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Previously on. . .

Row expansion for determinants:

det(A) = ai1C
i1 + ai2C

i2 + · · ·+ ainC
in,

In fact, we already encountered this in the case of 3× 3-matrices. When
studying vectors in 3D, we encountered the quantity u · (v ×w) whose
absolute value was shown to be equal to the volume of the parallelepiped
built on the vectors u, v, and w. Note that we have

v ×w = (v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1),

where the coordinates are the first row cofactors of the matrix

A =

u1 u2 u3
v1 v2 v3
w1 w2 w3

 .

By inspection, we have u · (v ×w) = det(A).
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Previously on. . .
Besides explaining conceptually why u · (v ×w) = −v · (u×w), the

formula u · (v ×w) = det

u1 u2 u3
v1 v2 v3
w1 w2 w3

 actually brings a lot of useful

insight. First, it allows to write a useful mnemonic formula for the cross
product:

v ×w = det

 i j k
v1 v2 v3
w1 w2 w3

 ,

where one is supposed to expand the matrix along the first row:

v ×w = C 11i+ C 12j+ C 13k.

It also suggests that the n-dimensional volume of the parallelepiped built
on n vectors in the n-dimensional space must be equal in absolute value to
the determinant whose rows (or columns) are these vectors. This becomes
absolutely crucial for computing higher dimensional integrals.
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Cramer’s formula for systems of linear
equations
We know that if A is invertible then Ax = b has just one solution
x = A−1b. Let us plug in the formula for A−1 that we have:

x = A−1b =
1

det(A)
adj(A)b .

When we compute adj(A)b = CTb, we get the vector whose k-th entry is

C 1kb1 + C 2kb2 + . . .+ Cnkbn .

What does it look like? It looks like a k-th column expansion of some
determinant, more precisely, of the determinant of the matrix Ak which is
obtained from A by replacing its k-th column with b. (This way, the
cofactors of that column do not change).

Theorem. (Cramer’s formula) Suppose that det(A) 6= 0. Then
coordinates of the only solution to the system of equations Ax = b are

xk =
det(Ak)

det(A)
.
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Summary of systems of linear equations

Theorem. Let A be an n × n-matrix, and b a vector with n entries. The
following statements are equivalent:

(a) the homogeneous system Ax = 0 has only the trivial solution x = 0;
(b) the reduced row echelon form of A is In;
(c) det(A) 6= 0;
(d) the matrix A is invertible;
(e) the system Ax = b has exactly one solution.

Proof. In principle, to show that five statements are equivalent, we need
to do a lot of work. We could, for each pair, prove that they are
equivalent, altogether 5 · 4 = 20 proofs. We could prove that
(a) ⇔ (b) ⇔ (c) ⇔ (d) ⇔ (e), altogether 8 proofs. What we shall do
instead is prove (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (a), just 5 proofs.
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Summary of systems of linear equations
Theorem. Let A be an n × n-matrix, and b a vector with n entries. The
following statements are equivalent:

(a) the homogeneous system Ax = 0 has only the trivial solution x = 0;
(b) the reduced row echelon form of A is In;
(c) det(A) 6= 0;
(d) the matrix A is invertible;
(e) the system Ax = b has exactly one solution.

Proof. (a) ⇒ (b): by contradiction, if the reduced row echelon form has
a row of zeros, we get free variables.
(b) ⇒ (c): follows from properties of determinants, elementary operations
multiply the determinant by nonzero scalars.
(c) ⇒ (d): proved in several different ways already.
(d) ⇒ (e): discussed early on, if A is invertible, then x = A−1b is clearly
the only solution to Ax = b.
(e) ⇒ (a): by contradiction, if v a solution to Ax = b and w is a
nontrivial solution to Ay = 0, then v + w is another solution to Ax = b.
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Summary of systems of linear equations

A very important consequence (finite dimensional Fredholm alternative):

For an n × n-matrix A, the system Ax = b either has exactly
one solution for every b, or has infinitely many solutions for
some choices of b and no solutions for some other choices.

In particular, to prove that Ax = b has solutions for every b, it is enough
to prove that Ax = 0 has only the trivial solution.
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An example for the Fredholm alternative

Let us consider the following question:

Given some numbers in the first row, the last row, the first
column, and the last column of an n × n-matrix, is it possible
to fill the numbers in all the remaining slots in a way that each
of them is the average of its 4 neighbours?

This is the “discrete Dirichlet problem”, a finite grid approximation to
many foundational questions of mathematical physics.
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