
Jordan normal form for nilpotent operators: some examples

In class, we proved that for every nilpotent linear operator A on a vector space V (that is,
an operator for which Ak = 0 for some k) it is possible to choose a basis
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Now we shall consider several examples of how to find such “thread bases”.

Example 1. V = R2, A =

(
0 1

0 0

)
.

In this case, A2 = 0, rk(A) = 1, rk(Ak) = 0 for k > 2, dim Ker(A) = 1, dim Ker(Ak) = 2 for

k > 2. Moreover, Ker(A) = {

(
x

0

)
}.

We have a sequence of subspaces V = KerA2 ⊃ KerA ⊃ {0}. The first one relative to the
second one is one-dimensional (since dim KerA2−dim KerA = 1). Putting x = 1 in the formula

above, we get the vector

(
1

0

)
which forms a basis of the kernel of A, and after computing the

reduced column echelon form and looking for missing leading 1’s, we obtain a relative basis

consisting of the vector f =

(
0

1

)
. This vector gives rise to a thread f =

(
0

1

)
, Af =

(
1

0

)
of

length 2. Since our space is 2-dimensional, this thread forms a basis.

Example 2. V = R3, A =

 −3 1 −1

−12 4 −4

−3 1 −1

.

In this case, A2 = 0, rkA = 1, rkAk = 0 for k > 2, dim Ker(A) = 2, dim Ker(Ak) = 3 for

k > 2. Moreover, Ker(A) = {

 s−t
3

s

t

}.

We have a sequence of subspaces V = KerA2 ⊃ KerA ⊃ {0}. The first one relative to the
second one is one-dimensional (since dim KerA2 − dim KerA = 1). The kernel of A has a basis

consisting of the vectors

1/3

1

0

 and

−1/3

0

1

 (corresponding to the choices s = 1, t = 0 and

s = 0, t = 1 respectively), and after computing the reduced column echelon form and looking

for missing leading 1’s, we obtain a relative basis consisting of the vector f =

0

0

1

. This vector

gives rise to the thread f, Af =

−1

−4

−1

. It remains to find a basis of KerA relative to the

span of Af. Column reduction of the basis vectors of Ker(A) by Af leaves us with the vector



g =

0

1

1

. Overall, f,Af, g form a basis of V. It consists of two threads, one of length 2 (f,Af)

and the other one of length 1 (g).

Example 3. V = R3, A =

21 −7 8

60 −20 23

−3 1 −1

.

In this case, A2 =

−3 1 −1

−9 3 −3

0 0 0

, A3 = 0, rkA = 2, rkA2 = 1, rkAk = 0 for k > 3,

dim Ker(A) = 1, dim Ker(A2) = 2, dim Ker(Ak) = 3 for k > 3.
We have a sequence of subspaces V = KerA3 ⊃ KerA2 ⊃ KerA ⊃ {0}. The first one

relative to the second one is one-dimensional (dim KerA3 − dim KerA2 = 1). We have

Ker(A2) = {

 s−t
3

s

t

, so it has a basis of the vectors

1/3

1

0

 and

−1/3

0

1

 (corresponding to

the choices s = 1, t = 0 and s = 0, t = 1 respectively), and after computing the reduced column
echelon form and looking for missing leading 1’s, we obtain a relative basis consisting of the

vector f =

0

0

1

. This vector gives rise to the thread f, Af =

 8

23

−1

, A2f =

−1

−3

0

. Since our

space is 3-dimensional, this thread forms a basis.

Example 4. V = R4, A =


1 0 0 1

0 −1 1 0

0 −1 1 0

−1 0 0 −1

.

In this case, A2 = 0, rk(A) = 2, rk(Ak) = 0 for k > 2, dim Ker(A) = 2, dim Ker(Ak) = 4 for

k > 2. Moreover, Ker(A) = {


−s

t

t

s

}.

We have a sequence of subspaces V = Ker(A2) ⊃ Ker(A) ⊃ {0}. The first one relative to the

second one is two-dimensional (dim Ker(A2)−dim Ker(A) = 2). Clearly, the vectors


−1

0

0

1

 and


0

1

1

0

 (corresponding to s = 1, t = 0 and s = 0, t = 1 respectively) form a basis of the kernel of

A, and after computing the reduced column echelon form and looking for missing leading 1’s,

we obtain a relative basis consisting of the vectors f1 =


0

0

1

0

 and f2 =


0

0

0

1

. These vectors

give rise to threads f1, Af1 =


0

1

1

0

 and f2, Af2 =


1

0

0

−1

. These two threads together contain

four vectors, and we have a basis.


