrix} x \\ 0 \end{pmatrix} \}$.

We have a sequence of subspaces $V = \operatorname{Ker} A^2 \supset \operatorname{Ker} A \supset \{0\}$. The first one relative to the second one is one-dimensional (since dim $\operatorname{Ker} A^2 - \dim \operatorname{Ker} A = 1$). Putting x = 1 in the formula above, we get the vector $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ which forms a basis of the kernel of A, and after computing the reduced column echelon form and looking for missing leading 1's, we obtain a relative basis consisting of the vector $f = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. This vector gives rise to a thread $f = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $Af = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ of length 2. Since our space is 2-dimensional, this thread forms a basis.

Example 2.
$$V = \mathbb{R}^3$$
, $A = \begin{pmatrix} -3 & 1 & -1 \\ -12 & 4 & -4 \\ -3 & 1 & -1 \end{pmatrix}$.
In this case, $A^2 = 0$, rk $A = 1$, rk $A^k = 0$ for

 $k A^k = 0$ for $k \ge 2$, dim Ker(A) = 2, dim Ker $(A^k) = 3$ for k ≥ 2 . Moreover, Ker(A) = $\left\{ \begin{pmatrix} \frac{s-t}{3} \\ s \\ t \end{pmatrix} \right\}$.

We have a sequence of subspaces $V = \operatorname{Ker} A^2 \supset \operatorname{Ker} A \supset \{0\}$. The first one relative to the second one is one-dimensional (since dim Ker A^2 – dim Ker A = 1). The kernel of A has a basis consisting of the vectors $\begin{pmatrix} 1/3 \\ 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} -1/3 \\ 0 \\ 1 \end{pmatrix}$ (corresponding to the choices s = 1, t = 0 and s = 0, t = 1 respectively), and after computing the reduced column echelon form and looking for missing leading 1's, we obtain a relative basis consisting of the vector $f = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. This vector gives rise to the thread f, $Af = \begin{pmatrix} -1 \\ -4 \\ -1 \end{pmatrix}$. It remains to find a basis of Ker A relative to the

span of Af. Column reduction of the basis vectors of Ker(A) by Af leaves us with the vector

. Overall, $\mathsf{f},\mathsf{A}\mathsf{f},\mathsf{g}$ form a basis of V. It consists of two threads, one of length 2 $(\mathsf{f},\mathsf{A}\mathsf{f})$ and the other one of length 1 (a)

Example 3.
$$V = \mathbb{R}^3$$
, $A = \begin{pmatrix} 21 & -7 & 8 \\ 60 & -20 & 23 \\ -3 & 1 & -1 \end{pmatrix}$.
In this case, $A^2 = \begin{pmatrix} -3 & 1 & -1 \\ -9 & 3 & -3 \\ 0 & 0 & 0 \end{pmatrix}$, $A^3 = 0$, $\operatorname{rk} A = 2$, $\operatorname{rk} A^2 = 1$, $\operatorname{rk} A^k = 0$ for $k \ge 3$,

 $\dim \operatorname{Ker}(A) = 1, \dim \operatorname{Ker}(A^2) = 2, \dim \operatorname{Ker}(A^k) = 3 \text{ for } k \ge 3.$

We have a sequence of subspaces $V = \operatorname{Ker} A^3 \supset \operatorname{Ker} A^2 \supset \operatorname{Ker} A \supset \{0\}$. The first one relative to the second one is one-dimensional (dim $\operatorname{Ker} A^3 - \dim \operatorname{Ker} A^2 = 1$). We have $\operatorname{Ker}(A^2) = \left\{ \begin{pmatrix} \frac{s-t}{3} \\ s \\ t \end{pmatrix}, \text{ so it has a basis of the vectors } \begin{pmatrix} 1/3 \\ 1 \\ 0 \end{pmatrix} \text{ and } \begin{pmatrix} -1/3 \\ 0 \\ 1 \end{pmatrix} \text{ (corresponding to } 1) \right\}$

the choices s = 1, t = 0 and s = 0, t = 1 respectively), and after computing the reduced column echelon form and looking for missing leading 1's, we obtain a relative basis consisting of the vector $f = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. This vector gives rise to the thread f, $Af = \begin{pmatrix} 8 \\ 23 \\ -1 \end{pmatrix}$, $A^2f = \begin{pmatrix} -1 \\ -3 \\ 0 \end{pmatrix}$. Since our

space is 3-dimensional, this thread forms a basis.

Example 4.
$$V = \mathbb{R}^4$$
, $A = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ -1 & 0 & 0 & -1 \end{pmatrix}$.

In this case, $A^2 = 0$, $\operatorname{rk}(A) = 2$, $\operatorname{rk}(A^k) = 0$ for $k \ge 2$, $\dim \operatorname{Ker}(A) = 2$, $\dim \operatorname{Ker}(A^k) = 4$ for $k \ge 2$. Moreover, $\operatorname{Ker}(A) = \{ \begin{pmatrix} t \\ t \\ \end{pmatrix} \}.$

We have a sequence of subspaces $V = \text{Ker}(A^2) \supset \text{Ker}(A) \supset \{0\}$. The first one relative to the 0 second one is two-dimensional $(\dim \operatorname{Ker}(A^2) - \dim \operatorname{Ker}(A) = 2)$. Clearly, the vectors and

(corresponding to s=1,t=0 and s=0,t=1 respectively) form a basis of the kernel of A, and after computing the reduced column echelon form and looking for missing leading 1's, A, and after comparing the vectors $f_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$ and $f_2 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$. These vectors

give rise to threads f_1 , $Af_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$ and f_2 , $Af_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix}$. These two threads together contain

four vectors, and we have a basis