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Lecture 15

Solution sets and spans

Yesterday we considered the following example of conversion between two different types of subspaces.

Consider the matrix A =

(
1 −2 1 0
3 −5 3 −1

)
, and the corresponding system of equations Ax = 0. The

reduced row echelon form of this matrix is

(
1 0 1 −2
0 1 0 −1

)
, so the free unknowns are x3 and x4. Setting

x3 = s, x4 = t, we obtain the solution


−s+ 2t

t
s
t

, which we can represent as s


−1
0
1
0

+t


2
1
0
1

. We conclude

that the solution set to the system of equations is the linear span of the vectors v1 =


−1
0
1
0

 and v2 =


2
1
0
1

.

Let us implement this approach in general. Suppose A is an m×n-matrix. As we know, to describe the
solution set for Ax = 0 we bring A to its reduced row echelon form, and use free unknowns as parameters. Let
xi1 , . . . , xik be free unknowns. For each j = 1, . . . , k, let us define the vector vj to be the solution obtained
by putting the j-th free unknown to be equal to 1, and all others to be equal to zero. Note that the solution
that corresponds to arbitrary values xi1 = t1, . . . , xik = tk is the linear combination t1v1 + · · · + tkvk.
Therefore the solution set of Ax = 0 is the linear span of v1, . . . , vk.

The conversion in the other direction, that is computing, for a given set of vectors, a system of equations
for which the solution set is the span of the given vectors, also can be done without much trouble. Since we
shall not be needing that, we omit the corresponding construction. If you feel comfortable with the course,
you can attempt this as an exercise.

Note that in fact the vectors v1, . . . , vk constructed above are linearly independent. Indeed, the linear
combination t1v1 + · · · + tkvk has ti in the place of i-th free unknown, so if this combination is equal to
zero, then all coefficients must be equal to zero. Therefore, it is sensible to say that these vectors form a
basis in the solution set: every vector can be obtained as their linear combination, and they are linearly
independent. However, we only considered bases of Rn so far, and the solution set of a system of linear
equations is not generally equal to Rm for some m. However, the idea of considering bases in this context
is perfectly legitimate, and incredibly useful. We shall now create a theoretical set-up for implementing this
idea.

Abstract vector spaces

Definition 1. An (abstract) vector space (over real numbers) is a set V equipped with the following data:

• a rule assigning to each elements v1, v2 ∈ V an element of V denoted v1 + v2, and
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• a rule assigning to each element v ∈ V and each real number c an element of V denoted c · v (or
sometimes cv),

for which the following properties are satisfied:

1. for all v1, v2, v3 ∈ V we have (v1 + v2) + v3 = v1 + (v2 + v3),
2. for all v1, v2 ∈ V we have v1 + v2 = v2 + v1,
3. there is a designated zero element of V denoted by 0 for which 0+ v = v+ 0 = v for all v,
4. for each v ∈ V, there exists w ∈ V, denoted −v and called the opposite of v, such that v+(−v) = (−v)+v = 0,
5. for all v1, v2 ∈ V and all c ∈ R, we have c · (v1 + v2) = c · v1 + c · v2,
6. for all c1, c2 ∈ R and all v ∈ V, we have (c1 + c2) · v = c1 · v+ c2 · v,
7. for all c1, c2 ∈ R and all v ∈ V, we have c1 · (c2 · v) = (c1c2) · v,
8. for all v ∈ V, we have 1 · v = v.

Examples of vector spaces

To demonstrate that some set V has a structure of a vector space, we therefore must

• exhibit the rules v1, v2 7→ v1 + v2 and c, v 7→ c · v for v, v1, v2 ∈ V, c ∈ R,
• exhibit the zero element 0 ∈ V,
• exhibit, for each v ∈ V, its opposite −v,

so that the properties 1-8 hold. (As you will find out in homework, the opposite elements actually can be
obtained from the rest for free, but we shall not use it for the moment).

Example 1. Of course, the coordinate vector space Rn, as it says on the tin, is an example of a vector
space, with the usual operations on vectors, the usual zero vector, and the opposite vector −v = (−1) · v.
Properties 1-8 hold, we discussed them on some occasions in the past.

Example 2. Slightly more generally, for given m,n, the set of all m × n-matrices is a vector space with
respect to addition and multiplication by scalars. This example is not that different from Rn, we just choose
to write numbers not in a column of height mn, but in a rectangular array.

Example 3. Every subspace of Rn is a vector space. It is almost obvious from the definition. Indeed, the
definition says that a subspace U ⊂ Rn is closed under addition and re-scaling, so properties 1, 2, 5, 6, 7,
and 8 hold because they hold for vector operations in Rn. The only things which are not automatic is to
check that U contains 0 (for property 3), and that the opposite of every vector of U is in U (for property 4).
However, both of these are easy: since U is non-empty, it contains some vector u, and hence it must contain
0 · u = 0. Also, as we mentioned above, in Rn we have −u = (−1) · u, so the negative of every element of U
is in U. Hence properties 3 and 4 hold in U because they hold in Rn.

Example 4. The set C([0, 1]) of all continuous functions on the segment [0, 1] is a vector space, with obvious
operations (f+g)(x) = f(x)+g(x) and (c ·f)(x) = cf(x). The only nontrivial thing (which you either know or
will soon know from your analysis module) is that these operations turn continuous functions into continuous
functions. All the properties 1-8 are obvious.

Example 5. The set of all polynomials

amxm + am−1x
m−1 + · · ·+ a1x+ a0

in one variable x with real coefficients is a vector space with respect to addition and re-scaling. If we
consider polynomials of degree at most n for some given n, this is also a vector space. Polynomials of degree
exactly n do not form a vector space, since the sum of two such polynomials may have smaller degree, e.g.
xn + (1− xn) = 1, where the sum of two polynomials of degree n is of degree 0.
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