1111: Linear Algebra I

Dr. Vladimir Dotsenko (Vlad)

Lecture 18

Dimension: examples

Example 1. The dimension of \mathbb{R}^{n} is equal to n, as expected. (Standard unit vectors form a basis).
Example 2. The dimension of the space of polynomials in one variable x of degree at most n is equal to $n+1$, since it has a basis $1, x, \ldots, x^{n}$.

Example 3. The dimension of the space of $\mathfrak{m} \times \mathfrak{n}$-matrices is equal to $\mathfrak{m n}$. (Matrix units $\mathbf{e}_{\mathfrak{i} \mathfrak{j}}$, that is matrices that have the only nonzero element equal to 1 , which is at the intersection of the i-th row and the j-th column, form a basis).

Example 4. For a matrix A, the dimension of the solution space to the system of equations $A x=0$ is equal to the number of free unknowns, that is the number of columns of the reduced row echelon form of A that do not have pivots. (The spanning set we constructed previously forms a basis).

We also discussed in detail one of the tutorial questions - see the handout for the tutorial for that solution.

Change of coordinates

Let V be a vector space of dimension n, and let e_{1}, \ldots, e_{n} and f_{1}, \ldots, f_{n} be two different bases of V. Then we can compute coordinates of each vector v with respect to either of those bases, so that

$$
v=x_{1} e_{1}+\cdots+x_{n} e_{n}
$$

and

$$
v=y_{1} f_{1}+\cdots+y_{n} f_{n} .
$$

Our goal now is to figure out how these are related. For that, we shall need the notion of a transition matrix.
Definition 1. Let us express the vectors f_{1}, \ldots, f_{n} as linear combinations of e_{1}, \ldots, e_{n} :

$$
\begin{gathered}
f_{1}=a_{11} e_{1}+a_{21} e_{2}+\cdots+a_{m 1} e_{m}, \\
f_{2}=a_{12} e_{1}+a_{22} e_{2}+\cdots+a_{m 2} e_{m} \\
\cdots \\
f_{n}=a_{1 n} e_{1}+a_{2 n} e_{2}+\cdots+a_{m n} e_{m} .
\end{gathered}
$$

The matrix $\left(a_{i j}\right)$ is called the transition matrix from the basis e_{1}, \ldots, e_{n} to the basis f_{1}, \ldots, f_{n}. Its k-th column is the column of coordinates of the vector f_{k} relative to the basis e_{1}, \ldots, e_{n}.

Lemma 1. In the notation above, we have

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \ldots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right) .
$$

In plain words, if we call $\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}$ the "old basis" and $\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}}$ the " $n e w$ basis", then this system tells us that the product of the transition matrix with the columns of new coordinates of a vector is equal to the column of old coordinates.
Proof. The proof is fairly straightforward: we take the formula

$$
v=y_{1} f_{1}+\cdots+y_{n} f_{n}
$$

and substitute instead of f_{i} 's their expressions in terms of e_{j} 's:

$$
\begin{gathered}
f_{1}=a_{11} e_{1}+a_{21} e_{2}+\cdots+a_{m 1} e_{m} \\
f_{2}=a_{12} e_{1}+a_{22} e_{2}+\cdots+a_{m 2} e_{m} \\
\ldots \\
f_{n}=a_{1 n} e_{1}+a_{2 n} e_{2}+\cdots+a_{m n} e_{m}
\end{gathered}
$$

What we get is

$$
\begin{array}{r}
y_{1}\left(a_{11} e_{1}+a_{21} e_{2}+\cdots+a_{n 1} e_{n}\right)+y_{2}\left(a_{12} e_{1}+a_{22} e_{2}+\cdots+a_{n 2} e_{n}\right)+\ldots+y_{n}\left(a_{1 n} e_{1}+a_{2 n} e_{2}+\cdots+a_{n n} e_{n}\right)= \\
=\left(a_{11} y_{1}+a_{12} y_{2}+\cdots+a_{1 n} y_{n}\right) e_{1}+\cdots+\left(a_{n 1} y_{1}+a_{n 2} y_{2}+\cdots+a_{n n} y_{n}\right) e_{n} .
\end{array}
$$

Since we know that coordinates are uniquely defined, we conclude that

$$
\begin{gathered}
a_{11} y_{1}+a_{12} y_{2}+\cdots+a_{1 n} y_{n}=x_{1} \\
\cdots \\
a_{n 1} y_{1}+a_{n 2} y_{2}+\cdots+a_{n n} y_{n}=x_{n}
\end{gathered}
$$

which is what we want to prove.
If we denote, for a vector v, the column of coordinates of v with respect to the basis e_{1}, \ldots, e_{n} by $v_{\mathbf{e}}$, and also denote the transition matrix from the basis e_{1}, \ldots, e_{n} to the basis f_{1}, \ldots, f_{n} by $M_{e, f}$, then the previous result can be written as

$$
v_{\mathbf{e}}=M_{\mathbf{e}, \mathbf{f}} v_{\mathbf{f}}
$$

Lemma 2. We have

$$
M_{\mathbf{e}, \mathbf{f}} M_{\mathbf{f}, \mathrm{g}}=M_{\mathbf{e}, \mathbf{g}}
$$

and

$$
M_{\mathbf{e}, \mathbf{f}} M_{\mathbf{f}, \mathbf{e}}=I_{n}
$$

if $\operatorname{dim}(\mathrm{V})=\mathrm{n}$.
Proof. Applying the formula above twice, we have

$$
v_{\mathbf{e}}=M_{\mathbf{e}, \mathbf{f}} v_{\mathbf{f}}=M_{\mathbf{e}, \mathbf{f}} M_{\mathbf{f}, \mathrm{g}} v_{\mathbf{g}} .
$$

But we also have

$$
v_{\mathrm{e}}=M_{\mathrm{e}, \mathrm{~g}} v_{\mathrm{g}}
$$

Therefore

$$
M_{e, f} M_{\mathbf{f}, \mathrm{g}} v_{\mathrm{g}}=M_{\mathbf{e}, \mathrm{g}} v_{\mathrm{g}}
$$

for every $\nu_{\mathbf{g}}$. From our previous classes we know that knowing $A \mathbf{v}$ for all vectors \mathbf{v} completely determines the matrix A, so $M_{\mathbf{e}, \mathbf{f}} M_{\mathbf{f}, \mathrm{g}}=M_{\mathbf{e}, \mathrm{g}}$ as required. Since manifestly we have $M_{\mathbf{e}, \mathbf{e}}=I_{n}$, we conclude by letting $g_{k}=e_{k}, k=1, \ldots, n$, that $M_{e, f} M_{f, e}=I_{n}$.

