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Lecture 16

Consequences of properties of vector operations

The properties 1-8 altogether allow to operate with elements of V as though they were vectors in Rn, that is
create linear combinations, take summands in an equation from the left hand side to the right hand side with
opposite signs, collect similar terms etc. For that reason, we shall refer to elements of an abstract vector
space as vectors, and to real numbers as scalars.

These properties also allow to prove various theoretical statements about vectors. There will be some of
those in your next homework, and for now let me give several examples.

Lemma 1. For all v ∈ V, we have 0 · v = 0.

Proof. Denote u = 0 ·v. We have u+u = 0 ·v+0 ·v = (0+0) ·v = 0 ·v = u (we used property 6 in the middle
equality). But now we can “subtract u from both sides”: (u + u) + (−u) = u + (−u) = 0 (property 4).
Finally, (u+u) + (−u) = u+ (u+ (−u)) = u+ 0 = u (properties 1, 4, and 3). We conclude that u = 0.

The following lemma proved similarly with property 5 instead of property 6:

Lemma 2. For all c ∈ R, we have c · 0 = 0.

Let us prove another statement that is sometimes useful.

Lemma 3. Suppose that for a scalar c and a vector v we have c · v = 0. Then c = 0 or v = 0.

Proof. If c = 0 there is nothing to prove. Suppose c 6= 0. Then 0 = c−1 · 0 = c−1(c · v) = (c−1c)v = 1 · v = v
(by Lemma 2 above, and properties 7 and 8). Therefore, v = 0, as required.

Fields

It is also worth mentioning that sometimes we shall use other scalars, not just real numbers. In order for
all the arguments to work, we need that scalars have arithmetics similar to that of real numbers. Let us be
precise about what that means.

Definition 1. A field is a set F equipped with the following data:

• a rule assigning to each elements f1, f2 ∈ F an element of F denoted v1 + v2, and
• a rule assigning to each elements f1, f2 ∈ F an element of F denoted f1 · f2 (or sometimes f1f2),

for which the following properties are satisfied:

1. for all f1, f2, f3 ∈ F we have (f1 + f2) + f3 = f1 + (f2 + f3),
2. for all f1, f2 ∈ F we have f1 + f2 = f2 + f1,
3. there is a designated element of F denoted by 0 for which 0+ f = f+ 0 = f for all f,
4. for each f ∈ F, there exists g ∈ F, denoted −f and called the opposite of f, such that f+(−f) = (−f)+f = 0,
5. for all f1, f2, f3 ∈ F we have (f1f2)f3 = f1(f2f3),
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6. for all f1, f2 ∈ F we have f1f2 = f2f1,
7. there is a designated element of F denoted by 1 for which 1 · f = f · 1 = f for all f,
8. for each f 6= 0 ∈ F, there exists g ∈ F, denoted f−1 and called the inverse of f, such that ff−1 = f−1f = 1,
9. for all f1, f2, f3 ∈ F, we have f1 · (f2 + f3) = f1 · f2 + f1 · f3.

Example 1. The field of rational numbers Q consists of fractions with integer numerator and integer nonzero
denominator (like 1/2, −5/3, etc.).

Example 2. The field of real numbers R is our main example of a field; I assume that you know what it
stands for.

Example 3. The field of complex numbers C consists, as you know, of expressions a + bi, where a, b ∈ R
with obvious addition and multiplication that is completely defined by the rule i2 = −1.

Example 4. An example which is absolutely foundational for computer science is the binary arithmetic:
F2 = {0̄, 1̄} with the operations 0̄+ 0̄ = 1̄+ 1̄ = 0̄, 0̄+ 1̄ = 1̄+ 0̄ = 1̄, 0̄ · 0̄ = 0̄ · 1̄ = 1̄ · 0̄ = 0̄, 1̄ · 1̄ = 1̄.

Given a field F, one can consider vector spaces over F, that is vector spaces where elements of F play the
role of scalars. The flexibility of choosing scalars for the vector space can sometimes be very useful.

Coin weighing problem

Let us look at the following question.

Given 101 coins of various shapes and denominations, one knows that if you remove any one coin,
the remaining 100 coins can be divided into two groups of 50 of equal total weight. Show that
all the coins are of the same weight.

Let us prove this in several steps. An important observation that we shall use many times is that if
x1, . . . , x101 are weights of the coins satisfying our assumption, then x1 + k, . . . , x101 + k are weights that
also satisfy our assumption, and lx1, . . . , lx101 are weights that also satisfy our assumption, for all k and l.

Let us suppose that weights are not all equal to each other.
First, we consider the case when all weights x1, . . . , x101 of all coins are positive integers. Then among

all the lists of weights which are not all equal to each other, let us choose the list with the least possible
total weight.

Lemma 4. The weights of the coins are either all even or all odd.

Proof. Denote S = x1 + · · · + x101. Then S − xi is divisible by 2 for all i, because we can split all coins
except for the coin number i into two groups of equal total weight, so S− xi is twice that weight. Therefore,
xi − xj = (S− xj) − (S− xi) is divisible by 2 also.

If all the weights are even, we can divide them by 2, and get a set of coins satisfying our assumption of
smaller total weight. If all the weights are odd, we can subtract 1 from each, and get a set of coins satisfying
our assumptions of smaller total weight. In either case we get a contradiction with the minimality of the
total weight in our set.

Second, we suppose all weights are rational. Then, multiplying by common denominator, we get a set of
coins satisfying our assumptions where all weights are integers, and adding to all weights a large integer N
we can ensure that they are positive, and we are back to the case we already dealt with.

Finally, suppose weights are arbitrary real numbers. Note that the conditions we impose can be expressed
as a system of linear equations with rational coefficients! Saying that there is a solution where not all weights
are equal is essentially saying that if we let x1 = 1, there is a solution where not all coordinates are equal
to 1, so this system of equations has at least 2 solutions. But this is a property that “does not depend
on scalars”, — whether we view our system of equations as a system with rational coefficients or with real
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coefficients, we do the same, compute the reduced row echelon form. If there is a solution different from the
solution x1 = x2 = · · · = x101 = 1 over real numbers, there must be free unknowns! Setting all these free
unknowns equal to zero, we shall obtain a solution with rational coordinates where not all coordinates are
equal. But we already proved that the latter was impossible.
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