1111: Linear Algebra I

Dr. Vladimir Dotsenko (Vlad)

Lecture 18

Dimension: examples

Example 1. The dimension of \mathbb{R}^n is equal to n, as expected. (Standard unit vectors form a basis).

Example 2. The dimension of the space of polynomials in one variable x of degree at most n is equal to n + 1, since it has a basis $1, x, \ldots, x^n$.

Example 3. The dimension of the space of $m \times n$ -matrices is equal to mn. (Matrix units e_{ij} , that is matrices that have the only nonzero element equal to 1, which is at the intersection of the i-th row and the j-th column, form a basis).

Example 4. For a matrix A, the dimension of the solution space to the system of equations Ax = 0 is equal to the number of free unknowns, that is the number of columns of the reduced row echelon form of A that do not have pivots. (The spanning set we constructed previously forms a basis).

We also discussed in detail one of the tutorial questions — see the handout for the tutorial for that solution.

Change of coordinates

Let V be a vector space of dimension n, and let e_1, \ldots, e_n and f_1, \ldots, f_n be two different bases of V. Then we can compute coordinates of each vector v with respect to either of those bases, so that

$$v = x_1 e_1 + \cdots + x_n e_n$$

and

$$v = y_1 f_1 + \dots + y_n f_n.$$

Our goal now is to figure out how these are related. For that, we shall need the notion of a transition matrix.

Definition 1. Let us express the vectors f_1, \ldots, f_n as linear combinations of e_1, \ldots, e_n :

$$f_1 = a_{11}e_1 + a_{21}e_2 + \dots + a_{m1}e_m,$$

$$f_2 = a_{12}e_1 + a_{22}e_2 + \dots + a_{m2}e_m,$$

...

$$f_n = a_{1n}e_1 + a_{2n}e_2 + \dots + a_{mn}e_m.$$

The matrix (a_{ij}) is called *the transition matrix* from the basis e_1, \ldots, e_n to the basis f_1, \ldots, f_n . Its k-th column is the column of coordinates of the vector f_k relative to the basis e_1, \ldots, e_n .

Lemma 1. In the notation above, we have

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \dots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}.$$

In plain words, if we call e_1, \ldots, e_n the "old basis" and f_1, \ldots, f_n the "new basis", then this system tells us that the product of the transition matrix with the columns of new coordinates of a vector is equal to the column of old coordinates.

Proof. The proof is fairly straightforward: we take the formula

$$\mathbf{v} = \mathbf{y}_1 \mathbf{f}_1 + \dots + \mathbf{y}_n \mathbf{f}_n$$

and substitute instead of f_i 's their expressions in terms of e_j 's:

$$f_1 = a_{11}e_1 + a_{21}e_2 + \dots + a_{m1}e_m,$$

$$f_2 = a_{12}e_1 + a_{22}e_2 + \dots + a_{m2}e_m,$$

...

$$f_n = a_{1n}e_1 + a_{2n}e_2 + \dots + a_{mn}e_m.$$

What we get is

$$y_1(a_{11}e_1 + a_{21}e_2 + \dots + a_{n1}e_n) + y_2(a_{12}e_1 + a_{22}e_2 + \dots + a_{n2}e_n) + \dots + y_n(a_{1n}e_1 + a_{2n}e_2 + \dots + a_{nn}e_n) = \\ = (a_{11}y_1 + a_{12}y_2 + \dots + a_{1n}y_n)e_1 + \dots + (a_{n1}y_1 + a_{n2}y_2 + \dots + a_{nn}y_n)e_n.$$

Since we know that coordinates are uniquely defined, we conclude that

$$a_{11}y_1 + a_{12}y_2 + \dots + a_{1n}y_n = x_1,$$

...
 $a_{n1}y_1 + a_{n2}y_2 + \dots + a_{nn}y_n = x_n,$

which is what we want to prove.

If we denote, for a vector v, the column of coordinates of v with respect to the basis e_1, \ldots, e_n by v_e , and also denote the transition matrix from the basis e_1, \ldots, e_n to the basis f_1, \ldots, f_n by $M_{e,f}$, then the previous result can be written as

 $v_{e} = M_{e,f}v_{f}$.

 $M_{\mathbf{e},\mathbf{f}}M_{\mathbf{f},\mathbf{g}}=M_{\mathbf{e},\mathbf{g}}$

 $M_{e,f}M_{f,e} = I_n$

Lemma 2. We have

and

if $\dim(V) = \mathfrak{n}$.

Proof. Applying the formula above twice, we have

$$v_{\mathbf{e}} = M_{\mathbf{e},\mathbf{f}} v_{\mathbf{f}} = M_{\mathbf{e},\mathbf{f}} M_{\mathbf{f},\mathbf{g}} v_{\mathbf{g}}.$$

But we also have

$$v_{e} = M_{e,g}v_{g}.$$

Therefore

$$M_{\mathbf{e},\mathbf{f}}M_{\mathbf{f},\mathbf{g}}\nu_{\mathbf{g}} = M_{\mathbf{e},\mathbf{g}}\nu_{\mathbf{g}}$$

for every $v_{\mathbf{g}}$. From our previous classes we know that knowing $A\mathbf{v}$ for all vectors \mathbf{v} completely determines the matrix A, so $M_{\mathbf{e},\mathbf{f}}M_{\mathbf{f},\mathbf{g}} = M_{\mathbf{e},\mathbf{g}}$ as required. Since manifestly we have $M_{\mathbf{e},\mathbf{e}} = I_n$, we conclude by letting $g_k = e_k$, $k = 1, \ldots, n$, that $M_{\mathbf{e},\mathbf{f}}M_{\mathbf{f},\mathbf{e}} = I_n$.