1111: Linear Algebra I

Dr. Vladimir Dotsenko (Vlad)

Lecture 14

Previously on...

A system of vectors is linearly independent in \mathbb{R}^{n}, if a nontrivial linear combination of these vectors cannot produce zero.

A system of vectors spans \mathbb{R}^{n} (is complete) if every vector can be obtained as their linear combination.

A system of vectors is a basis of \mathbb{R}^{n} if it is complete and linearly independent. This means that every vector can be obtained as their linear combination uniquely.

A linear map is a function from \mathbb{R}^{k} to \mathbb{R}^{n} which takes linear combinations into linear combinations (i.e. takes sums into sums and scalar multiples into scalar multiples). Every linear map can be obtained by multiplying vectors by a certain matrix.

Linear independence, span, and Linear maps

 Let v_{1}, \ldots, v_{k} be vectors in \mathbb{R}^{n}. Consider the $n \times k$-matrix A whose columns are these vectors.Let us relate linear independence and the spanning property to linear maps. We shall now show that

- the vectors v_{1}, \ldots, v_{k} are linearly independent if and only if the map from \mathbb{R}^{k} to \mathbb{R}^{n} that send each vector x to the vector $A x$ is injective, that is maps different vectors to different vectors;
- the vectors v_{1}, \ldots, v_{k} span \mathbb{R}^{n} if and only if the map from \mathbb{R}^{k} to \mathbb{R}^{n} that send each vector x to the vector $A x$ is surjective, that is something is mapped to every vector b in \mathbb{R}^{n}.

Indeed, we can note that injectivity means that $A x=b$ has at most one solution for each b, which is equivalent to the absence of free variables, which is equivalent to the system $A x=0$ having only the trivial solution, which we know to be equivalent to linear independence.
Also, surjectivity means that $A x=b$ has solutions for every b, which we know to be equivalent to the spanning property.

Subspaces of \mathbb{R}^{n}

A non-empty subset U of \mathbb{R}^{n} is called a subspace if the following properties are satisfied:

- whenever $v, w \in U$, we have $v+w \in U$;
- whenever $v \in U$, we have $c \cdot v \in U$ for every scalar c.

Of course, this implies that every linear combination of several vectors in U is again in U.

Let us give some examples. Of course, there are two very trivial examples: $U=\mathbb{R}^{n}$ and $U=\{0\}$.
The line $y=x$ in \mathbb{R}^{2} is another example.
Any line or 2D plane containing the origin in \mathbb{R}^{3} would also give an example, and these give a general intuition of what the word "subspace" should make one think of.
The set of all vectors with integer coordinates in \mathbb{R}^{2} is an example of a subset which is NOT a subspace: the first property is satisfied, but the second one certainly fails.

SUBSPACES OF \mathbb{R}^{n} : TWO MAIN EXAMPLES

Let A be an $m \times n$-matrix. Then the solution set to the homogeneous system of linear equations $A x=0$ is a subspace of \mathbb{R}^{n}. Indeed, it is non-empty because it contains $x=0$. We also see that if $A v=0$ and $A w=0$, then $A(v+w)=A v+A w=0$, and similarly if $A v=0$, then $A(c \cdot v)=c \cdot A v=0$.
Let v_{1}, \ldots, v_{k} be some given vectors in \mathbb{R}^{n}. Their linear span $\operatorname{span}\left(v_{1}, \ldots, v_{k}\right)$ is the set of all possible linear combinations $c_{1} v_{1}+\ldots+c_{k} v_{k}$. The linear span of $k \geqslant 1$ vectors is a subspace of \mathbb{R}^{n}. Indeed, it is manifestly non-empty, and closed under sums and scalar multiples.
The example of the line $y=x$ from the previous slide fits into both contexts. First of all, it is the solution set to the system of equations $A \mathbf{x}=0$, where $A=\left(\begin{array}{ll}1 & -1\end{array}\right)$, and $\mathbf{x}=\binom{x}{y}$. Second, it is the linear span
of the vector $v=\binom{1}{1}$. We shall see that it is a general phenomenon: these two descriptions are equivalent.

