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Previously on. . .

A system of vectors is linearly independent in Rn, if a nontrivial linear
combination of these vectors cannot produce zero.

A system of vectors spans Rn (is complete) if every vector can be obtained
as their linear combination.

A system of vectors is a basis of Rn if it is complete and linearly
independent. This means that every vector can be obtained as their linear
combination uniquely.

A linear map is a function from Rk to Rn which takes linear combinations
into linear combinations (i.e. takes sums into sums and scalar multiples
into scalar multiples). Every linear map can be obtained by multiplying
vectors by a certain matrix.
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Linear independence, span, and linear maps
Let v1, . . . , vk be vectors in Rn. Consider the n × k-matrix A whose
columns are these vectors.

Let us relate linear independence and the spanning property to linear
maps. We shall now show that

the vectors v1, . . . , vk are linearly independent if and only if the map
from Rk to Rn that send each vector x to the vector Ax is injective,
that is maps different vectors to different vectors;
the vectors v1, . . . , vk span Rn if and only if the map from Rk to Rn

that send each vector x to the vector Ax is surjective, that is
something is mapped to every vector b in Rn.

Indeed, we can note that injectivity means that Ax = b has at most one
solution for each b, which is equivalent to the absence of free variables,
which is equivalent to the system Ax = 0 having only the trivial solution,
which we know to be equivalent to linear independence.
Also, surjectivity means that Ax = b has solutions for every b, which we
know to be equivalent to the spanning property.
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Subspaces of Rn

A non-empty subset U of Rn is called a subspace if the following
properties are satisfied:

whenever v ,w ∈ U, we have v + w ∈ U;
whenever v ∈ U, we have c · v ∈ U for every scalar c .

Of course, this implies that every linear combination of several vectors in
U is again in U.

Let us give some examples. Of course, there are two very trivial examples:
U = Rn and U = {0}.
The line y = x in R2 is another example.
Any line or 2D plane containing the origin in R3 would also give an
example, and these give a general intuition of what the word “subspace”
should make one think of.
The set of all vectors with integer coordinates in R2 is an example of a
subset which is NOT a subspace: the first property is satisfied, but the
second one certainly fails.

Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Lecture 14 4 / 5



Subspaces of Rn: two main examples
Let A be an m × n-matrix. Then the solution set to the homogeneous
system of linear equations Ax = 0 is a subspace of Rn. Indeed, it is
non-empty because it contains x = 0. We also see that if Av = 0 and
Aw = 0, then A(v + w) = Av + Aw = 0, and similarly if Av = 0, then
A(c · v) = c · Av = 0.

Let v1, . . . , vk be some given vectors in Rn. Their linear span
span(v1, . . . , vk) is the set of all possible linear combinations
c1v1 + . . .+ ckvk . The linear span of k > 1 vectors is a subspace of Rn.
Indeed, it is manifestly non-empty, and closed under sums and scalar
multiples.

The example of the line y = x from the previous slide fits into both
contexts. First of all, it is the solution set to the system of equations

Ax = 0, where A =
(
1 −1

)
, and x =

(
x
y

)
. Second, it is the linear span

of the vector v =

(
1
1

)
. We shall see that it is a general phenomenon:

these two descriptions are equivalent.
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