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Previously on. . .

Let us consider the following question:

Given some numbers in the first row, the last row, the first
column, and the last column of an n × n-matrix, is it possible
to fill the numbers in all the remaining slots in a way that each
of them is the average of its 4 neighbours?

This is the “discrete Dirichlet problem”, a finite grid approximation to
many foundational questions of mathematical physics.

Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Lecture 12 2 / 12



An example for the Fredholm alternative

For instance, for n = 4 we may face the following problem: find a, b, c , d
to put in the matrix 

4 3 0 1.5
1 a b −1

0.5 c d 2
2.1 4 2 1


so that 

a = 1
4(3 + 1 + b + c),

b = 1
4(a + 0 − 1 + d),

c = 1
4(a + 0.5 + d + 4),

d = 1
4(b + c + 2 + 2).

This is a system with 4 equations and 4 unknowns.
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An example for the Fredholm alternative

In general, we shall be dealing with a system with (n − 2)2 equations and
(n − 2)2 unknowns.

Note that according to the Fredholm alternative, it is enough to prove that
for the zero boundary data we get just the trivial solution. Let aij be a
solution for the zero boundary data. Let aPQ be the largest element
among them. Since

aPQ =
1

4
(aP−1,Q +aP,Q−1+aP+1,Q +aP,Q+1 6

1

4
(aPQ +aPQ +aPQ +aPQ),

the neighbours of aPQ must all be equal to aPQ . Similarly, their
neighbours must be equal to aPQ etc., and it propagates all the way to the
boundary, so we observe that aPQ = 0. The same argument appliest with
the smallest element, and we conclude that all elements must be equal to
zero. This, as we already realised, proves that for every choice of the
boundary data the solution is unique.
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Summary of systems of linear equations

For systems of equations where the number of equations is not necessarily
equal to the number of unknowns, there is one key result that we shall use
extensively in the further parts of the module.

A homogeneous system Ax = 0 with n unknowns and m < n
equations always has a nontrivial solution.

The proof is completely trivial. Indeed, there will be no inconsistencies of
the type 0 = 1, and there will be at least one free unknown since m < n.

Application: Let A be an n × n-matrix. Then there exist k and some
numbers c0, c1, . . . , ck−1 such that

Ak = ck−1A
k−1 + · · ·+ c1A+ c0In .

In fact, can take k = n2. (Indeed, ckA
k + ck−1A

k−1 + · · ·+ c1A+ c0In = 0
is a homogeneous system with k + 1 unknowns and n2 equations. . . )
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An application of determinants: Vandermonde
determinant

Let x1, . . . , xn be scalars. The Vandermonde determinant V (x1, . . . , xn) is
the determinant of the matrix

1 1 1 . . . 1
x1 x2 x3 . . . xn
x21 x22 x23 . . . x2n
...

...
...

. . .
...

xn−1
1 xn−1

2 xn−1
3 . . . xn−1

n

 .

Theorem. We have

V (x1, . . . , xn) =

(x2 − x1)(x3 − x2)(x3 − x1) · · · (xn − xn−1) =
∏
i<j

(xj − xi ).
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The Vandermonde determinant

Theorem. We have

V (x1, . . . , xn) =

(x2 − x1)(x3 − x2)(x3 − x1) · · · (xn − xn−1) =
∏
i<j

(xj − xi ).

Proof: Let us subtract, for each i = n− 1, n− 2, . . . , 1, the row i times x1
from the row i + 1. Combining rows does not change the determinant, so
we conclude that V (x1, . . . , xn) is equal to the determinant of the matrix

1 1 1 . . . 1
0 x2 − x1 x3 − x1 . . . xn − x1
0 x22 − x1x2 x23 − x1x3 . . . x2n − x1xn
...

...
...

. . .
...

0 xn−1
2 − x1x

n−2
2 xn−1

3 − x1x
n−2
3 . . . xn−1

n − x1x
n−2
n

 .
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The Vandermonde determinant

Let us expand the determinant

det


1 1 1 . . . 1
0 x2 − x1 x3 − x1 . . . xn − x1
0 x22 − x1x2 x23 − x1x3 . . . x2n − x1xn
...

...
...

. . .
...

0 xn−1
2 − x1x

n−2
2 xn−1

3 − x1x
n−2
3 . . . xn−1

n − x1x
n−2
n


along the first column, the result is

det


x2 − x1 x3 − x1 . . . xn − x1
x22 − x1x2 x23 − x1x3 . . . x2n − x1xn

...
...

. . .
...

xn−1
2 − x1x

n−2
2 xn−1

3 − x1x
n−2
3 . . . xn−1

n − x1x
n−2
n

 .
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The Vandermonde determinant

We note that the k-th column of the determinant

det


x2 − x1 x3 − x1 . . . xn − x1
x22 − x1x2 x23 − x1x3 . . . x2n − x1xn

...
...

. . .
...

xn−1
2 − x1x

n−2
2 xn−1

3 − x1x
n−2
3 . . . xn−1

n − x1x
n−2
n


is divisible by xk+1 − x1, so it is equal to

(x2 − x1)(x3 − x1) · · · (xn − x1) det


1 1 . . . 1
x2 x3 . . . xn
...

...
. . .

...
xn−2
2 xn−2

3 . . . xn−2
n

 ,

so we encounter a smaller Vandermonde determinant, and can proceed by
induction.
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The Vandermonde determinant

Another (sneaky) proof: we see that V (x1, . . . , xn) = 0 whenever xi = xj
for i 6= j (two equal columns). Therefore, the polynomial expression
V (x1, . . . , xn) is divisible by all xi − xj for i > j . But the degree of

V (x1, . . . , xn) is 1 + 2 + · · ·+ n− 1 = n(n−1)
2 (because we take one element

from each row), and the degree of the product

(x2 − x1)(x3 − x2)(x3 − x1) · · · (xn − xn−1)

is 1 + 2 + · · ·+ n − 1, so these polynomial expression differ by a scalar
multiple. Comparing the coefficients of x2x

2
3 · · · xn−1

n (the diagonal term),
we find that both coefficients are 1, so there is an equality.

There are some “gaps” that are not hard to fill but need to be filled.
Those who take the module 2215 next year, will be able to complete the
proof formally, others need some trust.
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The Vandermonde determinant

An important consequence: the Vandermonde determinant is not equal to
zero if and only if x1, . . . , xn are all distinct.

Theorem. For each n distinct numbers x1, . . . , xn, and each choice of
a1,. . . , an, there exists a unique polynomial
f (x) = c0 + c1x + · · ·+ cn−1x

n−1 of degree at most n − 1 such that
f (x1) = a1, . . . , f (xn) = an.

Proof: Let us figure out what conditions are imposed on the coefficients
c0, . . . , cn−1: 

c0 + c1x1 + · · ·+ cn−1x
n−1
1 = a1,

c0 + c1x2 + · · ·+ cn−1x
n−1
2 = a2,

. . . ,

c0 + c1xn + · · ·+ cn−1x
n−1
n = an .

The matrix of this system is the transpose of the Vandermonde matrix!
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The Vandermonde determinant

We conclude that the conditions we wish to observe are of the form

Ax = b, where b =


a1
a2
...
an

 and det(A) = V (x1 . . . , xn). Since x1, . . . , xn

are distinct, det(A) 6= 0, and the system has exactly one solution for any
choice of the vector b.

Remark. In fact, one can write the formula for f (x) directly. The
following neat formula for f (x) is called the Lagrange interpolation
formula:

f (x) =
n∑

i=1

ai
(x − x1) · · · (x − xi−1)(x − xi+1) · · · (x − xn)

(xi − x1) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)
.

The conditions f (xi ) = ai are easily checked by inspection.
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