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Lecture 18

Dimension: examples

Example 1. The dimension of Rn is equal to n, as expected. (Standard unit vectors form a basis).

Example 2. The dimension of the space of polynomials in one variable x of degree at most n is equal to
n+ 1, since it has a basis 1, x, . . . , xn.

Example 3. The dimension of the space of m × n-matrices is equal to mn. (Matrix units eij, that is
matrices that have the only nonzero element equal to 1, which is at the intersection of the i-th row and the
j-th column, form a basis).

Example 4. For a matrix A, the dimension of the solution space to the system of equations Ax = 0 is equal
to the number of free unknowns, that is the number of columns of the reduced row echelon form of A that
do not have pivots. (The spanning set we constructed previously forms a basis).

We also discussed in detail one of the tutorial questions — see the handout for the tutorial for that
solution.

Change of coordinates

Let V be a vector space of dimension n, and let e1, . . . , en and f1, . . . , fn be two different bases of V. Then
we can compute coordinates of each vector v with respect to either of those bases, so that

v = x1e1 + · · ·+ xnen

and
v = y1f1 + · · ·+ ynfn.

Our goal now is to figure out how these are related. For that, we shall need the notion of a transition matrix.

Definition 1. Let us express the vectors f1, . . . , fn as linear combinations of e1, . . . , en:

f1 = a11e1 + a21e2 + · · ·+ am1em,

f2 = a12e1 + a22e2 + · · ·+ am2em,

. . .

fn = a1ne1 + a2ne2 + · · ·+ amnem.

The matrix (aij) is called the transition matrix from the basis e1, . . . , en to the basis f1, . . . , fn. Its k-th
column is the column of coordinates of the vector fk relative to the basis e1, . . . , en.
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Lemma 1. In the notation above, we have
x1
x2
...
xn

 =


a11 a12 . . . a1n

a21 a22 . . . a2n

... . . .
. . .

...
an1 an2 . . . ann



y1

y2

...
yn

 .

In plain words, if we call e1, . . . , en the “old basis” and f1, . . . , fn the “new basis”, then this system tells
us that the product of the transition matrix with the columns of new coordinates of a vector is equal to the
column of old coordinates.

Proof. The proof is fairly straightforward: we take the formula

v = y1f1 + · · ·+ ynfn,

and substitute instead of fi’s their expressions in terms of ej’s:

f1 = a11e1 + a21e2 + · · ·+ am1em,

f2 = a12e1 + a22e2 + · · ·+ am2em,

. . .

fn = a1ne1 + a2ne2 + · · ·+ amnem.

What we get is

y1(a11e1+a21e2+· · ·+an1en)+y2(a12e1+a22e2+· · ·+an2en)+. . .+yn(a1ne1+a2ne2+· · ·+annen) =

= (a11y1 + a12y2 + · · ·+ a1nyn)e1 + · · ·+ (an1y1 + an2y2 + · · ·+ annyn)en.

Since we know that coordinates are uniquely defined, we conclude that

a11y1 + a12y2 + · · ·+ a1nyn = x1,

. . .

an1y1 + an2y2 + · · ·+ annyn = xn,

which is what we want to prove.

If we denote, for a vector v, the column of coordinates of v with respect to the basis e1, . . . , en by ve, and
also denote the transition matrix from the basis e1, . . . , en to the basis f1, . . . , fn by Me,f , then the previous
result can be written as

ve = Me,fvf .

Lemma 2. We have
Me,fMf ,g = Me,g

and
Me,fMf ,e = In

if dim(V) = n.

Proof. Applying the formula above twice, we have

ve = Me,fvf = Me,fMf ,gvg.

But we also have
ve = Me,gvg.

Therefore
Me,fMf ,gvg = Me,gvg

for every vg. From our previous classes we know that knowing Av for all vectors v completely determines
the matrix A, so Me,fMf ,g = Me,g as required. Since manifestly we have Me,e = In, we conclude by letting
gk = ek, k = 1, . . . , n, that Me,fMf ,e = In.
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